SEDAR8-AW-4

Standardized Catch Rates of Spiny Lobster (Panulirus argus) Estimated from the United States Virgin Islands Commercial Trip Interview Program (Years 1983-2003)

by
Mónica Valle-Esquivel
University of Miami
Rosenstiel School of Marine and Atmospheric Science
Cooperative Institute for Marine and Atmospheric Studies (NOAA/UM)
4600 Rickenbacker Cswy., Miami, FL 33149
mvalle@rsmas.miami.edu

March 2005

Abstract

NOAA Fisheries Trip Interview Program (TIP) data from the United States Virgin Islands (1983-2003) were used to construct standardized indices of abundance for spiny lobster, Panulirus argus. Separate indices were estimated for each main gear type used to harvest this species: dive, fish traps, and lobster traps, using the Delta-Lognormal approach. This method combines two general linear models, a binomial model fit to the proportion of positive trips, and a lognormal fit to catch rates on positive trips. Effective effort was approximated by considering zero trips through the construction of species assemblages by gear. No clear trends in relative abundance were noted in any of the fisheries examined. It appears that abundance has been fairly stable over the period studied, although with some inter-annual fluctuation and a large variability within each year. Index values suggest that fish traps may be a more effective method to harvest spiny lobster than diving gear.

INTRODUCTION

The Trip Interview Program (TIP) collects biostatistical data on spiny lobster via port sampling agents conducting personal interviews with commercial fishers at landing sites and sale locations. Data routinely recorded includes date of fishing, area fished, location (island) landed, gear fished and total weight landed by species. Other information such as days fished, hours fished, quantity of gear, and number of fish landed by species is less frequently recorded. TIP data also contains fish length and weight information for a proportion of the interviewed trips. All sampling is conducted by or through voluntary cooperation of the fishers.

TIP data from the U. S. Virgin Islands is available from years 1983 through 2003. It is important to note that this data base is currently under review, so the analyses presented here are preliminary, and based on incomplete data or data that needs validation.

METHODS

Data Description

TIP data were utilized to estimate CPUE as the mean weight (in pounds) of spiny lobster per fishing trip by gear type. Indices were estimated for the three main gear types used to harvest lobster: DIVE (Hand/Spear/Diving), FISH TRAPS (Fish Pots/Traps), and LOBSTER TRAPS, either for the whole U.S. Virgin Islands or per island complex (or District), depending on where each fishery occurs. Islands were grouped by geological platform: 1) St. Thomas and St. Croix (STT/STJ) and St. Croix (STX). Only those records with a single gear type recorded were used.

Data Conversions

The TIP data for spiny lobster include a number of length and weight measurement types and units of measurement. All length data were converted to carapace length (CL) in millimeters, and individual weight was converted to grams. In cases where weight information was missing, a length-weight relationship from Florida (FAO, 2001) was used to perform the conversion:

$$
W_{T}=2.519 L_{C}{ }^{2.71}
$$

where $\mathrm{W}_{\mathrm{T}}=$ Total weight and $\mathrm{L}_{\mathrm{C}}=$ carapace length.

Identifying Trips Associated with Spiny Lobster

For a studied species, defining effort from the TIP data set is not straightforward, given the multi-specific nature of the U.S. Virgin Islands fisheries. The data set contains information about species caught, but not regarding the species targeted. Effective fishing effort (i.e., including trips that landed lobster and trips that may have targeted this species but did not catch it, or zero trips) was estimated using the species assemblage method developed by D. Heinemann and described in Sass-Calay and Bahnick, (2002) and in the NOAA-Fisheries SEDAR4-DW report (2004).

An association statistic (DH) was computed to determine the species often landed in association with Panulirus argus and other (unidentified) members of the same family, Panuliridae:

$$
D H=\frac{N(S, x) N(s)}{N(x) N}
$$

where $N(s)$ is the number of trips that caught the studied species; $N(x)$ is the number of trips that caught species $x ; N(s, x)$ is the number of trips that caught the studied species and species $x ; N$ is the total number of trips. The statistic gives less weight to species that are more abundant but unreasonably high scores are given to species caught very
infrequently, but alongside the studied species (i.e., small sample size). Species selection used a minimum co-occurrence sample size of (i.e., $N(s, x) \geq 20$ trips), and the association index values that scored the highest. Trips that landed the species from the assemblage were included for catch rate analysis.

Definition of Fishing Effort

In addition to 'trips', units of effort must also be defined. The following units available in TIP were considered: the number of traps, the number of gear (divers or dives per trip), and the hours fished or soak time. Unfortunately, none of this information was complete in the database across the whole time series or across platforms, so the best available unit was the number of trips. Each 'sequence number' was assumed to correspond to one fishing trip. Some of those effort units were however considered as categorical variables.

Relative Abundance Indices

A Generalized Linear Mixed Model Approach (GLMM) was used to estimate relative indices of abundance. Two different methods were used, depending on the characteristics of the data by gear and island: 1) a conventional GLM model to describe only the positive lobster CPUE observations, and 2) a Delta-Lognormal model that combines the proportion of positive trips (trips that landed spiny lobster over total trips) and positive catch rates on successful trips to construct a single index (Lo et al., 1992).

The influences of the following categorical variables on relative abundance were investigated: year, season (Winter, Spring, Summer, Fall), island (STT/STJ and STX), gear (dive, fish traps, lobster traps), number of gear (number of traps, number of dives), hours or days fished (soak time from trap set to haul, hours diving), and the average depth of fishing (for dive trips).

A step-wise regression procedure (GENMOD, SAS Institute Inc., 1999-2001) was used to determine the set of factors and interactions that significantly explained the observed variability in each model component. Factors were added sequentially to the model based on the percentage reduction in deviance per degree of freedom ($\geq 1.0 \%$), using a χ^{2} (Chi-square) test ($\mathrm{p}<0.05$). Fixed and random interactions between significant factors were evaluated under the same criteria. To illustrate this procedure, Deviance analysis tables for catch rates in pounds are presented for the first index developed (Table 7).

The final GLM or Delta-Lognormal model was fit to the data using algorithms developed by Ortiz et al. $(2000,2001)$ that incorporate the GLIMMIX and MIXED procedures from SAS® (SAS Institute Inc., 1999-2001). An examination of the data, the assumptions used for analysis and the relative indices of abundance developed are described below.

RESULTS

General Observations

The U.S. Virgin Islands TIP database contains 5,840 interviewed trips during the period 1983-2003. The exact location of fishing is not recorded, but the general area or island where the catch is landed is generally known. The total number of interviewed trips by year and island is summarized in Table 1. Note that the number of interviewed trips declined substantially after 1991. In addition, this database is currently under review, and incorrect or incomplete data for some years is being re-entered, particularly from that year onward (Uwate, pers. comm.). Of the total interviewed trips, 935 landed spiny lobster (Table 2), with 3 main gears: DIVING (spears, scuba, free diving, hand), FISH TRAPS (or 'pots') and LOBSTER TRAPS. Of the lobster trips, 61% of the dive trips catch lobster, while this species is observed in only 14% of the fish trap trips. The number of interviewed trips that landed lobster by island and gear and by island, gear, and year are provided in Table 3 and 4, which show that most of the interviews were conducted in St. Croix.

Based on the gear used to harvest spiny lobsters, the location fished, and the sample size by island, it was only possible to pursue CPUE analysis for St. Croix, for all gears combined (traps and dive), and separately for DIVING and TRAPS. A brief diagnostic of the data for the whole U.S. Virgin Islands and the assumptions used for each index developed are described in the sections that follow.

The proportion of spiny lobster trips by gear were Fish Traps (42.6\%), Dive (29\%), Lobster Traps (2.25\%), Unknown Gear (26\%) (Table 4 and Figure 1). Only 22 trips with Lobster Traps were identified so due to small sample size, a separate analysis was not performed for this gear. Lobster traps were grouped with Fish Traps for CPUE analysis.

The average depth in Dive trips that capture lobster is 11.6 Fathoms (1 Fathom=6 ft), and ranges between 9 and 13.5 Fathoms. Given this restricted and relatively uniform depth range, it was not worth to include this factor in the CPUE analyses. Average depth in other dive trips (that don't harvest lobster) is 7.5 Fathoms.

In the selection of explanatory variables, only interactions that contained significant fixed factors were included in the model. Inclusion of other significant interactions (fixed and random) did not improve model fit, and caused larger deviations from the observed CPUE values.

Species Assemblages

Lists of species assemblages for lobster are presented for Dive gear and Fish Traps (Table 5 andTable 6). Although a variety of species are harvested with Dive gear in the U.S. Virgin Islands, none showed association with lobster. This may indicate that either associated species (such as queen conch) are not sampled in TIP or that simply dive trips target lobster exclusively, and all other catch is incidental. For Fish Traps, all the trips that harvested the species from this assemblage were considered in the CPUE index estimation.

Relative Abundance Indices

Diagnostics for the entire U.S. Virgin Islands TIP database indicated that a number of restrictions must be imposed on the data for further analysis:

1) Some years have very small sample sizes.
2) Outliers in positive catch are present, may use 95% Quantiles.
3) A 78% of the lobster trips occur in St. Croix, so St. Thomas/St. John (STT/STJ) will only be included in a general trap index for the U.S. Virgin Islands.
4) A 43% of the lobster trips use Traps; 29% use Diving gear. In St. Croix, the proportion is 48% Fish Traps and 35% Dive trips.
5) All Dive trips occur in STX, none in STT/STJ.
6) Very few lobster trap trips are observed ($<1 \%$), all in STT/STJ.
7) Of all selected lobster trips, 61% are positive (catch Lobster) and 39% are zerotrips.
8) The number of traps range from 0 to 130 , with an average of 26 traps per trip. In St. Croix, 40% of the trips deploy more than 40 traps; in STT/STJ, 57% of the trips deply less than 20 traps.
9) The mean soak time for trap trips is 142 hr in STT/STJ and 93 hr in STX.
10) Lobster is harvested year-round, with fairly even catches among seasons, perhaps peaking in the Spring, with 32% of the total lobster landings.
11) Given these observations, the explanatory variables that can be considered for analysis are: year, season, island/district/area fished, number of gear, soak time, depth.
In order to develop a well balanced design, these variables were classified into the following categories:

YEAR $=1983-2003$
SEASON $=1$. Winter (Dec, Jan, Feb)
2. Spring (Mar, Apr, May)
3. Summer (Jun, Jul, Aug)
4. Autumn (Sep, Oct, Nov)

DISTRICT $=$ 1.St. Thomas/St. John (STT/STJ)
2. St. Croix (STX)
3. Unknown

AREA FISHED $($ within STX $)=\quad$. South-Southeast $\left(X S _X S E\right)$.
2. Southwest (XSW)
2. Northeast (XNE)
3. Northwest (XNW)
4. Unknown (XXX)

NUMBER OF GEAR
Num. TRAPS $=\quad$ 1.1-20 traps
2. 21-40 traps
3. More than 40 traps
4. Unknown

TIME FISHED
TRAPS $=>$ Soak Days(time between trap set and haul):

1. 1-6 days
2. More than 7 days

DIVE $=>$ Hours diving per trip:
$1.1-5 \mathrm{hr}$
2. More than 5 hr .
3. Unknown

AVERAGE DEPTH (Average of start and end depth):

1. < 10 Fathoms
2. 10-12 Fathoms
3. >12 Fathoms

Three indices of relative abundance were developed:

1. U.S.Virgin Islands Traps
2. St. Croix- Fish Traps
3. St. Croix- Dive.

1. U.S. VIRGIN ISLANDS- TRAPS

Observations and restrictions imposed on this subset of data:

1) Years 1986-2002.
2) Includes fish and lobster traps from both districts, STX and STT/STJ.
3) Used positive lobster trips and trips that harvested associated species.
4) Used the Delta-Lognormal approach.
5) The proportion of positive trips was 31% with the trips selected from the species assemblage method:

SUCCESS

Frequencies

Level	Count	Prob
0	913	0.68750
1	415	0.31250
Total	1328	1.00000

6) The final model selected was:

LNCPUE= YEAR+ SEASON+ NUM_GEAR+ SOAK_DAYS+ YEAR*NUM_GEAR+ YEAR*SOAK DAYS
 SUCCESS=YEAR+NUM_GEAR+DISTRICT+SEASON+SOAK_DAYS

The Binomial model did not converge with any interactions, so only main factors were selected. To illustrate the stepwise procedure use for the selection of factors,

Deviance analyses tables for this index are shown in Table 7.The observed, standardized, and scaled index is given in Table 8 and illustrated in Figure 2.

1. ST. CROIX- FISH TRAPS

Observations and restrictions imposed on the data:

1) Only St.Croix Island.
2) Years 1986-2000, exclude 1993.
3) No lobster traps observed in STX.
4)Areas grouped into 3 regions: North East (XNE), East (XE), South (XS, XSE, XSW), and Unknown (XXX).
Distributions STX
RZIP

Level	Count	Prob
XE	168	0.24348
XNE	239	0.34638
XS	5	0.00725
XSE	3	0.00435
XSW	17	0.02464
XXX	258	0.37391
Total	690	1.00000

5) Removed outliers from positive catch (Lobster $>130 \mathrm{lb}$ and $<1 \mathrm{lb} ; 95 \%$ Quantile).
6) Removed records with unknown island soak time.
7) Classified the number of gear (traps), "GEARNUM" into 4 levels:

Level
$1-20$
$21-40$
$40+$
Unknown
Total

Count	Prob
265	0.28312
179	0.19124
369	0.39423
123	0.13141
936	1.00000

8) Proportion of positive trips observed:

SUCCESS

Level	Count	Prob
0	559	0.59722
1	377	0.40278
Total	936	1.00000

9) Classified the time (hours) traps are deployed ("SOAK") into 3 categories (in days): unknown, 1-6 days, 7 days or more (60% of the distribution).
10) Explanatory variables considered:

YEAR SEASON REGION NUM_GEAR SOAK_days
11) The final Delta-Lognormal model was:

SUCCESS= YEAR+ NUM_GEAR+ SOAK_DAYS+ SEASON
LNCPUE= YEAR+ SOAK_days+ NUM_GEAR+ YEAR*NUM_GEAR+ +YEAR*SOAK_DAYS

The Delta-Lognormal model did not provide a good fit to the data and standardized index values were therefore not estimated. The lack of fit was due to a highly unbalanced number of observations by year in the Success mode (see below)l, and to marked differences in the distribution of explanatory variables between the Binomial and the Lognormal models. In particular, the area fished (region) was distributed differently for positive and zero trips, and caused problems with convergence. This factor was removed from analysis. The positive observations have a more balanced design for all the factors considered (except Area), so A GLM model was used to estimate the relative index.

SUCCESS=0 (Proportion)

SUCCESS=1 (Positive Catch)

12) The final GLM Model for Positive trips was:

LNCPUE= YEAR+ SOAK_days+ NUM_GEAR+ YEAR*NUM_GEAR+ YEAR*SOAK_DAYS

Deviance analysis tables are not provided for this index. The observed, standardized, and scaled index is given in Table 8 and illustrated in Figure 3

2. ST. CROIX- DIVE

A close examination of the DIVE trips for STX was conducted to select plausible explanatory variables for index estimation. These included the area fished (RZIP), the gear number (number of dives per trip), the dive time in hours (SOAK), the season of the year, and the average depth.

Even when a clear imbalance in the number of observations by year and by variable was observed, or that the range of observations was quite constrained, an attempt was made to test some variables as factors for the CPUE model. Variables Depth and Area fished were not tested, as a common classification into meaningful levels for both the positive and zero trips could not be made. As for the TRAP index, the Success model did not converge, so a GLM approach was used to explain trends in the positive trips. The observations for the Positive trips can be summarized as follows:

1) Before 1991, few dive trips occurred or were sampled.

YEAR

2) A 50% of the lobster trips land in the Northeast coast of STX; 28% in the South West, and the remaining proportion is distributed among the South, Southeast and South. Almost no trips occur in the Northwest coast.
3) The average number of dives per trip is 5 .
4) The average time diving per trip is 5 hours.
5) There is no clear seasonality in the number of trips, but slightly more are observed in the Fall (30\%), compared to Winter (18.5%). 25% of the trips occur in each of the other seasons (Spring and Summer).

SEASON

6) Median dive depth is 12.5 Fathoms, with a tight range between 8 -14 Fathoms, so this factor was not examined.

The constraints imposed for the GLM model were:

1) Only St.Croix island.
2) Only DIVE gear.
3) Years 1991-2003
4) No lobster traps observed in STX, so only Fish Traps were considered.
5) Main areas grouped into regions: South-Southeast (XS-XSE), South West (XSW), North East (XNE), and East (XE). The Northwest (XNW) and unknown areas were removed due to small sample size.
6) The gear number (in num dives per trip) was classified into <5 and ≥ 5 dives.
7) The number of hours diving was classified into 2 categories: $1-5 \mathrm{hrs}$ and $>5 \mathrm{hrs}$.
8) Final GLM Model was:

LNCPUE=YEAR+ REGION +NUM_GEAR+ YEAR*REGION +YEAR*NUM_GEAR
Deviance analysis tables are not provided for this index. The observed, standardized, and scaled index is given in Table 10 and illustrated in Figure 4.

For comparative purposes, all the standardized and scaled indices are shown in Table 11 and illustrated in Figure 4. Scaled values are relative to the average standard value.

Conclusions

No dramatic or consistent trends in relative abundance were noted in any of the fisheries examined. If any, the estimated indices suggest that abundance has remained relatively stable over the twenty-year period studied (1983-2003), with some inter-annual fluctuation. No seasonal clear seasonal trends were detected, the fishery appears to operate year-round, and relative abundance is fairly constant throughout the year.

A large variability was associated to all the indices, ranging from an average of 27% for the STX-DIVE index to approximately 45% for STX-TRAPS. The Delta Lognormal index for the whole U.S. Virgin Islands TRAP fishery showed unreasonable amount of variance (average of 61% C.V.). Possible reasons may be an unbalanced design of model factors due to small sample sizes, a low proportion of positive trips, large differences in the way the the trap fishery operates when lobster is not the real target, and numerous data inconsistencies, coding errors and gaps of information. Finally the selection of trips with associated species may be rather arbitrary, and may not convey information on true targeting or effective fishing effort.

The Delta-Lognormal TRAP index values fluctuated around $14.6 \mathrm{lb} /$ trip, while the GLM index for St. Croix averaged $30 \mathrm{lb} /$ trip, but does not consider the zero-catch trips. The St. Croix DIVE index showed smaller values, averaging 21 lb per trip, suggesting that (fish) traps are a more effective method to catch spiny lobster. This observation is surprising, since DIVE trips target mostly this species or queen conch (Strombus gigas).

It is important to consider that these analyses are preliminary, as the TIP database needs to undergo an exhaustive revision. This problem is being addressed by the Deparment of Fish and Wildlife, Fisheries Research Laboratory in the U.S. Virgin Islands. In the meantime, the standardized catch rates developed here may serve as indicators of general trends in abundance.

Acknowledgements

I gratefully acknowledge Shannon Cass-Calay, who provided the SAS code to estimatethe species association index and guided me in the handling of the TIP database. Josh Bennett provided all the data and gave good information about the TIP program in the Caribbean.

Literature Cited

Bohnsack, J., S. Meyers, R. Appledoorn, J. Beets, D. Matos-Caraballo, and Y. Sadovy. 1991. Stock Assessment of Spiny Lobster, Panulirus argus, in the U.S. Caribbean. Miami Laboratory Contribution No. MIA-9C91-49, National Marine Fisheries Service - Southeast Fisheries Science Center.

Bolden, S. K. 2001. Status of the U.S. Caribbean spiny lobster fishery 1980-1999. Miami Laboratory Contribution No. PRD-99/00-17, National Marine Fisheries Service. Southeast Fisheries Science Center, Miami, Florida.

Cass-Calay, S. and M. Bahnick. 2002. Status of the Yellowedge Grouper Fishery in the Gulf of Mexico: Assessment 1.0. NMFS/SEFC SFD-02/03-172.

Cass-Calay, S. and M. Valle-Esquivel. Standardized Catch Rates of Queen Snapper, Etelis oculatus, from the St. Croix U.S. Virgin Islands Handline Fishery. NOAA/NMFS/SEDAR4-DW-11.

FAO, 2001. Western Central Atlantic Fishery Commission. Report on the FAO/ DANIDA/CFRAMP/WECAFC Regional Workshops on the Assessment of the Caribbean Spiny Lobster (Panulirus argus) Belize City, Belize, 21 April-2 May 1997; Merida, Mexico, 1-12 June 1998. FAO Fisheries Report No. 619 FIRM/R619. 381p.

FAO, 2001. Workshop on Management of the Caribbean Spiny Lobster (Panulirusargus) Fisheries in the Area of the Western Central Atlantic Fishery Commission. Mérida, Mexico, 4-8 September 2000. FAO Fisheries Report No. 643 FIPP/R643 (Bi). UN, Rome.

Lo, N. C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:25152526.

McCullagh, P. and J.A. Nelder. 1989. Generalized Linear Models $2^{\text {nd }}$ edition. Chapman and Hall.

Ortiz, M. a. G. P. S. 2001. Standardized Catch Rates for White Marlin (Tretapturus albidus) and Blue Marlin (Makaira nigricans) from the Pelagic Longline Fishery in the Northwest Atlantic and the Gulf of Mexico. Col. Vol. Sci. Pap. ICCAT 53:231-248.

Ortiz M., Legault C., and G. Scott . 2000. Variance component estimation for standardized catch rates of king mackerel (Scomberomorus cavalle) from U.S. Gulf of Mexico recreational fisheries useful for inverse variance weighting techniques. NMFS/SEFSC Sustainable Fisheries Division Contribution SFD-99/00-86.

SEDAR 4 Data Workshop Report for the Caribbean-Atlantic Deepwater SnapperGrouper Species. NOAA-Fisheries, November 3-7, 2003.

Table 1. Total interviewed trips by year and by island contained in the U.S. Virgin Islands TIP database.

Year	ST. CROIX	ST. JOHN	ST.THOMAS	Other/Unknown	TOTAL
1983	233	0	0	0	$\mathbf{2 3 3}$
1984	379	0	3	18	$\mathbf{3 8 2}$
1985	522	8	279	40	$\mathbf{8 0 9}$
1986	425	1	53	21	$\mathbf{4 7 9}$
1987	430	0	35	20	$\mathbf{4 6 5}$
1988	478	0	0	3	$\mathbf{4 7 8}$
1989	424	0	0	0	$\mathbf{4 2 4}$
1990	523	0	0	0	$\mathbf{5 2 3}$
1991	911	0	0	0	$\mathbf{9 1 1}$
1992	3	6	46	29	$\mathbf{5 5}$
1993	99	25	56	0	$\mathbf{1 8 0}$
1994	118	6	35	0	$\mathbf{1 5 9}$
1995	99	3	17	2	$\mathbf{1 1 9}$
1996	75	0	16	0	$\mathbf{9 1}$
1997	94	0	0	0	$\mathbf{9 4}$
1998	85	0	0	0	$\mathbf{8 5}$
1999	70	0	0	0	$\mathbf{7 0}$
2000	41	0	0	0	$\mathbf{4 1}$
2001	47	0	0	0	$\mathbf{4 7}$
2002	92	0	31	0	$\mathbf{1 2 3}$
2003	61	0	11	0	$\mathbf{7 2}$
TOTAL	$\mathbf{5 2 0 9}$	$\mathbf{4 9}$	$\mathbf{5 8 2}$	$\mathbf{1 3 3}$	$\mathbf{5 8 4 0}$

Table 2. Number of interviewed trips that landed lobster and other species (only) by gear from the U.S. Virgin Islands TIP database. The proportion of trips that lobster and those that landed only other species by gear are given. The gears that landed the largest proportion of lobster are highlighted.

				\% Trips by Gear	
GEAR_CODE	Lobster Trips	Other Spp Trips	Total Trips	\%SppTrips	\% Lobster Trips
LOBTRAPS	21	1	22	4.5\%	95.5\%
DIVE	271	172	443	38.8\%	61.2\%
TRAPS	397	2352	2749	85.6\%	14.4\%
GILLNETS	1	603	604	99.8\%	0.2\%
HANDLINES	0	1070	1070	100\%	0\%
LONGLINES	0	24	24	100\%	0\%
SEINE	0	1	1	100\%	0\%
TROLL	0	239	239	100\%	0\%
OTHER	245	390	635	61.4\%	38.6\%
Total	935	4852	5787		

Table 3. Number of interviewed trips that landed lobster by island and gear from the U.S. Virgin Islands TIP database. The main gears that harvest lobster are highlighted and proportions by gear are given.

ISLAND	LOBTRAPS	FISH TRAPS	DIVE	OTHER	GILLNETS	TOTAL
ST_CROIX	0	370	272	132	1	775
ST_JOHN	1	5	0	1	0	7
ST_THOMAS	17	18	0	5	50	0
OTHER	3	4	0	62	0	65
TOTAL	21	397	272	245	1	936
Percent by Gear	$\mathbf{2 . 2} \%$	$\mathbf{4 2 . 4} \%$	$\mathbf{2 9 . 1} \%$	$\mathbf{2 6 . 2} \%$	$\mathbf{0 . 1 \%}$	

Table 4. Number of interviewed trips that landed spiny lobster by island, year and gear from the U.S. Virgin Islands database. The relative indices of abundance were developed for the gears that landed the largest proportion of the total lobster landings (highlighted). The data were obtained from the U.S. Virgin Islands TIP.

ISLAND	Year	DIVE	LOBTRAPS	TRAPS	OTHER	GILLNETS	TOTAL
OTHER	1984	0	0	0	18	0	18
	1986	0	0	0	21	0	21
	1987	0	0	0	20	0	20
	1988	0	0	0	3	0	3
	1992	0	3	4	0	0	7
ST_CROIX	1983	0	0	1	0	0	1
	1984	2	0	2	0	0	4
	1985	1	0	0	73	0	74
	1986	0	0	11	58	0	69
	1987	1	0	59	0	0	60
	1988	0	0	20	0	0	20
	1989	1	0	6	0	0	7
	1990	0	0	42	1	0	43
	1991	13	0	31	0	0	44
	1994	21	0	28	0	0	49
	1995	11	0	39	0	0	50
	1996	5	0	36	0	1	42
	1997	21	0	36	0	0	57
	1998	30	0	25	0	0	55
	1999	24	0	23	0	0	47
	2000	15	0	10	0	0	25
	2001	30	0	0	0	0	30
	2002	52	0	1	0	0	53
	2003	45	0	0	0	0	45
ST_JOHN	1986	0	0	0	1	0	1
	1992	0	1	1	0	0	2
	1993	0	0	3	0	0	3
	1995	0	0	1	0	0	1
ST_THOMAS	1984	0	0	0	3	0	3
	1985	0	0	0	46	0	46
	1986	0	0	0	1	0	1
	1992	0	1	6	0	0	7
	1993	0	2	2	0	0	4
	1994	0	0	2	0	0	2
	1995	0	1	1	0	0	2
	1996	0	1	2	0	0	3
	2002	0	5	5	0	0	10
	2003	0	7	0	0	0	7
TOTAL		272	21	397	245	1	936

Table 5. Species assemblage analysis for spiny lobster, DIVE GEAR from the U.S. Virgin Islands. No species were selected.

NODC_CODE	SCI_NAME	COM_NAME	Lobstrips	Alltrips	Numerator	Denominator	DH
6182010101	PANULIRUS ARGUS	LOBSTER,SPINY	276	276	$1.00 \mathrm{E}+00$	$6.05 \mathrm{E}-01$	1.652
5103580100	STROMBUS	SNAILS(CONCHS)	1	1	$3.62 \mathrm{E}-03$	$2.19 \mathrm{E}-03$	1.652
5500000000	BIVALVIA	CLAM,UNC	1	1	$3.62 \mathrm{E}-03$	$2.19 \mathrm{E}-03$	1.652
8835360104	LUTJANUS APODUS	SNAPPER,SCHOOLMASTER	1	4	$3.62 \mathrm{E}-03$	$8.77 \mathrm{E}-03$	0.413
5103580105	STROMBUS PUGILIS	WEST INDIAN FIGHTING	1	161	$3.62 \mathrm{E}-03$	$3.53 \mathrm{E}-01$	0.0103

Table 6. Species assemblage for spiny lobster and unidentified Panuliridae, Primary gear=FISH TRAPS from the U.S. Virgin Islands. Only species with cooccurrence >20 trips and largest DH values were selected (highlighted).

NODC_CODE	SCI_NAME	COM_NAME	-obstrips	Alltrips	Numeratol Denominato		DH_Stat
6182010101	PANULIRUS ARGUS	LOBSTER,SPINY	416	416	0.50	0.13	3.85
6182010000	PALINURIDAE	SPINY LOBSTERS, PALIN	68	68	0.08	0.02	3.85
8835430500	CALAMUS SPP	PORGY,G:CALAMUS	31	201	0.04	0.06	0.59
8835020412	EPINEPHELUS STRIATUS	GROUPER,NASSAU	24	174	0.03	0.05	0.53
8835360106	LUTJANUS BUCCANELLA	SNAPPER,BLACKFIN	21	161	0.03	0.05	0.50
8810080101	HOLOCENTRUS ASCENSIONIS	SQUIRRELFISH	24	215	0.03	0.07	0.43
8835020506	MYCTEROPERCA VENENOSA	GROUPER,YELLOWFIN	33	298	0.04	0.09	0.43
8860030101	LACTOPHRYS TRIGONUS	TRUNKFISH	22	231	0.03	0.07	0.37
8835550401	POMACANTHUS ARCUATUS	ANGELFISH,GRAY	35	392	0.04	0.12	0.34
8835020406	EPINEPHELUS GUTTATUS	HIND,RED	47	1072	0.06	0.33	0.17
8860020202	BALISTES VETULA	TRIGGERFISH,QUEEN	49	1315	0.06	0.41	0.14
8835020438	EPINEPHELUS FULVUS	CONEY	36	1117	0.04	0.35	0.12
8849010103	ACANTHURUS COERULEUS	BLUE TANG	42	1389	0.05	0.43	0.12
8835360401	OCYURUS CHRYSURUS	SNAPPER,YELLOWTAIL	26	913	0.03	0.28	0.11
8849010102	ACANTHURUS CHIRURGUS	DOCTORFISH	26	1091	0.03	0.34	0.09
8835400102	HAEMULON PLUMIERI	GRUNT,WHITE	25	1295	0.03	0.40	0.07
8839030403	SPARISOMA CHRYSOPTERUM	PARROTFISH,REDTAIL	24	1458	0.03	0.45	0.06

SEDAR8-AW-4

Table 7. Deviance analysis tables for the selection of explanatory variables in the Lognormal and Binomial Model components for the U.S. Virgin Island TRAP fishery. Factos were added to the model if PROBCHISQ <0.05 and $\%$ REDUCTION in DEV/DF $\geq 1.0 \%$. Only the first and last steps in the stepwise process are show, with the final models in bold font.

Positive (Lognormal Model)

The expla FACTOR	e ba DEGF	model a DEVIANCE	YEAR DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	402	285.1	0.7093		-516.1		
SEASON	399	284.5	0.7130	-0.52	-515.6	0.99	0.80454
DISTRICT	401	282.0	0.7033	0.84	-513.8	4.62	0.03167
SOAK_DAYS	400	278.6	0.6964	1.82	-511.2		
NUM_GEAR	398	274.7	0.6902	2.70	-508.2	15.77	0.00335

The explanatory factors in the base model are: YEAR NUM_GEAR							
FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	398	274.7	0.6902		-508.2		
SEASON	395	273.5	0.6923	-0.31	-507.2	1.89	0.59453
DISTRICT	397	273.1	0.6880	0.31	-507.0	2.39	0.12196
SOAK_DAYS	396	264.4	0.6677	3.25	-500.2	.	.

The explanatory factors in the base model are: YEAR NUM_GEAR SOAK_DAYS							
FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	396	264.4	0.6677		-500.2		
DISTRICT	395	263.7	0.6675	0.04	-499.6	1.23	0.26799
SEASON	393	262.4	0.6677	0.00	-498.6	3.23	0.35817

The explanator	YEAR NUM_GEAR SOAK_DAYS					CHISQ	PROBCHISQ
FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE		
BASE	396	264.4	0.6677		-500.2		
SOAK_DAYS	396	264.4	0.6677	0.00	-500.2	.	-
DISTRICT	395	263.7	0.6675	0.04	-499.6	1.23	0.26799
SEASON	393	262.4	0.6677	0.00	-498.6	3.23	0.35817
NUM_GEAR*SOAK_DAYS	390	249.1	0.6388	4.34	-487.6	.	.
YEAR*SOAK_DAYS	379	238.9	0.6304	5.60	-478.7	.	-
YEAR*NUM_GEAR	367	206.3	0.5622	15.80	-447.8	104.69	0.00000

The explanatory factors in the base model are: YEAR NUM_GEAR SOAK_DAYS YEAR*NUM_GEAR							
FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	367	206.3	0.5622		-447.8		
SOAK_DAYS	367	206.3	0.5622	0.00	-447.8	.	
DISTRICT	366	206.0	0.5627	-0.09	-447.4	0.76	0.38431
NUM_GEAR*SOAK_DAYS	362	203.2	0.5613	0.16	-444.6	.	
SEASON	364	202.1	0.5553	1.23	-443. 5	8.68	0.03380
YEAR*SOAK_DAYS	352	187.4	0.5324	5.30	-427.5	.	.

$\underset{* *}{\text { Proportion }}$ of Positive (${ }_{\text {Binomial }}^{\text {Model }}$

FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	1328	1661.2	1.2509		-830.6		
SEASON	1325	1620.4	1.2229	2.24	-810.2	40.85	0.00000
SOAK_DAYS	1326	1602.7	1.2086	3.38	-801.3		.
DISTRICT	1327	1542.4	1.1623	7.08	-771.2	118.81	0.00000
NUM_GEAR	1324	1462.8	1.1049	11.68	-731.4	198.39	0.00000
YEAR	1309	1053.2	0.8046	35.68	-526.6	608.08	0.00000

The expla FACTOR	e ba DEGF	model a DEVIANCE	YEAR DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	1309	1053.2	0.8046		-526.6		
SEASON	1306	1018.8	0.7801	3.04	-509.4	34.40	0.00000
SOAK_DAYS	1307	1005.3	0.7692	4.39	-502.7	.	.
DISTRICT	1308	999.1	0.7638	5.06	-499.5	54.06	0.00000
NUM_GEAR	1305	981.0	0.7517	6.57	-490.5	72.17	0.00000

SEDAR8-AW-4

The explanatory factors in the base model are: YEAR NUM_GEAR

FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	1305	981.0	0.7517		-490. 5		
SEASON	1302	958.5	0.7361	2.07	-479.2	22.52	0.00005
SOAK_DAYS	1303	949.9	0.7290	3.02	-475.0	.	
DISTRICT	1304	916.7	0.7030	6.49	-458.3	64.33	0.00000

The explanatory factors in the base model are: YEAR NUM_GEAR DISTRICT

FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	1304	916.7	0.7030		-458.3		
SOAK_DAYS	1302	897.6	0.6894	1.93	-448.8		
SEASON	1301	892.0	0.6856	2.47	-446.0	24.67	0.00002

The explanatory factors in the base model are: YEAR NUM_GEAR DISTRICT SEASON

FACTOR	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE	CHISQ	PROBCHISQ
BASE	1301	892.0	0.6856		-446.0		
SOAK_DAYS	1299	877.6	0.6756	1.46	-438.8		

The explanatory factors in the base model are: YEAR NUM_GEAR DISTRICT SEASON SOAK_DAYS

	DEGF	DEVIANCE	DEV/DF	\%REDUCTION	LOGLIKE

Table 8, U.S.Virgin Islands- TRAPS- Delta-Lognormal Index. Nominal CPUE, estimated CPUE, coefficient of variation, and scaled relative abundance index for the spiny lobster trap fishery, all islands included, years 1986-2002.

				Scaled Index				
Year	Nominal	Estimated	C.V.		Obscpue	StdIndex	U95\% CI	L95\% CI
1986	4.544	0.583	87.5%	0.280	0.040	0.009	0.180	
1987	16.276	1.633	82.4%	1.003	0.112	0.026	0.471	
1988	12.725	5.472	62.2%	0.784	0.374	0.119	1.175	
1989	3.612	1.836	87.2%	0.223	0.126	0.028	0.565	
1990	25.413	29.818	45.9%	1.566	2.039	0.851	4.887	
1991	14.141	7.654	52.0%	0.871	0.523	0.197	1.392	
1992	12.338	13.355	60.6%	0.760	0.913	0.299	2.793	
1993	12.586	5.426	88.7%	0.776	0.371	0.081	1.703	
1994	14.322	11.965	48.2%	0.883	0.818	0.328	2.040	
1995	19.676	19.307	42.9%	1.212	1.32	0.580	3.005	
1996	20.514	26.257	45.2%	1.264	1.795	0.759	4.249	
1997	21.966	22.295	48.9%	1.354	1.524	0.604	3.850	
1998	19.839	16.616	52.6%	1.223	1.136	0.423	3.053	
1999	21.450	24.414	49.4%	1.322	1.669	0.656	4.250	
2000	20.553	22.825	64.4%	1.267	1.561	0.481	5.065	
2001								
2002	19.693	24.545	57.6%	1.213	1.678	0.575	4.899	

Table 9. STX- TRAPS, GLM Index. Nominal CPUE, estimated CPUE, coefficient of variation, and scaled relative abundance index for the spiny lobster Trap fishery of St. Croix, years 1986-2002.

					Scaled Index		
Year	Nominal	Estimated C.V.	Obscpue	StdIndex	U95\% CI	L95\% CI	
1986	43.018	22.408	58.3%	1.352	0.698	2.057	0.237
1987	42.159	19.166	82.8%	1.325	0.481	2.041	0.114
1988	49.834	44.969	44.0%	1.567	1.515	3.513	0.654
1989	21.671	20.534	52.3%	0.681	0.665	1.778	0.249
1990	32.672	52.916	47.4%	1.027	1.750	4.303	0.711
1991	18.982	16.345	41.8%	0.597	0.561	1.252	0.252
1992	0.000	0.000	0.0%	0.000	0.000	0.000	0.000
1993	0.000	0.000	0.0%	0.000	0.000	0.000	0.000
1994	29.292	26.320	41.6%	0.921	0.900	2.000	0.405
1995	25.905	23.900	40.9%	0.814	0.821	1.802	0.374
1996	24.347	30.721	43.3%	0.765	1.041	2.384	0.455
1997	28.677	30.772	42.4%	0.902	1.047	2.362	0.464
1998	23.013	22.382	47.7%	0.724	0.743	1.840	0.300
1999	26.113	30.715	42.5%	0.821	1.045	2.360	0.463
2000	24.664	34.075	53.5%	0.775	1.090	2.971	0.400
2001							
2002	54.956	66.487	81.3%	1.728	1.642	6.822	0.395

Table 10. STX- DIVE, GLM Index. Nominal CPUE, estimated CPUE, coefficient of variation, and scaled relative abundance index for the spiny lobster Dive fishery of St. Croix, years 1991-2003.

				Scaled Index			
Year	Nominal	Estimated Coeff Var	Obscpue	StdIndex	U95\% CI	L95\% CI	
1991	30.630	24.015	41.0%	1.419	1.092	2.401	0.497
1992							
1993							
1994	30.033	32.530	24.4%	1.392	1.565	2.534	0.967
1995	21.993	24.307	32.4%	1.019	1.143	2.152	0.607
1996	11.087	13.192	37.1%	0.514	0.613	1.257	0.299
1997	23.904	19.964	26.3%	1.108	0.958	1.606	0.572
1998	18.394	16.253	26.3%	0.852	0.781	1.310	0.466
1999	24.502	17.374	26.8%	1.135	0.834	1.412	0.492
2000	31.226	29.436	27.1%	1.447	1.407	2.394	0.826
2001	16.722	14.943	27.4%	0.775	0.717	1.228	0.418
2002	23.278	17.947	22.7%	1.079	0.870	1.362	0.556
2003	27.219	21.077	23.5%	1.261	1.019	1.620	0.641

Table 11. A summary of the standardized CPUE indices estimated in this study. The standard and the scaled standard indices are shown for traps and dive gear, and the model used is specified. Scaled values are relative to the average standard value.

	USVI-DeIta-Traps		STX-GLM-Traps		STX-GLM-Dive	
Year	Estimated	Scaled	Estimated	Scaled	Estimated	Scaled
1986	0.58	0.04	22.41	0.70		
1987	1.63	0.11	19.17	0.48		
1988	5.47	0.37	44.97	1.52		
1989	1.84	0.13	20.53	0.67		
1990	29.82	2.04	52.92	1.75		
1991	7.65	0.52	16.34	0.56	24.01	1.09
1992	13.36	0.91		0.00		
1993	5.43	0.37		0.00		
1994	11.96	0.82	26.32	0.90	32.53	1.57
1995	19.31	1.32	23.90	0.82	24.31	1.14
1996	26.26	1.80	30.72	1.04	13.19	0.61
1997	22.29	1.52	30.77	1.05	19.96	0.96
1998	16.62	1.14	22.38	0.74	16.25	0.78
1999	24.41	1.67	30.72	1.05	17.37	0.83
2000	22.82	1.56	34.08	1.09	29.44	1.41
2001					14.94	0.72
2002	24.55	1.68	66.49	1.64	17.95	0.87
2003					21.08	1.02

Figure 1. Proportion of lobster trips by gear from the U.S. Virgin Islands TIP database.

Figure 2. U.S.Virgin Islands- DIVE and TRAPS combined- Delta-Lognormal Model Nominal CPUE, standardized index of abundance and 95% confidence limits for the U.S. Virgin Islands spiny lobster, all islands included, DIVE and TRAPS combined, years 1986-2002.

Figure 3. STX- TRAPS- GLM Model. Nominal CPUE, standardized index of abundance and 95\% confidence limits for the St. Croix spiny lobster Trap fishery, years 1986-2002.

Figure 4. STX- DIVE- GLM Model. Nominal CPUE, standardized index of abundance and 95\% confidence limits for the St. Croix spiny lobster Dive fishery, years 1991-2003.

Figure 5. A summary of the standardized CPUE indices (in lb/trip) estimated in this study for lobster trap and dive fisheries; the model used is specified.

Figure 6. A summary of the standardized scaled CPUE indices estimated in this study for lobster trap and dive fisheries. Scaled values are relative to the average standard value.

