Preliminary Trials Estimating M1 from Fall and Summer Trawl Surveys

Elizabeth N. Brooks
Clay E. Porch
Southeast Fisheries Science Center
Sustainable Fisheries Division
75 Virginia Beach Drive
Miami, FL 33149-1099

Introduction

The values of M0 and M1 presently used to assess red snapper originated in the 1995 assessment wherein the age-1 index for red snapper from the Fall Groundfish survey was regressed on the age-1 index from the summer SEAMAP survey to obtain an estimate of $Z 1$ for that 4 month period. The estimate of $Z_{1} / 3$ was 0.473 , and it was partitioned into $\mathrm{M}_{0}=0.5$, and $\mathrm{M}_{1}=0.3$, and a cumulative bycatch fishing mortality (on ages 0 and 1) that varied slightly with the assumed level of adult mortality. Assuming M=0.1 for ages 2 and older, the bycatch fishing mortality was estimated to be 2.12 . These values for M_{0} and M_{1} were retained in the assessment by Schirripa and Legault (1999).

Bycatch reduction devices (BRDs) were introduced in 1998 to mitigate the bycatch of juvenile redsnapper. This modification to the gear suggests that a comparison between the years without BRDs and years with BRDs could provide an analytical framework from which to derive estimates of M , bycatch F , and a parameter δ that represents the reduction in F due to BRDs .

Trawl surveys in the summer SEAMAP occur in June and July, while the Fall Groundfish survey is conducted in October and November. An age-specific index was developed for both age-1 and age-0 fish (S. Nichols, personal communication), and in what follows, the mean index value was used as the observed quantity for that survey. The time span of observations is 1987-2002, thus there are 11 observations pre-BRD implementation, and 5 observations post-BRD implementation. The midpoint between each survey-Julyl to November 1-was used to arrive at a time duration of 4 months (or $1 / 3$ year). For the time elapsed between scientific surveys, the average fishing effort by the shrimp fishery, measured in thousands of days fished, is also available.

Analytical Framework

The change in estimated abundance of age-1 fish between Fall and Summer surveys can be represented by:

$$
\begin{equation*}
\frac{C P U E_{\text {Fall, } y}}{C P U E_{\text {Summer }, y}}=\exp \left(-\left(M_{1}+q f_{y}\right) / 3\right), \tag{1}
\end{equation*}
$$

where M_{1} is the natural mortality of age-1 fish, q is the catchability (or bycatchability) of the shrimp fishery for age- 1 red snapper, and f_{y} is a measure of the shrimp fishery effort between the two surveys.

The predicted CPUE in each period can be written:

$$
\begin{equation*}
C P U E_{\text {SUMMER,y }}=\alpha N_{y}+\varepsilon_{\text {SUMMER }} \tag{2}
\end{equation*}
$$

$$
C P U E_{F A L L, y}=\left\{\begin{array}{cc}
\alpha N_{y} \exp \left(-\left(M_{1}+q f_{y}\right) / 3\right)+\varepsilon_{F A L L} & (\text { pre }-\mathrm{BRD}) \\
\alpha N_{y} \exp \left(-\left(M_{1}+q \delta f_{y}\right) / 3\right)+\varepsilon_{F A L L} & (\text { post }-\mathrm{BRD})
\end{array}\right.
$$

where N_{y} is the abundance of the population in year y, α is a proportionality constant that scales population abundance, δ accounts for the effect of BRDs on catchability, and $\varepsilon_{\text {SUMMER }}$ and $\varepsilon_{\text {FALL }}$ are the associated observation errors.

Assuming $\varepsilon_{\text {SUMMER }}$ and $\varepsilon_{\text {FALL }}$ have the same distribution $\left(~ \sigma=\sigma_{\text {SUMMER }}=\sigma_{\text {FALL }}\right)$, the model negative log-likelihood (L) is proportional to:
$L=0.5 \sum_{y}\left\{\left(\frac{C P U E_{\text {SUMMER,y }}-\alpha N_{y}}{\sigma}\right)^{2}+\left(\frac{C P U E_{F A L L, y}-\alpha N_{y} \exp \left(-\left(M_{1}+q^{\prime} f_{y}\right)\right)}{\sigma}\right)^{2}\right\}+0.5 \ln \sigma^{2}$
where $q^{\prime}=\delta q$ when a BRD was in place and $q^{\prime}=q$ otherwise.

The model parameters are $\alpha \mathrm{N}_{\mathrm{y}}, \sigma, \mathrm{M}_{1}, \mathrm{q}$, and $\delta(\mathrm{y}+4$ parameters). There are 2 y data points (the observed CPUE in spring and fall each year). The term $\alpha \mathrm{N}_{\mathrm{y}}$ is a nuisance parameter, and can be eliminated by taking the partial derivative of (3) with respect to N_{y}, setting the derivative equal to zero, and solving for N_{y} in terms of the remaining terms. Letting $\theta_{\mathrm{y}}=\alpha \mathrm{N}_{\mathrm{y}}$, the MLE for θ_{y} (given M_{1} and q^{\prime}) is:

$$
\begin{equation*}
\theta_{y}=\frac{C P U E_{\text {SUMMER }, y}+C P U E_{F A L L, y} \exp \left(-\left(M_{1}+q^{\prime} f_{y}\right) / 3\right)}{1+\exp \left(-2\left(M_{1}+q^{\prime} f_{y}\right) / 3\right)} . \tag{4}
\end{equation*}
$$

Replacing $\alpha \mathrm{N}_{\mathrm{y}}$ with its maximum likelihood estimate θ_{y} in (3) produces a concentrated likelihood. Estimates for $\mathrm{M}_{1}, \mathrm{q}$, and δ may be obtained by minimizing the concentrated negative log likelihood.

Estimation

The above described model was programmed in ADModel Builder (Otter Research Ltd. 2000) and a set of runs were defined based on the series of years included and the number of parameters being estimated. Six model configurations were evaluated:

Model 1: All data were used (1987-2002), q was fixed at $0, \delta$ was not estimated.
Model 2: All data were used (1987-2002), both q and δ were estimated.
Model 3: Only pre-BRD data were used (1987-1997), q was fixed at $0, \delta$ was not estimated (there is no δ in pre-BRD years).
Model 4: Only pre-BRD data were used (1987-1997), q was estimated.
Model 5: Only post-BRD data were used (1998-2002), q was fixed at $0, \delta$ was not estimated.
Model 6: Only post-BRD data were used (1998-2002), q was estimated, δ was not (q and δ are not separable in this data set).

Results

Runs of models 1-6 were performed with M_{1} bounded on [0.1, 2.5], q bounded on [1.0E$9,1.0 \mathrm{E}+2$], and δ bounded on [0.0,1.1]. The bounds on δ allow for the BRD to be completely effective ($\delta=0$, i.e. no bycatch) or to have no effect at all ($\delta=1$). The bounds for q were chosen so as to be unrestrictive.

When q was fixed at 0 , the loss in age- 1 fish between the summer and fall surveys is all attributed to M_{1} in the model. These models therefore provide an upper bound on $M_{1} / 3$, under the implicit assumption that bycatch from shrimp fishing is negligible for that 4 month period.

The estimates for $\mathrm{M}_{1} / 3$ when q was fixed at 0 (models 1,3 , and 5) ranged from 0.77 for pre-BRD years to 1.25 for post-BRD years (Table 1). The fits to the CPUE from the trawl surveys are given in Figure 1 for models 1, 3, and 5.

For the models where q was estimated (models 2,4 , and 6), the estimate of $M_{1} / 3$ tended towards its lower bound and δ tended towards its upper bound (Table 1). The fits to the CPUE from the trawl surveys are given in Figure 2. The boundary solutions indicate that there is not enough contrast in the shrimp effort data to be able to estimate M and q (see Fig 3).

Discussion

The lack of contrast in the time series of shrimp effort squelched our anticipation of a lagniappe from the introduction of BRDs. When q was fixed at 0.0 , the estimate of M_{1} ranged from 0.773 to 1.255 , while for the models when q was estimated, M_{1} tended to be estimated near zero. The average $\mathrm{F}=\mathrm{qf}$ over the time period was 0.82 for models 2 and 4 , which is rather close to the estimates from models 1 and 3 (about 0.77). Thus, although the forces of natural and fishing mortality cannot at present be separated, an upper bound on the total loss to the age-1 population between summer and fall surveys would be around 0.8.

Acknowledgements

Scott Nichols provided age-specific indices for the summer and fall surveys as well as the estimated shrimp fishery effort.

Table 1. Model results. An asterisk indicates that one or more parameters were estimated at a boundary. When q is set equal to 0 , then the parameter δ is not estimated. Also, for models 5 and 6 , when only BRD data were used, then q and δ always appear together, so δ was fixed at 1.0 and q was estimated.

Model	L	Nobs	Npars	AICc	$\mathbf{1 / 3} \mathbf{M}_{\mathbf{1}}$	\mathbf{q}, δ
1. q=0, all data	25.79	32	18	118.90	0.773	N/A
2. q estimated,	13.63	32	20	143.62	$\sim 0^{*}$	0.0533,
all data						1.01
3. q=0, no BRD data	10.17	22	13	91.77	0.770	N/A
4. q estimated,	9.09	22	14	106.19	$\sim 0 *$	0.0532,
no BRD data	-9.33	10	7	51.34	1.255	N/A
5. q=0, only						
BRD data						1.00
6. q estimated,	-9.33	10	8	141.34	1.254	$5 \mathrm{E}-5$,
only BRD data					N/A	

Figure 1. Fits of models 1, 3, 5 to Summer and Fall Groundfish surveys, and residuals. In all models, q was set to 0 .

Figure 2. Fits of models 2, 4, 6 to Summer and Fall Groundfish surveys, and residuals. In all models, q was estimated, and δ was estimated in models 2 and 4.

Figure 3. Estimated shrimp fishery effort between the summer SEAMAP and fall groundfish survey. Effort units are in thousands of days fished per month.

