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Executive Summary 
1.  This paper reviews four alternative approaches that could be taken to formulate a prior 
probability density function for the parameters natural mortality rate for age 0 and age 1 Gulf 
of Mexico red snapper.   

2.  Of the approaches, only one appears to offer possibilities.  This approach has been applied 
in other similar circumstances when both expert judgment and observational studies exist that 
provide a basis to make judgements about the plausibility of factors impacting the values for 
the parameters of interest and several articles in the peer reviewed literature have already 
applied this approach.  The applications, however, have been to develop priors for the 
constant of proportionality in relative abundance indices that scale absolute abundance to the 
values obtained for the abundance indices.   

3.  A Monte Carlo simulation model is suggested that incorporates results from three different 
empirical studies that provide approximations of the rate of natural mortality for age 0 and 
age 1 red snapper and takes into account statistical uncertainty in the empirical estimates and 
values for the key factors that affect the estimates.  A set of key factors that affect the 
uncertainty and interpretation of the initial estimates of mortality rate provided by these 
studies are identified and potential ranges of values for them are proposed.  Such factors 
include rates of immigration and emigration of red snapper to and from Dr. Szedlmayer’s 
experimental sites, presumed rates of on site fishing mortality rates, and the ratio of 
catchabilities for the different surveys of juvenile abundance in regressions of survey catch 
rates to estimate total mortality rates.   

4.  Simple mathematical models that describe the potential relationships between the actual 
rates of natural mortality, the empirically estimated values for total mortality rate and the 
potential biasing factors are proposed for each of the empirical studies considered in this 
paper.   

5.  A Monte Carlo simulation procedure is proposed to compute probability distributions for 
the rates of natural mortality for age 0 and age 1 fish that integrates results from the three 
different empirical studies, takes into account key uncertainties and attempts to maintain 
consistency in assumptions about potential rates of decay in the rate of natural morality with 
age and in presumed fishing mortality rates in each of the empirical studies. 

6.  An alternative protocol is also suggested in which the results from the Monte Carlo 
analyses are updated sequentially such that the output distribution of the first analysis of Dr. 
Szedlmayer’s field study results becomes the prior probability density function pdf for the 
analysis of Nichol’s regression results for survey catch rates of autumn age 0 and summer age 
1 fish. The output distribution from the combination of Szedlmayer’s and Nichol’s analysis 
becomes the prior pdf for the analysis of Goodyear’s regression results for survey catch rates 
of summer age 1 fish and autumn age 1 fish.  If the output distribution at each stage of the 
analysis is parameterized as a multi-variate lognormal distribution of the parameters of 
interest, then these pdfs can be treated as conjugate priors to the next stage of analysis.  The 
final output distribution summarized as a multivariate lognormal pdf for M0 and M1 thus 
could serve as the prior pdf for the stock assessment. 
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Introduction 
One of the sources of uncertainty in the Gulf of Mexico red snapper (Lutjanus campechanus) 
stock assessment is over the values for natural mortality rate in age 0 and age 1 fish (M0 and 
M1).  Since the mid 1990's the values applied have been 0.5 and 0.3 yr-1, respectively 
(Goodyear 1995; Schirripa and Legault 1999).  There were extensive discussions about the 
parameters in the April 2004 SEDAR workshop and the workshop report covers this topic in 
considerable detail (SEDAR7 2004).  One of the recommendations in the review report is for 
a prior probability distribution for these parameters to be formulated to take into account 
findings from various studies that may shed light on plausible values for M0 and M1 for red 
snapper and take into account uncertainty in values for these parameters.  This note identifies 
and reviews some alternative approaches to formulating prior probability density functions 
(pdfs) for the rate of natural mortality for red snapper.   

There are at least four potential approaches that could be taken to formulate a prior for a 
parameter in a fish population dynamics model such as the rate of natural mortality.  One 
approach is to formulate a non-informative prior pdf which reflects total ignorance or near 
total ignorance about the parameter (called hereon a “non-informative prior”) (Box and Tiao 
1972).  A second approach is to identify subjectively from expert judgement a prior pdf based 
on biological experts on the species who are most well-qualified to make judgements about 
values for the parameters of interest (hereon called a “subjective-expert judgement prior”) 
(Uusitalo 2001; ICES 2004).  A third approach is to apply hierarchical probability modelling 
to datasets from related fish stocks to model the cross stock variability in the parameter and 
the value for the same parameter in the different populations (Gelman et al. 1995; Liermann 
and Hilborn 1997; Michielsens and McAllister 2004).  The modelling approach permits the 
computation of a posterior predictive distribution for the parameter in some yet to be sampled 
population.  The posterior predictive distribution then may serve as the prior pdf for the fish 
stock of interest (hereon called a “hierarchical posterior predictive prior”).  A fourth approach 
is to summarize all empirical information that may be used to formulate plausible values for 
the parameter and to construct a Monte Carlo simulation model that probabilistically utilizes 
the various sources of information, probabilistically integrates the information and 
summarizes the results in an output distribution for the parameter of interest (Punt et al. 1993; 
McAllister and Ianelli 1997; Boyer et al. 2001).  This output distribution then serves as the 
prior pdf for the parameter in stock assessments (hereon called a “Monte Carlo prior”). The 
various pros and cons of each of these alternative approaches and their potential merits for the 
formulation of a prior pdf for M0 and M1 for red snapper are reviewed next.  Where one of 
these approaches has apparent merits, some suggestions will be provided on how it might be 
applied to formulate a prior pdf for M0 and M1.   

Review of different types of priors 
1.  Non-informative prior 

Non-informative priors are most appropriate when there is truly little information about the 
possible values for the parameter of interest and it is expected that there will be sufficient 
information in the data to which the stock assessment model is to be fitted to be able to 
estimate precisely the parameter in question (Box and Tiao 1973).  This type of prior has 
often been applied to constants of proportionality in relative abundance indices and variance 
terms in likelihood functions (Punt et al. 1993; Walters and Ludwig 1994).  This type of prior 
is not commonly applied to natural mortality rate (M).  This is because the data to which stock 
assessment models are fitted, e.g., relative abundance index data and catch-age data rarely 
contain much information in them about M.  If a model is fitted to mark recapture data, the 
tagging experiment is well-designed and the tag return rate high, then the data may be 
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informative about the rate of natural mortality.  In such a case, a non-informative prior for M 
might be appropriate.  There exist some mark recapture data for red snapper for age 2 and 
older but few if any on age zero or age one fish (Schirripa and Legault 1999). Thus a non-
informative prior for M0 and M1 for red snapper appears to be out of the question. 

2.  Subjective-expert judgement prior 

In instances in which fisheries biologists have spent considerable time studying some fish 
species, they will have developed knowledge of the species and population and others like it 
to make reasoned judgments about the plausibility of different values for some biological 
parameter such as the rate of natural mortality (Uusitalo 2001; ICES 2003).  This is the case 
for example among salmon biologists where considerable experience has developed in 
studying the post smolt mortality rates between hatchery raised and wild anadromous 
salmonids.  Tagging experiments for various Pacific salmon stocks have facilitated the 
estimation of post smolt mortality rates for these stocks.  In such instances, salmon biologists 
have been in a position to formulate prior probability distributions for post smolt survival 
rates for wild and hatchery raised salmon stocks for which relatively little data exist (e.g., 
Baltic salmon) (ICES 2003).  Despite the existence of estimates for Pacific salmon, it has 
been recognized that there remains considerable uncertainty for other salmon stocks, so the 
priors developed, e.g., for post smolt mortality rates in wild and hatchery-reared Baltic 
salmon have been quite diffuse, e.g., with prior coefficients of variation larger than 0.5.  This 
implies more than about 10-fold differences between lower and upper 95% prior probability 
intervals for the parameter.  However, it appears that for the rate of natural mortality in 
juvenile red snapper, few if any such studies exist for other similar populations.  Thus, the 
formulation of a prior for natural mortality rates (M) in juvenile red snapper based solely on 
expert subjective judgement appears to be inappropriate. 

Where aging data exist, this permits the formulation of plausible values for M or the total rate 
of mortality (Z) for mature fish as has already been done for red snapper (Schirripa and 
Legault 1999).  However, such data to not permit judgement about plausible values for M or 
Z for immature fish.   

3.  Hierarchical posterior predictive prior 

This approach requires analogous datasets from several different populations that are similar 
to the one of interest (Gelman et al. 1995).  This approach has been applied several times to 
stock-recruit datasets for groups for similar fish stocks (Liermann and Hilborn 1997; 
Michielsens and McAllister 2004).  The hierarchical models formulated model the parameter 
estimates for each population but also the mean and variance in the parameter estimates 
across populations.  The set of parameters in the hierarchical model is utilized to compute a 
posterior predictive distribution for a parameter of interest in a yet unsampled population.  
This posterior predictive pdf thus becomes the prior pdf for the parameter in the “new” 
population of interest.  This approach is perhaps one of the most empirically-based and 
sophisticated approaches available to formulate prior pdfs.  It requires exchangeability among 
populations (Gelman et al. 1995) such that the value of the parameter from one of the 
populations is like a random draw of the parameter from the set of all conceivable populations 
that have similarities with respect to that parameter.  Covariates such as latitude may be 
utilized to improve the predictive power of this approach.  No such datasets for the rate of 
natural mortality in other similar populations exist for red snapper.  Thus, this approach is not 
available for formulating a prior pdf for M0 and M1 for red snapper. 
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4.  Monte Carlo prior 

In some instances, indirect observational and experimental information exist that may be 
drawn upon to develop a Monte Carlo probability model that includes a model of variables 
contributing to the quantity of interest and empirically or expert-based formulations of prior 
pdfs for the contributing variables.  This approach has been applied several times to develop 
prior pdfs for constants of proportionality (q) in relative abundance indices.  One of the first 
applications developed a prior pdf for q for the hydro acoustic index of abundance of New 
Zealand hoki (Punt et al. 1993).  Expert judgement was applied to formulate pdfs for several 
quantities such as target strength, species identification, and bottom back-scatter.  These were 
treated as independent random variables and draws were taken from their distributions. The 
drawn values were inputted into an equation that related them to q.  The resulting pdf for q 
had a coefficient of variation of about 0.7 and this pdf was utilized as an informative prior pdf 
for q in the stock assessment.  Similar protocols have been applied to formulate priors for q 
for research trawl indices of abundance in the Eastern Bering Sea (McAllister and Ianelli 
1997) and for hydroacoustic, research trawl and commercial trawl indices of abundance for 
Namibian orange roughy (Boyer et al. 2001) and spawner abundance indices for north east 
Atlantic mackerel based on pelagic egg surveys of abundance.   

While not entirely analogous, there exist some research datasets for Gulf of Mexico red 
snapper that could be utilized in a similar manner to formulate a prior pdf for M0 and M1.   
Approximations of the total mortality rate of age 1 fish (Z1) in the 2nd to 3rd quarter of the 2nd 
year of life have been obtained by analyzing the relationship between Fall Groundfish indices 
of age 1 fish and summer SEAMAP indices of age 1 fish (Goodyear 1995; SEDAR7-DW-3).  
Some recently implemented field studies for example by Szedlmayer (SEDAR7 DW-21) and 
Rooker et al. (2004) provide direct observations of fish densities of age 0 and age 1 fish on 
numerous field sites.  Szedlmayer provided some estimates of total mortality rates for age 0 
fish based on these observations.  Yet there remain many sources of uncertainty in the 
estimates of mortality from all of these studies.  The following section reviews the various 
uncertainties and limitations in these studies relating to M0 and M1 and suggests some 
potential approaches to modelling these uncertainties to compute a prior pdf for M0 and M1 
that could be utilized in a stock assessment. 

Monte Carlo Models to formulate prior pdfs for M0 and M1. 

Using Szedlmayer’s results 

First I will review the uncertainties and limitations in Szedlmayer’s study (SEDAR7 DW-21).  
Descriptions of this study are provided in (SEDAR7 DW-21) and the SEDAR7 workshop 
report (SEDAR7 2004).  The following two paragraphs are an excerpt from the April SEDAR 
review report summarizing limitations of Szedlmayer’s study. 

The new estimate of M0 may be biased by immigration and emigration of age 0 
fish to or from the artificial reef sites.  Net immigration from, or net emigration to, 
the site following the initial July measurement, could bias the estimates of M0 
either too high or too low.  Dr. Szedlmayer indicated however, that tagging of 
some individuals on the sites indicated some emigration and migration but not 
extensive rates of either [but the key question here is whether one can differentiate 
between mortality and migration, and it is not clear that a localized tagging 
experiment can make this distinction].  The habitat upon which the estimates were 
obtained is only one of several different types of habitat upon which age 0 fish are 
known to settle.  This rate of natural mortality here thus might not be 
representative of the mean rate of natural mortality of age 0 fish when all habitats 
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are considered.  For example, a study of post-settlement red snapper in Texas 
showed that they grew faster and has lower mortality rates when living on 
nutrient-rich inshore mud bottoms than on shell ridges or offshore mud bottom 
(Landre, unpublished results), which could suggest the shell reef-based estimates 
could be too high[.]  Dispersion of age 1 fish off the reefs would also bias the 
estimates towards being too high. 

Should assessment scientists wish to consider Szedlmayer's estimate further some 
additional considerations will need to be addressed.  For example, M0 in the stock 
assessment represents newly settled fish up to the end of the year.  This may on 
average represent fish from a settlement in July to December.  Thus M0 would 
need to represent on average the rate of natural mortality for the first six months 
of settlement.  The value derived from Szedlmayer's data represents M for the first 
year and thus would need to be partitioned between year 0, which encompasses 
the first six months, and the first half of year 1.  Some assumed value would still 
be required to provide an annual value for M for the second half of year 1.  
Because it is generally regarded that the rate of natural mortality in newly settled 
juvenile fish must decay as the fish grows larger (as indicated in Rooker et al. 
2004), then it is likely that the rate of natural mortality for the first six months of 
settlement would be larger than for the second six months.  Thus rather than 
dividing Szedlymayer's value by two to obtain the value of M0 for the first six 
months, some larger fraction of Szedlymayer's value might be assumed for the 
first six months.  For example, if a value 67% of Szedlymayer's value was 
assumed for the first six months, then a value 33% of that would be assumed for 
the following six months.  A value smaller than 33% Szedlymayer's value would 
need to be assumed for the latter six months of the first year.  This example … is 
intended only as an illustration of how M0 might be partitioned and a decay in M 
with size consistently incorporated.   

Based on such considerations, it appears that there are several factors that could be employed 
to utilize Szedlmayer's study results to formulate a prior pdf for M0.  These include a factor 
for immigration of age 0 fish onto the site following the density observation in July, I0, that 
would tend to decrease Szedlmayer’s estimate of Z0 from the true annual value.  Hence values 
for I0 would be less than 1 and larger than 0.  A factor for emigration of age 0 fish away from 
the site following the density observation in July, E0, would tend to bias Szedlmayer’s 
estimate of Z0 too high.  Hence values for E0 would be larger than 1 with an upper limit to be 
identified.  A habitat suitability index, H, would reflect the relative value for the natural 
mortality of the shell and concrete artificial reef sites compared to the range of other available 
habitats.  Based on discussions in SEDAR7 (2004), there are some indications that H may be 
larger than 1 due to higher survival rates observed elsewhere.  However, due to the relative 
scarcity of sampling across many different types of settlement habitats, H could conceivably 
also be less than 1.  A parameter, σs, would reflect the standard deviation in the estimate of Z0 
and could be set equal to the value obtained from Szedlmayer’s study.  A factor, T, would 
reflect the portion of the annual rate of the estimate of total annual natural mortality rate M0 
that would apply to the first six month of settlement from July until December of the first 
year.  As mentioned in SEDAR7 (2004), M0 in the first six months of life would be a larger 
than M0 in the second six months.  Thus T should be greater than 0.5 and less than 1 with a 
possible most likely value, for example, at about 0.67.   

The factor F0 reflects the annual fishing mortality rate contributing to the total mortality rate 
(Z0) estimated by Szedlmayer.  The value for F0 would be the expected average annual value 
for fishing mortality rate of age 0 fish from the first July to the first June during the course of 
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the field study.  SEDAR7 (2004) suggested that Szedlmayer’s estimate could still reflect a 
small value for M0 (e.g., 0.5) if fish went off of the artificial reefs at night to forage and many 
of these fish were captured in shrimp trawls.  However, stakes put up around the artificial 
reefs indicated that no shrimp trawls fished in the vicinity of the reefs because none of the 
stakes were knocked down on any of the experimental sites.  This makes it unlikely that 
fishing mortality rate could account for much of Szedlmayer’s estimate of Z0.  Thus 
experimental evidence suggests that F0 on Szedlmayer’s study sites may be very small.  A 
factor for the dispersal of age 1 fish from the site (E1) before the end of the first year would 
tend to inflate the estimate of M0.  A factor for immigration of age 1 to the site before the end 
of the first year (I1) would decrease the estimate of M0.  A factor A0 would lower the observed 
rate of total mortality rate for age 0 fish that had settled earlier than July due to the known 
decay in M with age.  Thus, the potential values for A0 would be less than 1. 

The resulting model relating Szedlmayer’s estimate of total annual mortality rate of age 0 fish 
on his site to the average value for M0 for red snapper in the Gulf of Mexico for the months 
until December in the first year is as follows: 

(1) ( )( ) ( )εexpˆ
11000000 ××××××+×= EIAEIFHMZ  

where ( )2,0~ SNormal σε  

Rearranging to solve for 0M , and taking into account T, the fraction of M0 in the first six 
months, the natural mortality rate up until the end of December in the initial year of life for 
the average site, this becomes 
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The value for 0Ẑ  applied in equation 2 is fixed at Szedlmayer’s estimate from his study (2.3 
yr-1).  A value for M0 in the second six months (the first January to the first June) can be 
obtained by: 

(3) ( ) ( )
T

M
TMTM )61(0

0)127(0 11 −
− −=−=   

A model and empirical basis for the instantaneous natural mortality in the second half of the 
second calendar year for age 13 months to 18 months is however still be needed. As 
mentioned above, the value for M1(13-18) from the second July to the second December in the 
fish’s second year of life should be no larger than )127(0 −M .  It is suggested that the regression 
estimates of total mortality rate using the summer SEAMAP catch rates and autumn 
groundfish survey catch rates could provide an empirically based probabilistic approximation 
for M1(13-18) from July to December (see below).  

Providing that probability pdfs can be constructed for each of the input parameters on the 
right hand side of equation 2 (T, H, I0, E0, A0, E1, I1 and F0), this model will permit the 
computation of a pdf for M0 in the first six months and a value for M1 in months seven to 
twelve, )127(0 −M  or )127(1 −M  if we take the subscript before the parenthesis to indicate calendar 
year age.     

A study by Rooker et al. (2004) provided an estimate of 0.12 d-1 for days 20-30 after 
settlement.  It is expected that the rate of mortality decays with age and the rate of decay 
remains highly uncertain, especially in the earliest phases within the first year of life.  Thus 
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the usefulness of this estimate in formulating a prior pdf for M0 in the first six months is 
dubious.  This value could potentially be applied to indicate an upper bound for M0 in the first 
six months.  The dubious expansion of the value to the first half year provides a very high 
estimate of M0 of 21.9 for these first six months.  This is an extremely high estimate and may 
give higher plausibility to high estimates of M0 rather than low estimates.  The formulation of 
a quantitative method to include this particular estimate in the construction of a prior pdf for 
M0 however remains unclear to me. 

Using results from analyses of survey catch rates of age 0 and age 1 fish 

A similar Monte Carlo protocol to that described for Szedlmayer’s results could be applied to 
utilize results of analyses of catch rates between successive surveys of age 0 and age 1 fish to 
compute a probability distribution for natural mortality rate in the second half of the first 
calendar year M1(13-18) (Goodyear 1995; SEDAR7 DW-2).  For example, Goodyear (1995) 
provided an approximation of Z1 by regressing Autumn groundfish survey catch rates of age 1 
fish on summer SEAMAP survey catch rates of age 1 fish.  SEDAR7 DW2 provided 
approximations of Z0 between autumn survey and summer surveys by regressing the summer 
survey catch rate of age 1 on the autumn survey catch rate of age 0 fish.  This latter analysis 
could be utilized to make further inferences about plausible values for natural mortality rate in 
the first half of the second calendar year, M1(7-12).  

Goodyear’s (1995) regression has provided an approximation of the average total mortality 
rate of age 1 fish for the mid-second trimester to the mid-third trimester.  The following 
protocol relates the annual rate of natural mortality between months seven (first January) to 
eighteen (second December) to the regression estimate of the total mortality rate between the 
two surveys.  The unmodified regression estimate of total mortality rate assumes that the 
catchability of the two surveys is the same.  A factor, Rq, can be formulated to reflect the 
potential value for the ratio of catchability of the autumn survey to the summer survey.  The 
estimated regression slope was 0.473 and suggests a value for Z for this trimester of 0.75.  If 
the rate of natural mortality were the same from month seven to month eighteen, then this 
could be expanded to an annual estimate of 2.25 yr-1.  However, since the value is derived 
from observations between the mid second and mid third trimesters, the estimate could be 
expected to be lower than the annual average value for M1.  The expected ratio of the estimate 
of the average annual rate of natural mortality M1 derived from this trimester period to the 
true average value for natural mortality over the year could be given the factor V. Because the 
instantaneous rate of natural mortality is expected to decay with age in the first few years of 
life and the estimate is derived in the later part of the period of interest, the value for V could 
be expected to be less than 1 and the lower bound would need to be agreed. Over and above, 
the factor V, the total annual mortality rate must be decreased by a factor of 1/3 to match the 
fraction of the year represented by this regression estimate. The presumed average total 
fishing mortality rate over this period over the time series is represented by 1,1 SFF .  Also, due 
to variability in the catch rate data there is error in the estimate of the slope, 1,1, FSbε .  The 

variance in this error, is delimited by 2
1,1, FSbσ .   

The estimated slope, based on the regression of autumn groundfish age 1 on summer 
SEAMAP age 1 catch rates can be related to the annual rate of natural mortality as follows: 

(4)  
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Given this model for the estimate of the slope, 1,1
ˆ

SFb , the value for the average natural 
mortality rate can be modelled using: 

(5) 
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subject to 1,1,1,1
ˆ

SFbSFb ε−  >0 and the term inside of the widest bracket being less than zero. 

The value applied for 1,1
ˆ

SFb  in equation 5 is fixed at the regression estimate (e.g., 0.473).  
Providing that probability pdfs can be constructed for each of the input parameters on the 
right hand side of the equation (V, 1,1, SFqR , and 1,1 SFF ), this model will permit the 

computation of a pdf for 1,1M .  Further equations to model a value for natural mortality in the 
second half of the second calendar year (M1(13-18)) are provided further below. 

Similar issues regarding the interpretation of the mortality estimates provided by regressions 
of summer survey catch rates of age 1 fish on autumn catch rates of age 0 fish apply in the 
formulation of a probability distribution for natural mortality rate in the first half of the 
second calendar year (M1(7-12)).  Presumably the period covered by these surveys is from 
November of the first calendar year until June of the second calendar year, about eight 
months.  As an approximation of instantaneous total annual mortality for fish from January to 
December in their first and second years, this estimate could be expected to be too high.  The 
factor W thus represents the ratio of the total annual natural mortality rate obtainable in the 
regression to the actual average total annual natural mortality rate from January to December 
in the first and second year of life. Because the instantaneous rate of natural mortality is 
expected to decay with age in the first few years of life and the estimate is derived in the 
earlier part of the period of interest, the value for W could be expected to be more than 1 and 
the upper bound would need to be agreed. Over and above the factor W, the total annual 
mortality rate must be decreased by a factor of 2/3 to match the fraction of the year 
represented by this regression estimate.  The presumed average total fishing mortality rate 
over this period over the time series is represented by 0,1 FSF . 

The estimated slope, based on the regression of summer SEAMAP age 1 catch rates on 
autumn groundfish age 0 catch rates can be modelled as follows: 

(6) 0,1,0,1,0,12,10,1 3
2expˆ

FSbFSqFSFS RFWMb ε+×

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where ( )2
0,1,0,1, ,0~ FSbFSb Normal σε   

Given this model for the estimate of the slope, 0,1
ˆ

FSb , the value for the average natural 
mortality rate for the second calendar year can be modelled also using: 
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Thus equations 5 and 7 provide two related protocols to compute distributions for the rate of 
natural mortality from months seven to eighteen, 1M .  Equations 5 and 7 also utilize data 
from the same surveys and hence are not truly independent sources of information about 1M .  
If it was desired to take this dependence into account, it could be possible to bootstrap the 
annual survey observations such that the years of datapoints drawn are selected at random 
with replacement, and the slopes for the two regressions then estimated.  The values for the 
other random variables could then be drawn.  The presumed values for the fishing mortality 
rates in both equations might also be seen to be positively correlated.  Thus, a bivariate 
distribution for these two fishing mortality rate values could be specified with a positive 
correlation.  There would be no need to simulate values for the regression error term because 
the bootstrapping would take this uncertainty into account.  To maintain consistency in the 
assumption about the decay in the rate of natural mortality with age, it may also be 
appropriate to assume a negative correlation between V and W, since if one is high, it is likely 
that the other is low and vice versa.   

One possible approach to obtaining a pdf for the rate of natural mortality in the second draw 
that would use the results from equations 5 and 7 would be as follows.  For each draw that 
results in a computed value for 1,1M  and 2,1M  from equations 5 and 7, respectively, the 
average of the two values could be computed and saved.  The histogram of saved values for 
each averaged 1M  could then be used as the prior pdf of 1M   This however ignores the 
results from equation 3 for M0.   

Combining results from Equations 2,3, 5 and 7 to formulate a joint prior pdf for M1 and M0.  

Because the instantaneous rate of natural mortality is expected to decay within the first few 
years of life, the value for 1M  can be expected to be smaller than the value for M0.  If the 
method using Szedlmayer’s results (Equation 2) is to be applied also to compute a prior for 
M0, this method actually provides joint value for M0 (first July to first December) and M1 
from the first January to the first June (age 7 months to 12 months).   

The methods utilizing the catch rate data (Equations 5 and 7) could then provide probabilistic 
estimates of the value for M1 for age 13 months to 18 months )1813(1 −M  and also ages 7 to 12 

months ( )127(1 −M ), respectively. The latter value could be combined with the value for 

)1813(1 −M  provided in equation 3 to obtain an improved approximation for )1813(1 −M .  A 

simulation trial result for )127(1 −M  however would be rejected, if it was larger than the 
concurrently simulated value for M0(1-7).   

The computation of the half year mortality rate between ages 13 and 18 months, )1813(1 −M  

could be obtained as follows.  In each simulation of 1,1M  from Equation 5, the value V is 
drawn.  The value V pertains to month eight in the second calendar year and application of it 
to 1,1M  could provide an estimate of the instantaneous natural mortality in the eighth month.  
However, we would like an approximation for the average instantaneous mortality rate in the 
second half of the second calendar year.  This should thus pertain to month nine.  Using a 
linear approximation of decay in M, the per month slope of the decay is given by: 

(8) ( )
2

1
1,11,1

−
×=

VMm  
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The average instantaneous mortality rate in the second half of the calendar year can be 
approximated by the interpolated value for month nine: 

(9) 31,11,1)1813(1,1 ×+=− mMM  

where the slope 1,1m  is derived from equation 8.  The half year mortality rate for ages 13 to 18 
is approximated by halving the value in equation (9): 

(10) )1813(1,1)1813(1,1 5.0 −− = MM  

The half year mortality for ages seven months to twelve months can be approximated by 
using results from equation 7 in an analogous manner to the use of results from equation 5.  
For each value computed for 2,1M  from Equation 7, the value W is drawn.  The value W 

pertains to month two in the second calendar year and application of it to 2,1M  could provide 
an estimate of the instantaneous natural mortality in the eighth month.  However, we would 
like an approximation for the average instantaneous mortality rate in the first half of the 
second calendar year.  This should thus pertain to month three.  Using a linear approximation 
of decay in M, the per month slope of the decay is given by: 

(11) ( )
4

1
2,12,1

−
×=

WMm  

The average instantaneous mortality rate in the first half of the calendar year can be 
approximated by the interpolated value for month three in the second calendar year: 

(12) 32,12,1)127(2,1 ×+=− mMM  

where the slope, 2,1m , is derived from equation 11. 

The half year mortality rate for ages 7 to 12 months could be obtained by: 

(13) )127(2,1)127(2,1 5.0 −− = MM  

Following the approximation of this quantity in equation 3 ( )127(0 −M ), equation 13 offers a 
second approximation of the half year mortality rate for ages 7 to 12 months ( )127(2,1 −M ).  To 
obtain a single approximation for this quantity the results from equations 3 and 13 could be 
averaged to provide a synthesized approximation: 

(14) ( ))127(2,1)127(0)127(1 5.0 −−− += MMM  

The annual natural mortality rate for the second year (ages 7 to 18 months) could be obtained 
by summing the results from equations 10 and13.   

(15) )1813(1,1)127(11 −− += MMM  

To achieve consistency in the assumptions about presumed fishing mortality rates, the values 
assumed for F0 and F1 in equations 2, 5 and 7 could be modelled to have a positive 
correlation.  The value for T in the simulation of M0 could be assumed to be negatively 
correlated with V and positively correlated with W so that consistent assumptions are made 
about the potential decay in the rate of natural mortality with age.  Thus a trivariate 
distribution between T, V, and W could be assumed with the negative and positive correlations 
between the variables incorporated.  Thus, once a value for M0 is drawn, a value for M1 in 
months seven to twelve is also provided with the use of the parameter T.  Values for 1,1M  and 
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2,1M  could be simulated using equations 5 and 7 and utilizing the correlations between the 

various input parameters.  If the value for 1,1M  or 2,1M  happens to be larger than that for 

M0(1-6), then these values for 1,1M  and 2,1M  could be discarded and another pair of values 

for 1,1M  and 2,1M  could be drawn until their values were lower than that for M0(1-6).  The 
values for M1 for ages seven months to 12 months would then be added to the value for M1 
for ages 13 to 18 months in equation 15.  Thus, a joint distribution for M0 and M1 could be 
provided in which all of the values for M1 are lower than the paired values for M0.   

Results 
To illustrate how the first protocol might be applied, values for input parameters to equations 
2, 5, and 7 were arbitrarily specified (Table 1) and a Monte Carlo simulation was run.  The 
results are shown in Table 2 and Figures 1 to 8.  With the many contributing sources of 
uncertainty incorporated the output distributions for M0 and M1 (Figures 3 and 8, Table 1) are 
very wide, as expected.  Due to the multiplicative error factors, the distributions are skewed 
and appear to be lognormal.  The output distributions for M0 and M1, despite the arbitrary 
specification of input distributions, are centred over plausible values, however.  It must be 
noted that the results displayed are strictly for the purposes of illustration and are not intended 
for use in stock assessment. 

Discussion 
The most difficult part of this protocol would be to specify distributions for the uncertain 
parameters contributing to equations 2, 5 and 7.  For example, it would be difficult to specify 
fishing mortality rate variables that are plausible but that ignore the empirical estimates in 
previous assessments.  If values for F0 and F1 were derived from historic stock assessments, 
then incorporation of the resulting prior pdfs into the assessment would be effectively using 
the data twice.  Thus, it would be best to specify relatively flat distributions for F0 and F1 that 
spanned a wide range of plausible values.  Moreover, the values chosen for F0 and F1 would 
require that the values for M0 and M1 computed were positive.   

One possible extension of the methodology would be one in which in which the results from 
the Monte Carlo analyses are updated sequentially such that the output distribution of the first 
analysis of Dr. Szedlmayer’s field study results becomes the prior probability density function 
pdf for the analysis of Nichol’s regression results for survey catch rates of autumn age 0 and 
summer age 1 fish. The output distribution from the combination of Szedlmayer’s and 
Nichol’s analysis becomes the prior pdf for the analysis of Goodyear’s regression results for 
survey catch rates of summer age 1 fish and autumn age 1 fish.  If the output distribution at 
each stage of the analysis is parameterized as a multi-variate lognormal distribution of the 
parameters of interest, then these pdfs can be treated as conjugate priors to the next stage of 
analysis.  The final output distribution summarized as a multivariate lognormal pdf for M0 
and M1 thus could serve as the prior pdf for the stock assessment. 
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Table 1.  Ilustrative specification of pdfs for factors in equations 2, 5 and 7.   

Model Parameter Brief description Specifications 

Equation 2 
for M0(1-6) 

Z0 Empirical estimate of total mortality rate from months 1 to 12 Set equal to Szedlmayer’s estimate of 2.3 yr-1 

 H Effect of habitat on this site specific estimate of natural 
mortality 

H~Normal(mean = 1.1, standard deviation = 0.2) 

 F0 Presumed total annual rate of fishing mortality on age 0 in 
Szedlmayer’s study 

F0~Normal(mean = 0.6 yr-1, standard deviation = 
0.2 yr-1) (Note could be much lower) 

 I0 Effect of immigration of age 0 fish after July on total 
mortality estimate 

I0~Normal(mean = 1.1, standard deviation = 0.2) 

 E0 Effect of emigration of age 0 fish after July on total mortality 
estimate 

E0~Normal(mean = 0.9, standard deviation = 0.2) 

 I1 Effect of immigration of age 1 fish before June on total 
mortality estimate 

I0~Normal(mean = 1.1, standard deviation = 0.2) 

 E1 Effect of emigration of age 1 fish on before June total 
mortality estimate 

E0~Normal(mean = 0.9, standard deviation = 0.2) 

 A0 The effect of settlement of age 0 fish before July on mortality 
estimate 

A0 ~ Normal(mean = 0.95, standard deviation = 
0.1) 

 e0 The estimation error in Szedlmayer’s estimate of total 
mortality rate 

e0~Normal(mean = 0, standard deviation = 0.4) 

 T The fraction of total annual natural mortality presumed to 
occur in from age 0 to 6 months 

T ~Normal(mean = 0.7, standard deviation = 0.1) 



 15

Equation 5 
for M1(13-18).   

b12 The estimate of the slope in the regression of autumn survey 
age 1 fish on summer survey age 1 fish 

b12 is set equal to the regression estimate of 0.473 
from Goodyear (1995). 

 V Ratio of instantaneous rate of natural mortality in month 8 of 
first calendar year to the average rate for the entire first year. 

V~ Uniform(0.6, 0.9) 

 F12 The fishing mortality rate in the second half of the first 
calendar year 

F12~Normal(mean = 0.6, standard deviation = 0.2) 

 R12 The ratio of catchability coefficients for the autumn survey 
and the summer survey for age 1 fish 

R12~Normal(mean = 1, standard deviation = 0.2) 

 e12 The error deviation in the estimate of the slope b11 and the 
true slope. 

e12~Normal(mean = 0, standard deviation = 0.1) 

Equation 5 
for M1(13-18).   

b11 The estimate of the slope in the regression of summer survey 
age 1 fish on autumn survey age 0 fish 

b11 is set equal to a possible regression estimate of 
0.3 from Nichols (SEDAR7-3) (actual values for 
estimates not available at time of drafting of this 
paper). 

 WV Ratio of instantaneous rate of natural mortality in month 2of 
first calendar year to the average rate for the entire first year. 

W ~ Uniform(1,1, 1.4) 

 F11 The fishing mortality rate from ages four months to 12 months F11~Normal(mean = 0.6, standard deviation = 0.2) 

 R11 The ratio of catchability coefficients for the summer survey 
age 1 and autumn survey for age 0 fish 

R11~Normal(mean = 1, standard deviation = 0.2) 

 e11 The error deviation in the estimate of the slope b11 and the 
true slope. 

e11~Normal(mean = 0, standard deviation = 0.1) 
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Table 2.  Summary statistics for some illustrative computations of proposed procedures to compute prior pdfs for M0 and M1.  Note that these 
results are purely illustrative and not intended for use in stock assessment. 

 Statistics 
  

  

M1 from 
Goodyear 
regression 

M1 from 
Nichols 

regression 

M0 1st 6 
months 

Szedlmayer 

M1 1st 6 
months 

Szedlmayer 

M1 2nd 6 
months 

Goodyear 
(M12) 

M1 1st 6 
months 
Nichols 

M1 1st 6 
months 

combined 
from 

Szedlmayer 
and Nichols 

(M11) 

M1 final 
estimate from 

adding M11 
and M12 

Valid 647 981 989 989 647 981 970 970N 
Missing 353 19 11 11 353 19 30 30

Mean 1.3921 1.0290 1.7814 .7577 .9980 1.1098 .9278 1.6734
Std. Error of Mean .04017 .01746 .05143 .02515 .02249 .02019 .01569 .03782
Median 1.2158 .9506 1.3074 .5421 1.0064 1.0114 .8406 1.3864
Mode .00(a) .00(a) .00(a) .00(a) -.26(a) .00(a) .05(a) .10(a)
Std. Deviation 1.02170 .54684 1.61733 .79082 .57208 .63230 .48870 1.17789
Variance 1.04387 .29903 2.61576 .62540 .32728 .39981 .23882 1.38741
Skewness 1.276 1.305 2.941 3.539 .356 1.651 1.957 3.075
Std. Error of Skewness .096 .078 .078 .078 .096 .078 .079 .079
Kurtosis 3.169 4.467 15.285 21.230 -.043 6.729 8.882 18.173
Std. Error of Kurtosis .192 .156 .155 .155 .192 .156 .157 .157
Range 7.90 4.94 16.50 8.86 3.32 6.09 5.16 13.97
Minimum .00 .00 .00 .00 -.26 .00 .05 .10
Maximum 7.90 4.94 16.50 8.86 3.05 6.09 5.21 14.07

10 .2490 .4186 .4278 .1564 .2357 .4286 .4263 .6646
25 .5988 .6582 .7682 .2857 .5446 .6862 .5938 .9456
50 1.2158 .9506 1.3074 .5421 1.0064 1.0114 .8406 1.3864
75 1.9167 1.3224 2.2637 .9453 1.3843 1.4259 1.1486 2.0138

Percentiles 

90 2.7449 1.7572 3.6477 1.5693 1.6981 1.8922 1.4922 2.9304
a  Multiple modes exist. The smallest value is shown 
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Figure 1.  Frequency distribution of results for the rate of natural mortality for age 1 
fish based on Goodyear (1995) regression results (Equation 5) and inputs in 
Table 1. 
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Figure 2.  Frequency distribution of results for the rate of natural mortality for age 1 
fish based on presumed results from Nichol’s (1995) regressions (Equation 7) and 
inputs in Table 1. 
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Figure 3.  Frequency distribution of results for the rate of natural mortality age 0 to six 
months based on Szedlmayer’s results (Equation 2) and inputs in Table 1. 
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Figure 4. Frequency distribution of results for the rate of natural mortality age 7 to 12 

months based on Szedlmayer’s results (Equation 2) and inputs in Table 1 
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Figure 5. Frequency distribution of results for the rate of natural mortality age 13 to 
18 months based on Goodyear (1995) regression results (Equation 2) and 
inputs in Table 1 
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Figure 6. Frequency distribution of results for the rate of natural mortality age 7 to 12 

months based on Nichol’s regression results (Equation 5) and inputs in Table 
1 
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Figure 7. Frequency distribution of results for the rate of natural mortality age 7 to 12 
months based on Szedlmayer’s and Nichols’ results (Equations 2 and 5) 
combined and inputs in Table 1 
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Figure 8. Frequency distribution of results for the rate of natural mortality age 7 to 18 

months based on (Equations 2, 5 and 7) and inputs in Table 1 
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