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Introduction

Because of the substantial economic value of fisheries, population dynamics of fish (here taken to include similarly exploited living

resources such as crustaceans, mollusks, reptiles, and marine mammals) is one of the oldest realms in quantitative population

ecology. For over 100 years, scientists have been developing mathematical models of fish populations.
☆Change History: August 2014. KW Shertzer, MH Prager, DS Vaughan, and EH Williams updated the section ‘Natural mortality at age’; added the new section

‘Data-poor methods’; Multispecies models section renamed Multispecies and ecosystem models; and updated the section ‘Further Reading.’
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2 Fishery Models
Any such field will have specialized terms. In fish population dynamics, this includes the term ‘stock’, which for practical

purposes is synonymous with the biological term ‘population’. In this article, the terms stock and population are used

interchangeably.

The goals of much work in fish population dynamics are to evaluate the effects of fishing and to provide advice for policy makers

on whether fishing should be increased or decreased. For that reason, special attention has been given to estimating the fishing

mortality rate and whether it is above or below some optimal value. This focus is also relevant biologically because in many

exploited stocks, the strongest force of mortality on adult fish is fishing.
Basic Forces

The simplest representation of the dynamics of a fish stock, represented in units of biomass, is that due to Russell:

Bt +1 ¼Bt + Gt +Rtð Þ� Yt +Dtð Þ [1]

where B is stock biomass, t denotes time (conventionally measured in years), G is somatic growth of individuals, R is biomass

increase due to recruitment (addition of young individuals to the stock), Y is yield (catch in weight) from fishing, and D is loss of

biomass from deaths due to other causes. These are the four basic forces considered in models of fish population dynamics.

An equation parallel to eqn [1] can be written for stock size in numbers. Notably, it would omit the term expressing somatic

growth.

Generally, external influences such as environmental forcing are either assumed unimportant or modeled as modifying one of

the four basic forces. Because eqn [1] models a closed stock, migration in or out is excluded by definition. Stock mixture is usually

modeled as exchange between otherwise independent stocks.
Time

Treatment of time in fish population dynamics is flexible. By convention, stock size in number or weight Nt or Bt refers to the start

(however defined) of year t. Yield Yt and catch in numbers Ct are annual sums. Recruitment Rt is usually an annual number or

biomass, and is typically modeled as occurring at a discrete point during the year, rather than as a continuous process. This practice

may reflect the origin of much fish population dynamics theory in higher latitudes, where seasonality is pronounced, as are the

corresponding biological processes.

Models of individual growth (see section ‘Growth of Individuals’) are usually continuous in time, but size at age is often

simplified to an annual average, rather than a continuously varying measure. In modeling mortality, instantaneous – rather than

simple – rates are used, with the notable exception of some salmon models, or in simplified models written in discrete time.

Reflecting the conventions above, a detailed fish population model may combine continuous-time processes (fishing and natural

deaths) with discrete-time processes (recruitment and growth). Considerable variation in approach is found among applications;

here, equations typically will be given with implied 1-year time steps.
Equilibrium, Sustainability, and Maximization

These three concepts are widely used in fishery models. In the context of a deterministic analysis, a sustainable yield Ye is one that

can be taken every year, the result being a population in equilibrium. Under models with density dependence, a population can

reach equilibria at various levels of removals; therefore, each equilibrium stock size has a corresponding sustainable yield, Ye�0.

A particularly durable concept is that of maximum sustainable yield (MSY), which is often conditioned on some pattern of

removals (e.g., taking fish starting at a certain age). In general, Ye¼MSY occurs at some intermediate stock size.
Biological Reference Points for Management

Biological reference points (BRPs) are benchmarks for gauging the status of a stock or fishery (Table 1). Using a metric such as

fishing mortality rate (F) or standing biomass (B), BRPs provide an avenue for rational guidance of fishery management. Their

estimation is a primary goal of most fishery models.

Common BRPs come in two varieties: limit reference points (LRPs) and target reference points (TRPs). An LRP represents the

maximum degree of safe exploitation, and a TRP represents the degree of exploitation sought by management. Given uncertainties

in fishery modeling and management, the difference between a limit and target provides a buffer to prevent frequent

overexploitation.

Maximum sustainable yield is the basis for several BRPs, such as FMSY or BMSY, often preferred on theoretical or legal grounds.

When data are not sufficient to estimate MSY reliably, other BRPs are commonly used as proxies for MSY reference points. Probably

the most widely applied proxies are those based on per-recruit analysis (see section ‘Per-Recruit Analyses’). Almost all common

BRPs require equilibrium assumptions.



Table 1 Common biological reference points (BRPs) and typical applications as target (TRP) or limit (LRP)

BRP Description Application

Mortality-based biological reference points
FMSY Fishing mortality rate (F) at maximum sustainable yield LRP
X% FMSY F equal to X% of FMSY; X<100 TRP
Fcrash F giving stock extinction LRP
Fmbp F at maximum biological production TRP
Fmax F giving maximum yield per recruit (YPR) LRP
F0.1 F where slope of YPR curve is 10% that at the origin TRP
FX% F giving X% of spawning biomass per recruit at F¼0 LRP
Flow F giving >50% of years with stock replacement TRP
Fmed F giving 50% of years with stock replacement LRP
Fhigh F giving <50% of years with stock replacement LRP
Floss F giving replacement of lowest observed biomass LRP
Biomass-based biological reference points
BMSY Biomass (B) at maximum sustainable yield TRP
X% BMSY B equal to X% of BMSY; X>100 TRP
X% BMSY B equal to X% of BMSY; X<100 LRP
Bloss Lowest observed B LRP
Bpa B below which expected recruitment is decreased LRP
B50%R B at which recruitment is one half its maximum LRP
BX% B corresponding to X% of B at F¼0 LRP

Source: Adapted from Collie JS and Gislason H (2001) Biological reference points for fish stocks in a multispecies context. Canadian Journal of Fisheries and Aquatic Sciences 58:

2167–2176, with permission from NRC Research Press.
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Article Structure

The rest of this article is structured as follows: First, each of the four basic forces of stock dynamics (eqn [1]) is considered in turn.

Then, models that include various combinations of those forces are described, starting with relatively simple models, and

progressing to more detailed ones. Finally, we discuss extensions of conventional models. Selected content reflects a decided

emphasis on marine systems.
Growth of Individuals

Growth is of interest both as the mechanism by which fish add weight (thus increasing the stock’s biomass) and because growth is

the link between size and age. The most common growth model is the von Bertalanffy model of length at age (henceforth, VBGF):

La ¼ L1 1�e�k a�a0ð Þ
� �

[2]

where La is length at age a; model parameters are L1 (asymptotic length), k (growth rate), and a0 (theoretical age at length zero).

This model fits most observed data on fish growth reasonably well, especially when the youngest ages are excluded.

The relationship between fish weight (W) and length (L) is commonly modeled with the allometric function

W¼ gLb [3]

where g and b are constants. Weight would be expected to be proportional to body volume, and indeed in most data sets, it is found

that b̂� 3. (We use the notation x̂ throughout to refer to an estimate of quantity x.)

Equations [2] and [3] can be combined to form a model of weight at age:

Wa ¼W1 1�e�k a�a0ð Þ
� �b

[4]

Here, W1�g(L1)b is the asymptotic weight of a fish; other parameters are as in eqns [2] and [3].
Growth – Other Considerations

The statistical distribution of size at age is usually modeled as normal; however, no single error structure is used universally when

fitting the VBGF. Multiplicative error is assumed most frequently, reflecting the observation that variability of size at age typically

increases with age. Additive error is sometimes preferred in cases where variability seems relatively constant with age; for example,

when modeling narrow age ranges.
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Several modifications to the VBGF allow seasonal variation in growth. One example is due to Hoenig and Hanumara:

La ¼ L1 1�e�k a�a0�f að Þ +f a0ð Þð Þ
� �

[5]

where

f að Þ¼ d
2p

sin 2p a�a1ð Þð Þ [6]

The scale of seasonal variation is determined by d; the starting point of the seasonal cycle, by a1. Growth becomes negative

seasonally if d>1.

In fitting the VBGF, estimates of k and L1 tend to be highly correlated, which makes comparison of growth rates difficult

between populations or over time. Hotelling’s T2 statistic has been suggested for testing such comparisons.

The Gompertz model is often considered superior to the VBGF in modeling growth of young fish. Its parameterization is similar

to that of VBGF:

Wa ¼W1e� 1=kð Þe�k a�a0ð Þ
[7]

where W1 is the asymptotic weight and k the growth coefficient. The same form is used in modeling weight or length.
Bioenergetic Models

Bioenergetic models describe the factors affecting the growth of an individual over its lifetime. The rate of change in average

individual biomass (B0) is modeled as the sum of weight-specific rates of physiological processes: consumption (C0), respiration
(R0), egestion (F0), excretion (U0), and reproductive loss (G0):

dB
0

dt
¼C

0 � R
0
+ F

0
+U

0
+G

0
� �

[8]

These process rates in turn are considered functions of other variables, such as water temperature or food availability.

A population model based on bioenergetics must also consider mortality and recruitment, two forces not included in eqn [8].
Recruitment

The term ‘recruitment’ in fish population dynamics denotes, generally, addition of fish to the stock or to some part of the stock (e.g.,

the part vulnerable to fishing). In this broad sense, recruitment could be caused by growth, migration, or spawning. Here, we use

recruitment in the narrower sense of addition due to reproduction.

Most fish species (cartilaginous fishes being a notable exception) are highly fecund, a property related, in an evolutionary sense,

to a period of high mortality in the life cycle. This period generally is early in life, usually before age 1. In most species, early

mortality is quite stochastic from year to year, as is the resulting recruitment. To simplify population models, the age at which

recruitment occurs in a stock is conventionally defined as an age soon after year-class strength has been fixed.

Recruitment models postulate a relation between recruitment and total egg production. In most species, egg production of a

mature female is highly correlated to her body mass. Thus, in practice, many recruitment models predict recruitment Rt from

spawning biomass St, the total body mass of all spawning females. In species with ontogenetic sex change, both males and females

may be counted. Either way, recruitment models are central to prediction of future stock trajectories and also to estimation of many

management benchmarks.
Linear Recruitment Model

The simplest spawner-recruit model assumes a linear (density-independent) relationship between spawning biomass and recruits:

Rt ¼ aSt

Under this model, recruitment has no upper limit, which could allow population growth to infinity. For that reason, the linear

model is seldom applied to real populations, but its simplicity retains value in theoretical studies.
Spawning Success and Density Dependence

The quantity c�R/S, termed spawning success, is useful in describing and understanding recruitment models. In the linear model

above, spawning success is assumed constant at c¼a. More typical recruitment models assume a nonlinear (density-dependent)

relationship between S and R, in which c declines as S increases (Figure 1).



Figure 1 Examples of spawning success (c), in terms of recruits per spawner, from three spawner-recruit models: linear (dashed), Beverton–Holt
(solid), and Ricker (dash-dot).
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Beverton–Holt Recruitment Model

Under the Beverton–Holt model, recruitment approaches an asymptote as spawning biomass increases:

R¼ aS
b + S

or R¼ S

a0 +b
0
S

[9]

The versions are equivalent, given a¼1/b and b¼a0/b0. Here a is the asymptotic level of recruitment; b, the level of S at which

recruitment is half its asymptotic level.

Unfortunately, spawner-recruitment data rarely fit models well, leading to considerable uncertainty. An alternative form of the

Beverton–Holt model uses external data to constrain or fix recruitment parameters. In this form (Figure 2(a)), the two parameters

are the recruitment R0 from the stock when unfished and steepness h, defined as the proportion of R0 produced by 20% of S0, the

spawning biomass of the unfished stock. (The value of 20% is arbitrary but conventional.) In this parametrization, the model

becomes

R¼ 0:8R0bS

0:2F0R0 1�bð Þ + b�0:2ð ÞS [10]

with 0.2<h<1.0. Steepness quantifies resilience to exploitation, and its values have been estimated by several authors through

meta-analysis. Although R0, like a, is a scaling parameter, it scales recruitment to a specific stock size, not to an asymptotic

recruitment that may occur only at infinite population size.

A third apparent parameter in eqn [10] is F0. This is the unfished spawning biomass per recruit (see section ‘Per-Recruit

Analyses’) corresponding to R0, and it is completely determined by the stock’s mortality, maturity, and growth schedules (when

weight is used to quantify S). With recruitment at age a¼1, and given spawning contribution at the beginning of each year

F0 ¼
XA
a¼1

Wamae
�M a�1ð Þ [11]

where Wa is weight at age, ma is the proportion mature at age, M is the natural mortality rate, and A the oldest age considered.
Ricker Recruitment Model

Under the Ricker recruitment model, the largest recruitment occurs at an intermediate level of spawning biomass. The usual form of

the Ricker model is

R¼ aSe�bS [12]

Here, a is a scaling factor, a¼ lim cð Þ
S!0

, and b controls the level of density dependence. The Ricker model (Figure 2(b)) can be

written in terms of R0 and h as

R¼ S

F0
exp b 1� s

F0R0

� �� �
[13]

but here, 0<h<1.



Figure 2 Spawner-recruit curves for various levels of steepness, with x-axis scaled to virgin spawning biomass and y-axis scaled to virgin
recruitment. (a) Beverton–Holt model with steepness h¼0.4 (solid), 0.6 (dashed), or 0.8 (dash-dot); (b) Ricker model with steepness h0 ¼0.98 (solid),
1.79 (dash), or 2.77 (dash-dot). These values satisfy h0 ¼ log (4h)� log (1�h), the intrinsic population growth rate.
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Recruitment – Other Considerations

Although the Beverton–Holt and Ricker models are most widely used, other density-dependent models have been proposed, such

as the Deriso–Schnute, Shepherd, and gamma models. Many are generalizations of the Beverton–Holt or Ricker models or both.

The following generalization of the Beverton–Holt model allows for depensation (or Allee effect: a decline in spawning success (see

section ‘Spawning Success and Density Dependence’) as S becomes small):

R¼ aSg

1+bSg
[14]

Here, depensation occurs for g>1.

In the recruitment models described above, recruitment and spawning success c are considered a function purely of S. More

detailed models add explanatory factors such as environmental forcing or trophic interactions. Still other models rely less on

functional form, using non-parametric or semi-parametric approaches.
Mortality

Total Mortality Rate

Mortality includes all factors reducing abundance of a closed population. In fish models, mortality is typically modeled as an

instantaneous rate Z. Thus, abundance decreases by a constant fraction in each instant of time:

dN

dt
¼�ZN [15]

The solution to eqn [15] at time t is

Nt ¼N0e
�Zt [16]
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given initial abundance N0 at t¼0. The instantaneous mortality rate Z carries units inverse to those of t; for example, when t is

expressed in years, Z has units year�1. The annual proportion that dies is 1�exp(�Z).

If the population is structured by age, eqns [15] and [16] apply to each portion of the population, so that

Na+1, t +1 ¼Na, te
�Za, t [17]

where Na,t is abundance at age and time, and Za,t is annual mortality rate at age.

The total mortality rate Z (age-specific or otherwise) is often partitioned into components, usually into natural mortality rate

M and fishing mortality rate F, assumed noncompensatory. A property of instantaneous rates is that mortality from various sources

is additive:

Z¼ F +M or Za ¼ Fa +Ma [18]

This allows the fishing mortality rate, a primary focus of fishery management, to be considered separately from other sources of

mortality.

Catch-curve analysis
Catch-curve analysis is a heuristic method of estimating Z. Consider a cohort exploited at constant Fa for all ages a�ar. When the

logarithm of relative abundance at age is graphed against age, the right-hand portion of the graph, representing a�ar, should be a

straight line with slope�Z. Due to stochasticity and sampling error, the decline will not be precisely linear, but a straight line can be

fitted to estimate Z. A major assumption of this method is that ar is chosen correctly. Tomake the analysis easier, a ‘synthetic cohort’

is often used, that is, relative abundance at age in a single year is graphed; this entails the additional strong assumption of constant

recruitment. The method has fallen into relative disuse because estimates are quite sensitive to violations of assumptions, and those

violations are difficult to detect without additional information.
Natural Mortality Rate

The natural mortality rate of a fish stock is notoriously difficult to estimate. Tagging studies are used, but in large or open systems,

such as the ocean, tagging studies are often infeasible or provide hopelessly imprecise estimates. When both the total mortality rate

and the fishing mortality rate can be estimated,M is known by subtraction in eqn [18]. More commonly, a natural mortality rate is

approximated indirectly by drawing on empirical relationships between M and observable life-history characteristics.

Many of these relationships have been derived through meta-analysis. For example, Hoenig estimated a linear relationship

giving the total mortality rate Z as a function of maximum age A. The work was based on data from 134 stocks, comprising

79 species of lightly exploited fish, mollusks, and cetaceans:

Ẑ¼ 1:709�1:084 log Að Þ [19]

For small sample sizes (n<200), Hoenig recommended this variant:

Ẑ¼ log 2n +1ð Þ
A�ar

[20]

where ar is the earliest age fully represented in the sample. When using either equation, the result is an estimate of the total

mortality rate Z, from which an estimate of M can be obtained by subtracting F, if known. Another possibility is applying the

method to an unfished or lightly fished stock and considering the result an estimate of M.

Alverson and Carney developed an empirical estimator ofM based on the age at which an unfished cohort reaches its maximum

weight, sometimes called the critical age a�:

M̂¼ 3k
eka� �1

[21]

where k is the growth coefficient of VBGF (eqn [2]). Their analysis further suggested a� �0.38 A.

Pauly examined data from 84 species of marine and freshwater fishes, linkingM to average water temperature (T ) in celsius and

the VGBF growth parameters of eqn [2] or [4]:

log M̂
� 	¼�0:015 +0:463 log Tð Þ

+ 0:654 log kð Þ�0:279 log L1ð Þ [22a]

or

log M̂
� 	¼�0:485+0:463 log Tð Þ

+0:676 log kð Þ�0:082 log W1ð Þ [22b]

In the above, L1 is in centimeters; W1, in grams.
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Natural mortality at age
In many stocks, natural mortality appears to decrease with age. Several studies have suggested thatMa can be estimated from weight

at age Wa. Lorenzen concluded that the relationship differs among ecosystems. For oceanic ecosystems, his model is

M̂a ¼ 3:69W�0:305
a [23]

Charnov later proposed a relationship between natural mortality and length, M¼K(L/L1)�1.5, which can be converted to

age-based mortality, given size at age. Despite questions about estimating Ma, the assumption of M decreasing with age is

increasingly preferred to the alternative of M constant with age. To estimate Ma, equations such as those of Lorenzen or Charnov

can be used directly or their estimates scaled to other information on mortality over the lifespan.

Fishing Mortality Rate, Fishing Effort Rate, and Catch

The instantaneous rate of fishing mortality F denotes the force of the fishery on the stock. The F and abundance N determine the

rate of catch:

dC

dt
¼ FN [24]

The fishing mortality rate generally must be estimated from data, often including data on the fishing-effort rate E, a measure of the

amount of fishing gear used per unit time. The theoretical relationship between the two is F¼qE, where q, the ‘catchability

coefficient’, is constant and specific to the gear, vessel, location, and possibly other factors. Much effort in fishery modeling is

devoted to estimating q and standardizing E for a particular fishery.

Catch Ct over period t can be found by integrating catch rate (eqn [24]) with respect to time. BecauseNt depends onM as well as

F, the solution requires knowing the natural mortality rate. A formulation that does not require M explicitly (though it does

implicitly) is

Ct ¼ FtNt [25]

where Ft is the (constant) fishing mortality rate during period t, and Nt the average population size in the same period.

For an age-structured population, eqn [24] is applied to each age class:

dCa

dt
¼ FaNa [26]

GivenMa, eqn [26] can be solved by integration to obtain catch at age over the year (or any time interval). The result is the Baranov

catch equation, a cornerstone of fishery models:

Ca ¼ Fa
Za

Na 1�e�Za
� 	

[27]

Given annual catch at age Ca,t, annual total catch is simply the sum across ages, Ct¼SaCa,t. The annual yield (catch in weight) is

Yt ¼
X
a

WaCa, t [28]

where the Wa are the average weights at age during the period.

Landings, discards, and removals
The ideal fishery model recognizes several categories of fish encountered by fishing gear and accounts for all resulting mortality.

‘Catch’ means the fish taken by the gear. ‘Landings’ means all the fish brought to land. The difference between landings and catch

forms the ‘discards’: fish caught and thrown back. The probability of death of a discarded fish (Pd) depends on many factors,

including its biology and the mode of fishing. If 100 fish are discarded, the removals (total deaths due to fishing) are then the

landings plus 100 Pd. Discarding occurs for numerous reasons, such as management regulations, market conditions, or undesir-

ability of by-catch (i.e., non-targeted or unintended catch).

Reliable estimation of discards and the discard-mortality fraction Pd is difficult. The former may require an at-sea observer

program, and the latter, field and laboratory experimentation. Because of these difficulties, models that theoretically require data

on total removals often are used with landings data instead. This imparts a bias, which is most troublesome when the fraction of the

catch discarded changes over time, as under changing regulations, increasing abundance, or highly variable recruitment.

Selectivity
An age-specific fishing mortality rate is often treated as the product of a full (‘fully selected’) fishing mortality rate F and selectivity at

age sa. Selectivity measures both availability (presence of fish in the fishing area) and vulnerability (susceptibility to fishing gear). Its

value is typically scaled to that of the most selected age or ages, for which sa�1. Selectivity may be estimated for each age, but often

a parametric function of age or length is used, such as the logistic equation
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sa ¼ 1

1 + e��1 a��2ð Þ [29]

with parameters Z1 controlling the slope and Z2 determining the location of inflection (age at 50% selection). If selectivity is not

monotonically increasing, but rather dome shaped, it can be described by the double-logistic equation,

sa ¼ 1

1 + e��1 a��2ð Þ

� �
1

1+ e��3 a��4ð Þ

� �
[30]

with parameters Z1 and Z3 controlling slopes of ascending and descending portions of the curve, respectively, and Z2 and Z4

determining the locations of inflection (Figure 3).

Many parametric and non-parametric functions have been developed for estimating selectivity, ranging widely in the number of

parameters. Selectivity models also may include time dependence, to account for changes in fishing methods. For example, in eqn

[30], location parameters (Z2 or Z4) could be treated as functions of time. A more common approach lets selectivity vary among

blocks of years, yet remain constant within each block, to account for changes in fishing regulations or practices.
Models of Population Dynamics

Per-Recruit Analyses

Recruitment in many fish stocks is highly stochastic. To evaluate fishery management measures in spite of this characteristic, ‘per-

recruit’ analyses were developed. By computing the utility (in some sense) expected from a typical fish from recruitment through

death, such analyses sidestep the uncertainty associated with recruitment. Per-recruit analyses are widely used to model yield (catch

in weight) and spawning contribution. However, other measures of utility, such as economic value, can be modeled equally well.

Yield per recruit (YPR) expresses yield as a function of overall fishing mortality rate, conditioned on the selectivity pattern

(Figure 4). It is calculated as
Figure 3 Example of logistic (solid) and dome-shaped (dashed) selectivities.

Figure 4 Example of per-recruit analysis, based loosely on tilefish (Lopholatilus chamaeleonticeps) off the southeastern United States. Solid line
represents yield per recruit (YPR; weight per fish); dashed line represents spawning potential ratio (C; unitless).
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YPR¼ 1

R

X
a

Ya [31]

where Ya is yield at age (eqn [28]), and R is an arbitrary recruitment used to initialize abundance at the first exploited age.

If selectivity shifts to older fish, YPR increases due to greater opportunity for somatic growth, but decreases due to the prolonged

force of natural mortality.

As stocks have become more heavily exploited, focus has broadened from maximizing yield to maintaining stock viability

through adequate spawning biomass. This is the motivation for analysis of spawning biomass per recruit (SPR or FF). Specifically,

SPR quantifies the amount of reproductive output per recruit expected under different fishing regimes. Computation is similar to

that of unfished SPR (eqn [11]), with the same assumptions and fishing mortality included:

FF ¼
XA
a¼1

Wamae
�Z a�1ð Þ [32]

It is often convenient to express SPR relative to that with no fishing (F0), a ratio known as spawning potential ratio (Figure 4).

Here, we propose the notationCF¼FF/F0. This ratio scales SPR to a species’ reproductive potential, which allows more meaningful

comparison across stocks and species than does SPR alone. Unfortunately, the abbreviation SPR has been used by different authors

to mean either F or C, leading to considerable confusion.
Indices of Abundance

In rare situations, field surveys can estimate absolute population abundance. More typically, indices of abundance are used. Indices

ideally are proportional to abundance, either of the entire population or of the fraction sampled, such as a range of length or ages.

Applications range from using the index alone as an indicator of stock status to incorporating indices into formal assessment

models.

Abundance indices are developed from catch per unit of standardized effort U. The underlying relation is a variant of eqn [25]:

Ct ¼ qEtNt and thusUt �Ct=Et ¼ qNt [33]

where Ct is catch in numbers, Et is standardized fishing-effort rate (e.g., tows, hauls, or sets per unit time),Nt is average population

abundance, and q, the catchability coefficient, is often assumed constant.

The assumption of constant q is reasonable in a designed study, where methods remain constant and are based on random

sampling. In contrast, when abundance indices are developed from fishery-dependent data, removing variation in q (a step known

as ‘effort standardization’) can be difficult. Catchability may vary for biological or nonbiological reasons. If fishing effort is mainly

along the edge of a stock’s range, U computed from fishery data may decline more quickly than abundance. Conversely, if catches

saturate at some level due to finite fishing capacity, U may not increase when abundance does. Such hyperstability of U can occur

also when abundance decreases, because skillful fishermen often maintain their catch rates at lower stock sizes. This phenomenon

is especially pronounced in schooling species, where aggregations may be easy to locate. A related issue is the increase in q over time

due to improvements in fishing gear, vessel efficiency, and navigation technology. Studies have estimated compounding efficiency

increases in several fisheries at around 2% per year.
Surplus-Production Models

Surplus-production models (production models) were the first fishery models to consider all four forces of population dynamics

(eqn [1]) together with density dependence. In contrast to yield-per-recruit or early catch–age models, the population is modeled as

persisting across years and generations by means of recruitment. Production models are not detailed: the population is considered

an undifferentiated biomass, without age structure, and dynamic forces are combined into few parameters.
Schaefer model
In all production models, production (rate of increase) per unit biomass is highest at low population sizes and decreases at larger

ones, becoming zero at the carrying capacity K. A simple way to express this is with the equation

1

B

dB

dt
¼ r� rB=K [34]

which implies

r¼ lim
B!0

1

B

dB

dt
[35]
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defining r, the ‘intrinsic rate of increase’. From eqn [34], the population production without fishing is that of logistic growth:

dB

dt
¼ rB� rB2=K [36]

which forms a parabola. Population production is typically called ‘surplus production’, meaning the surplus of recruitment and

growth above mortality. If the surplus is caught in the fishery rather than contributing to population growth, it is denoted

‘equilibrium’ or ‘sustainable’ yield (Ye), synonyms for the annual yield that can be taken from a population at equilibrium. Each

population has many possible sustainable yields, depending on the biomass level at which it attains equilibrium. That level in turn

is controlled by the steady-state fishing mortality rate. Maximum sustainable yield (MSY) is found at the peak of the parabola

formed by eqn [36] and is related to model parameters by MSY¼ rK/4 (Figure 5). The biomass from which MSY can be taken is

BMSY¼K/2, and the corresponding fishing mortality rate is FMSY¼MSY/BMSY¼ r/2.

For nonequilibrium analyses, an instantaneous rate of fishing mortality per unit time is added to eqn [36]:

dB

dt
¼ r�Fð ÞB�B2

K
[37]

By integrating with respect to time over the period t to t+1, a population projection equation is obtained:

Bt +1 ¼
r�Ftð ÞBte

r�Ft

r�Ft + r=Kð ÞBt er�Ft �1ð Þ , Ft 6¼ r

Bt

1+ r=Kð ÞBt
, Ft ¼ r

8>><
>>:

[38]

Integration can of course give the biomass at any time during an interval of constant Ft. That makes possible the integration of

dY/dt¼FtB in the time interval t to t+1 to obtain the yield (catch in weight) during that interval:

Yt ¼
FtK

r
log 1� r=Kð ÞBt 1�er�Ftð Þ

r�Ft


 �
, Ft 6¼ r

FtK

r
log 1 +

rBt

K

� �
, Ft ¼ r

8>><
>>:

[39]

Applying the model to a typical data set (records of removals and relative abundance) results in estimates of MSY, FMSY, BMSY, EMSY,

and of the trajectories of biomass and fishing mortality rate through time.

Pella–Tomlinson model
In the Schaefer production model, the production curve is symmetrical about BMSY. In the Pella–Tomlinson (generalized)

production model, the production curve may be symmetrical or skewed in either direction (Figure 5). Fletcher’s form of that

model replaces eqn [36] with

dBt

dt
¼ gm

Bt

K
�gm

Bt

K

� �n

[40]

where m is MSY, n determines the shape of the production curve, and g is a function of n :

g¼ nn= n�1ð Þ

n�1
[41]
Figure 5 Maximum sustainable yield (MSY) from a generalized production model with different values of n. The Schaefer model of logistic population
growth corresponds to n¼2. Other values of n chosen so that BMSY/K¼ {0.3, 0.7}.
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At n¼1, where eqn [41] has a removable singularity, the Pella–Tomlinson model is known as the Fox model. At n¼2, it is the

Schaefer model.

In the Pella–Tomlinson model, yield (the analog to eqn [39]) must be solved by numerical approximation, as no analytical

solution to the corresponding catch equation is known. The parameterization of eqn [40] does not include r, because when n�1,

r is infinite, implying an extremely resilient population. The consequences of that theoretical property in modeling actual

populations is unknown.

Use of production models
Production models are typically used in stock assessment when the catch cannot be aged, sometimes in the continuous time forms

shown above, and sometimes in discrete-time versions, where the time step is typically 1 year. They are also used as complements to

more detailed age-structured models. They generally perform reasonably well if the abundance index is informative and recruit-

ment is not highly stochastic.

Delay-Difference Models

Delay-difference models provide intermediate detail between (age-aggregated) productionmodels and age-structuredmodels. They

are similar to production models, but allow a lag between birth and maturity. This lag accounts for an effect of age structure on

reproduction, at least implicitly.

In simplest form, delay-difference models predict the number of adults in the next time period (Nt+1) based on current

abundance, survival, and recruitment:

Nt + 1 ¼ ℓtNt +ℱN Nt�T +1ð Þ [42]

where ℓt is the proportion of adults that survives year t, ℱN is a function describing the relationship between numbers of adults

and recruits (see section ‘Recruitment’), and T is the lag from birth to maturity. Survival rate ℓt can reflect fishing, if one assumes

that the exploited part of the population is the same as the mature part.

Equation [42] is based on numbers of fish, but the framework can also be based on biomass (B) to allow for effects of individual

growth. Assuming von Bertalanffy growth, Deriso derived a delay-difference model in biomass:

Bt +1 ¼ ℓtBt + ℓt Bt � ℓt�1Bt�1ð Þe�k +ℱB Bt�T +1ð Þ [43]

where k is from the VBGF and ℱB is a function describing the relationship between biomass of adults and biomass of recruits.

Equation [43] states that new biomass is the sum of surviving biomass, growth, and biomass of recruits.

Data requirements of delay-difference models are greater than those of production models. Besides time series of catches and

relative abundance or biomass, additional information is needed on growth, natural mortality, and the spawner–recruit relation-

ship. Many generalizations of delay-difference models have been proposed, for example, to allow for individual growth patterns

other than the VBGF.

Fully Age-Structured Methods

Population models that trace cohort abundance and mortality through time are widely used in contemporary stock assessments.

So-called catch–age analyses were made possible by large-scale research programs of aging fish through analysis of hard parts,

usually scales or otoliths.

Virtual population analysis and cohort analysis
The term ‘virtual population’ was used originally to mean the sum of catches from a single cohort through its lifespan. Thus, the

virtual population provides a minimum estimate of initial cohort strength, but it neglects losses from natural mortality. That

concept of virtual population has become obsolete.

Today, virtual population analysis (VPA) refers to a family of methods that account for losses to a cohort from fishing and

natural mortality. In its simplest realization, VPA is a solution of the Baranov catch equation applied backward in time, starting

from the oldest age (A) of each cohort at a time near the present. It is due independently to Murphy and Gulland, who pointed out

that given catch at age, this procedure (under constant M) involves a system of A�1 equations with A+1 unknowns, and that the

need for two additional pieces of information could be filled by a value for the natural mortality rateM and an estimate or guess of

the final cohort size NA or, more typically, the corresponding fishing mortality rate FA. If M is thought to vary with age, Ma at each

age must be provided.

Typically, VPA applies the Baranov catch equation, rearranged to calculate abundance from catch, to the oldest age of a cohort:

NA ¼ ZACA

FA 1�e�ZAð Þ [44]

From NA and the known CA�1, FA�1 is calculated:

FA�1 ¼ CA�1ZA�1

NA e�ZA�1 �1ð Þ [45]
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where eqn [45] is derived from the ratio of catch at age (eqn [27]) to abundance at age (eqn [17]). With FA�1 computed, eqn [44]

can be applied to the next younger age (A�1) to calculate NA�1, and eqn [45] to estimate FA�2. This procedure is repeated until

reaching the youngest age for which catch data are available. Thus, Fa and Na are calculated for each age.

Equation [45] must be solved iteratively. To ease calculation, Pope provided an approximation for backward calculation of

population number,

Na �Na +1e
Ma +Cae

Ma=2 [46]

whose application he termed ‘cohort analysis’. MacCall later provided a slightly more accurate approximation:

Na �Na+ 1e
Ma +

CaMa

1�e�Ma
[47]

Although calculations for VPA or cohort analysis can also be done forward in time, when the backward algorithm is used,

calculated values of F and N at young ages are relatively insensitive to choice of FA; that is, estimates of younger ages would be

quite similar from a wide range of values for FA, with this insensitivity applying to older ages if the total mortality rate is high. This

insensitivity (sometimes described as convergence) is a valuable property when estimates of recruitment are desired – as they

frequently are. However, the convergence property applies only to cohorts that have been subject to high cumulative mortality;

when incomplete cohorts are analyzed, calculated F for younger ages is sensitive to the assumed FA.

Because the basic VPA algorithm treats each cohort independently, FA must be supplied for each cohort. That requirement can

be eased by postulating, for example, that FA,t¼FA�1,t for all A. Then after computations for the oldest cohort are completed, the

calculated value of FA�1 can be used to initialize FA of the next youngest cohort.

In simple VPA, the starting values and catch at age completely determine the calculated values of Na,t and Fa,t. Although this

attribute removes the need for statistical optimization, it also means that simple VPA provides no estimates of variance. When

errors occur in the catch at age, patterns of FA can fluctuate in unrealistic ways between adjacent cohorts or ages.

Although the convergence property of basic VPA provides stable values of initial year-class strength, the estimates of present-

time cohort strengths are highly sensitive to assumptions of final-year F or N. This was one of the major motivations for the

numerous generalizations of VPA that have been developed. Other major motivations are to allow for error in the observed data

and to provide estimates of precision.
Extensions to catch–age analysis
Many developments in catch–age analysis since basic VPA have aimed at reducing the number of estimated parameters and thus

allowing a statistical error structure. A common approach has been to consider Fa,t as the product of a time factor and an age factor.

The age factor is often parameterized as a selectivity curve (e.g., eqn [29]). This approach has been called ‘separable VPA’, reflecting

the separation of F into those factors, assumed independent. This separability assumption has been maintained in many more

detailed catch–age models.

A second common extension to basic VPA is use of auxiliary data, such as indices of abundance, to help shape the estimates. This

‘tuning’ can increase the ability of VPA to stably estimate current population status.

Other common extensions include conditioning estimates on a spawner-recruitment function; modeling error in the catch-at-

age data; and partitioning selectivity, catch, and fishing mortality by fleet. Standard errors of estimates are derived through

analytical approximations or resampling procedures, including the bootstrap.
Statistical catch–age models
Recent highly detailed evolutions of VPA are sometimes termed statistical catch–age (SCA) models. Here, we use that term to refer

to generalizations of VPA that use a forward solution of the catch equation. Most such models also differ from basic VPA in

assuming that catch at age is subject to sampling error.

The major advantage of using a forward solution of model equations is the ease with which stock-specific detail can be added to

the model structure. In SCA models, initial abundance of each cohort is typically estimated by a stochastic spawner-recruit model,

and subsequent abundances are estimated using an age-structured populationmodel, usually eqn [17]. The Baranov catch equation

provides estimates of catch at age.

Growth in computing power and the advent of specialized software packages have fostered increased detail in SCA models.

A typical stock-specific model includes some of the following extensions: migration, changing selectivity or catchability over time,

simultaneous estimation of growth from data on length and age composition, distinct modeling of different gears, explicit

treatment of discarded fish, and sex-specific submodels. A complex SCA model may have hundreds of parameters. A strength of

the SCA approach is the synthesis of multiple and varied kinds of data on the stock and fishery. This unified approach of bringing

together the population model and any relevant data is often called ‘integrated analysis’.

Statistical catch-age models typically use a compound objective function, in which appropriate objective functions for each type

of data are merged into a weighted sum. Estimation has usually been least squares or maximum likelihood, with either being

conditional on the weights chosen. Estimates can be sensitive to the choice of weights, and this is an important research topic, with

some recent progress on determining likelihood weights objectively.
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Although fishery models have become far more detailed and optimization techniques have improved, the basic theory of

population dynamics has changed very little since VPA was introduced in the mid-1960s. In many cases, the limiting factor in

analyses is still uncertainty in the data. Even in well-studied species, some population parameters may be unknown, and if known,

may change surprisingly when aging and other biometric techniques improve.
Population Models – Other Considerations

Data-poor methods
Many fish stocks worldwide lack the data to support conventional stock assessment methods, a situation that has attracted research

on alternative analyses for data-poor situations. Two modeling approaches that require data only on catches are depletion-based

stock reduction analysis and depletion-corrected average catch analysis. Even simpler methods attempt to provide management

advice without explicitly modeling population dynamics of the stock, instead looking at life-history characteristics, scaling of

current or historic catch patterns, or using assessment of a more data-rich stock (or an assemblage of stocks) as an indicator. All

such approaches use assumptions or expert judgment in place of the detailed data that are not available.

Uncertainty
When fitting models to data, the usual goal is to estimate parameters such that modeled dynamics match observations. In practice,

estimates are always uncertain, due to stochasticity in population dynamics and error in fishery data. Quantifying this uncertainty

has motivated extensions of each model described above to include various versions of process error, observation error, or both.

As in other fields, Bayesian methods have also gained popularity. In many cases, estimates have been found more precise when

normalized to their respective biological reference point, for example, Bt/BMSY and Ft/FMSY are usually more precise than the

corresponding absolute estimates, Bt and Ft.

Length-based models
In some fisheries, catch–age information is unavailable or unreliable, yet catch–length information is obtained readily. For such

cases, length-based models may be appropriate. These models typically combine a growth model with a statistical distribution to

estimate transition probabilities from one length category to another. Under deterministic growth, length- and age-based models

are equivalent in the sense that one is deducible from the other.

Spatial models
In many respects, population dynamics of actual stocks are more complex than those described by simple VPA or statistical catch–

age models. For example, many stocks exhibit migratory patterns that vary from year to year. In some cases, the spatial scale of

migration may be such that effects on population dynamics are negligible, and in other cases, migration is a valid consideration.

Many migration models have been proposed; their implementation usually requires detailed information to characterize the

migratory pattern, as migrations often depend on age, size, density, or environment.

Multispecies and ecosystem models
Another complexity often ignored or simplified is interaction among species (e.g., competition or predation). Multispecies fishery

models have been developed to incorporate predator–prey interactions. Such models require additional data to characterize

interactions, a difficult undertaking even under laboratory conditions. Most attempts have surmised interactions from analysis

of stomach contents. Some scientists have advocated developing full ecosystem models, despite information needs that others

consider unattainable. As well, environmental forcing and effects of climate change have drawn increased attention. Like all

mathematical models, fishery models make simplifying assumptions in an attempt to provide useful information.
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