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Red Snapper Compensation in the Stock-Recruitment Function and

Bycatch Mortality --- J.E. Powers and E.N. Brooks, Southeast Fisheries Science
Center, 75 Virginia Beach Drive, Miami, FL 33149

In this, we are concerned with the interaction of bycatch mortality before, during
and after the stock-recruitment process.

Start with Beverton-Holt compensation during a period of time At:

th _ Rtﬂ or R — Rt+At
t

1 = =
() dt "1+ oR, B =R,y
where f=exp(-M At) and o= A(1-exp(-MAt))/ M, . The Beverton-Holt S-R function
essentially models the process in terms of a density-dependent component of the natural
mortality rate (AR;) added to a density-independent component (M,). Normally we think
of M being density-independent and we use the equation:

=-AR’-M,R, = R

dR,
dt

=-MR, = R, =Re™"

0+At,

However, in equation (1) the Beverton-Holt equation defines M as a density-dependent
function M(Ri)=A(R;) + M.. It is interesting to note is that as t — oo, then M(R;) - M..
Thus, as the recruitment process goes along, the M(R;) function approaches a constant
(approaches being density-independent). Also, we can relate the parameter M, (the
asymptotic value) to the parameterizations that we normally use with red snapper, i.e. the
steepness (h) and the ratio of spawners to recruits at equilibrium with no fishing (¢):

@ e ﬂf—fh) = ?ljlh) =L fi-exp-M,a0)

c

or
M, :L ln(£j+ln(ﬂj A:i M
At \ 4 h E,\¢—h(p+4)

where Eq = Roeq, the number of egg produced in equilibrium when there is no fishing.
Note that in (2), the spawner per recruit ratio (@) is calculated with “spawners” being
defined as the number of fish initiating the recruitment process, i.e. Eo = Roeq, as well.

For M, to be positive, then ¢> 4h /(1 —h) and h < ¢ /[4 + ¢]. However, ¢ (the
equilibrium ratio of eggs to recruits when there is no fishing) will be a large number for
most recruitment processes. Therefore, ¢ /[4+ @] will approximately equal 1, which
always will be larger than h. Also, since@ will probably be a large number for red snapper
(on the order of 10°), then M, » In(¢ /4)/At.
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Case I: bycatch mortality occurs before compensation

Assume bycatch mortality occurs during time period At; at a level of F1, when
natural mortality is density-independent at M; and that compensation occurs during time
period At .

dR
t = _ —(F,+M,)At
_(_Fl _Ml)Rt :} R0+At1 = ROe 1 1 1
dt
3)
R0+At1 b Roﬂzef(FﬁMl)ml Roe—(FlJer)Atl—McAtz
0+AL +AL, — = “FaMOAL =
1+AL 1+a2RO+At1 1+0(2R0e 1+Mp)AY 1+1\12R0e_(F1+M1)At1 (l_e_McAtz)

c

Note that the beta and alpha are specific to the duration of the second stage (At;), hence
the subscripts. Also, the bycatch during the first stage is calculated by the usual catch
equation:

4 Cyu, =RF A TR +M))

Case II: bycatch mortality occurs during compensation at a rate of F.

dr, ) RS
=-AR"-(M.+F,)R, = R —__tFd
dt t ( c d ) t t+AL, 1+ a, Rt
(5) R e~ Mc+Fa)at,
_ t
1+ L Rt (1 _ e*(MchFd )Aty )
M, +F,

where f, =exp(-M At — F At,)
and o, = A(l-exp(-M At, —F,At,))/(M_ +F,)

6)  Cupp=—ln 1+ "R (e )
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Case III: bycatch mortality occurs after compensation

Bycatch Mortality occurs during time period At; at a level of F,, when natural
mortality is density-independent at M,. Compensation occurs during time period At; .

LY
0+At 1 + al RO
(7
o Roﬂlef(FerMz)Atz Roe—McAtl—(FerMz)Atz
R0+AII+At2 = Romtle e = =
1+oR, 1+ARO(1_e—MCAtI)
M

c

Note again that the beta and alpha are time duration dependent. The bycatch equation is

(8) Coyat, = Roen P (1 —e MLy (E M)

We now have the Beverton-Holt equations for computing all combinations of
before, during and after.

One could fit an S-R curve (i.e. the R, vs Ry, x . at st sar s CUTVE) and get the

parameters M, and A using the normal fitting routines and solving for Fg and F; using the
appropriate catch equations. However, by doing so, it is being implicitly assumed that the
timing and the mortality rates of the various stages have been resolved satisfactorily.
Many renditions could be hypothesized depending upon the durations of the various time
periods, density-dependent or density dependent mortality during each time period, and,
indeed, if the compensation parameters change over time.



SEDAR7-AW-8

Comparison of Instantaneous and average M’s
For comparison purposes we can calculate the average M over a particular time period as:

R, exp[-(M, + F)At]
A
M, +F

c

) RAt =
1+

R,[1—exp(—(M, + F)At)]

R
Z A=(M,, +F)At= —ln{R—m}

0

M At = —FAt—In R exp[=(M, + F)Al]

1+
+F

c

Ro[l—exp(—(M, + F)At)]

1 A
M, =M +—In|l1+ R.[1—exp(—(M . + F)At
CM{MWO[ p(-(M, + F)AD)]

C

This difference between the average M and the instantaneous M(R;) are shown in the
following Fig 1:
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Implications of compensation timing for equilibrium calculations
Following are the equations for the number of age 2.25 recruits (R, »5), according to the assumed
timing of compensation (Figure 2), and previous derivations. Also, in what follows, the notation
for the density independent mortality parameter, M, given in equation (1) has been replaced by

the notation M,, with x being specified for the appropriate time period. Fy, and Fy,; refer to
bycatch mortality of age 0 and age 1 fish, respectively.

Case | — Bycatch occurs before compensation

E, 5, exp(-M, - M, —0.25F,, — 0.5F,))

Ryas = , Where
- l+a,Ejexp(-M, - M, -0.25F, —0.5F,,)
B, = exp(-0.25M,,) B' =B, exp(-M, —M, —0.25F,, —0.5F,))
> Let
o, =2 (1 - exp(=0.25M.,)) ©
M, a' =a,exp(-M, -M, —0.25F,, - 0.5F,,)

Case II — Bycatch occurs during compensation [in this we are assuming that compensation
occurs during the period 0 to 2 years and that the density-independent component of the mortality
rate M, is being denoted by M; =/2( My + M;); this is done so that Case II can be more easily
compared to the other Cases].

R, — EoB,_, exp(—25M,)
225 1+a,,E,

, Where

By, =exp(-M, — M, —0.25F,, —0.5F,))
A
A =
0.5(My + M) +Fy +F,

(1—exp(-M, — M, —0.25F,, — 0.5F, ))

p" = B, exp(=25M,)
> Let

a =a,

Case 111 — Bycatch occurs after compensation

E, /3, exp(=0.75M, — M, —0.25F,, — 0.5F,,) exp(—.25M,)

R =
2 l+a,E,

, where

B, =exp(—0.25M )

A
a, = IR (1-exp(-0.25M,))

0
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" _ _ . B B .
1) = 6’0 exp( .75|\/|O I\/l1 .25|V|2 .25Fb0 ) Fbl)
=> Let

" _
a’ =a,

Given the stock recruit relationship R = —'B , then equilibrium statistics are as follows (cf.
Ricker 1975: Computation and Interpretation of Biological Statistics of Fish Populations,

Appendix III).

E
(10)  The replacement line is R = — , where ¢, is unfished spawners per recruit.

2
(11)  setting (1) equal to the S-R curve and solving for E, (equilibrium unfished egg
production):
-1
EO — ¢Oﬂ

a
(12)  equilibrium unfished recruits are then:
-1
RO — (DOIB .
Py
(13)  To find equilibrium egg production at Maximum Excess Recruitment' (MER), find the

point on S-R curve with the same slope as the replacement line:

_NO P -1

EMER
(24

(14)  equilibrium recruits at MER are then:

_p !

A

(15)  SPRygr is the ratio of @ygr to @o:

EMER

R
SPRyeq = ver _ |

Py RY, Dy :B

(16)  MER (in number of surplus recruits) is:
E -1 E 1
R _—mer __ Ewmer  Ewmer _ 2 _1
MER py o [\/ e ]Z

®, 1+ aE yer

! Note that if age structure and growth effects are small, then equilibrium statistics for MER and MSY are
approximately equivalent. However, in the case of red snapper, it is not expected that MER and MSY
statistics will be equivalent. Nevertheless, since MER statistics may be calculated independent of the
growth and selectivity factors, they are used for purposes of demonstrating the effects of timing on
equilibrium recruitment statistics.

6
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Now, from the derivations on the previous page, substituting a'and p ', " and p !

ora" and p " from the three compensation timing scenarios, we can see the implications for
equilibrium statistics of when bycatch is assumed to occur. First, notice that the redefined
parameters (3', 3" and 8" are all equivalent, i.c.

B'=p" =p" = f=exp(-M,-M, -0.25M, —0.25F,, —0.5F,,) .

The question of interest is how the timing of compensation affects the equilibrium
statistics. One way to examine this is to take the ratio of Eypr, Rymer, and MER between
Case I (or Case II) and Case III (the “base” case). Noting that the [ parameters are all
equal, and that ¢ is the same for all scenarios, then the ratios all reduce to a comparison of o
terms:

Evers (Poﬂ_lx a a
[

Ever.in o p,f-1 «

1
AR B [ —
2|7 o

a
RMER,III p

!
MER, a'V%ﬂ_l]z a"

= I .
MERm allll ,¢0ﬂ _1]2 [04

Given the derived values for &', a'', and a'"', as defined by the timing assumptions in
Figure 2, and the assumption that A is constant between the three cases, comparing equilibrium
statistics for Case I (bycatch before compensation) to Case I1I (bycatch after compensation)
leads to the following:

M 1 - exp(—.25M
17 L =TZxexp(M, + M, +.25F, +.5Fm)x[ exp( ol
@ M, [1—exp(—.25M,)]
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In the above equation, one can assume that, in general, My > M, > M, . Thus, the first term on the
right hand side is <1, while the second and third terms are >1. Therefore, whether there are more
recruits at age 2.25 (R,,s) when bycatch occurs before compensation as compared with the
present assumption (bycatch occurs after compensation), depends on the magnitudes of the
natural and bycatch mortalities as well as the amount of time that each force operates. However,
for most reasonable values of M, the second term dominates and the ratio (17) is expected to be
greater than 1 (see example below in Table 1).

Additionally, if A (the density-dependent component of natural mortality) differs with the

age (or equivalently, the size) of a fish, then a further term in the above equation is A" / A'.
One might argue that the magnitudes of A at age follow the same pattern as M at age, i.e.

A' > A" > A" However, that notion will not be pursued any further in this report.

Similarly, comparing equilibrium statistics for Case II (bycatch during compensation) to Case III
(bycatch after compensation) leads to:

(18) a" 05(M,+M,)+.25F, +.5F, y [1-exp(—.25M )]
a M, [1-exp(M, + M, +.25F,, +.5F, )]

As before, arguing that M, > M; > M,, then the first term on the right hand side is >1 (unless
0.5M, and bycatch fishing mortality sum to less than half of My) , while the second term is <I.
This implies that the magnitude and duration of natural and bycatch mortalities will determine
whether more or less recruits survive to age 2.25 at equilibrium MER if bycatch occurs during the
compensatory phase as opposed to after compensation (Table 2).

Note that the above alpha ratios invert the comparisons done in equation 18. For example,
if you are comparing Ewer, / Emerann, this is equal to "' /o' . Soif " /a' is greater
than one, then this implies that Eygr, / Emer, i is greater than one and that Eygr)) is
greater than Eyer i .
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Figure 2. Assumed Timing of Mortality Processes.

July Oct  Jan Apr July Oct Jan Apr July Oct Jan Apr July

IR IR U NI AT

| | | | | | | | | | | | |

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
Fyo Fu1

Case III — Bycatch AFTER compensation (density dependence from Aty_ s )

Case II — Bycatch DURING compensation
(density dependence from Aty )

Case I — Bycatch BEFORE compensation (density dependence from Aty o 225 )

Assumptions:

- Mj is constant from age 0 — 1;

- M; is constant from age 1 — 2;

- M; is constant from age 2 — 3;

- A from equation (1) — the density dependent component of mortality — is constant regardless of the timing of compensation ;
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Table 1. Examples of "' /&' from equation (17) using various input mortality rates. F}

is the cumulative mortality due to shrimp fishery bycatch.

Parameter Value

Mo 0.5 0.5 1 0.5 0.5 0.05
M, 0.3 0.3 0.3 0.6 0.3 0.05
M, 0.1 0.1 0.1 0.1 0.2 0.05
Fy 2.12 0 2.12 2.12 2.12 0
a" /o 17.65 2.12 27.39 23.82 17.87 1.11

Table 2. Examples of a"' /a" from equation (18) using various input mortality rates.
Fy, is the cumulative mortality due to shrimp fishery bycatch.

Parameter Value

Mo 0.5 0.5 1 0.5 1 3

M, 0.3 0.3 0.3 0.6 0.6 2.5

M, Note: The value of M2 is not involved in this calculation

Fo 212 0 212 212 4.24 3

a"/a" 0.63 0.17 0.63 0.65 1.12 1.01
Note that in Tables 1-2 the alpha ratio inverts the comparisons done in equation 18. For example, if you are
comparing Eyer) / Emern, this is equal to o ny o ' Soif o ny o s greater than one, then this implies

that Eper, / Emer i is greater than one and that Eyeg)) is greater than Eygr ) -

For Reference: Below is the size at age from the von Bertalanffy model estimated with
the truncated distribution (as a result of minimum size limits). Total length (TL) is in
inches. This table may be useful for future discussions about survival or density-
dependent components of mortality, and/or applications of a Lorenzen-type curve to
relate magnitude of survival at age to length at age.

AGE TL inches

0 0

0.5 1.0
1.0 4.5
1.5 7.6
2.0 10.4
2.5 12.9
3.0 15.2
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