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ARTICLE INFO ABSTRACT

Am'Cl_e history: Recent developments in global dynamical climate prediction systems have allowed for skillful predictions
Received 24 August 2016 of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and
Received in revised form 1 December 2016 managing LMRs. Such predictions present opportunities for improved LMR management and industry
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Available online 4 February 2017 operations, as well as new research avenues in fisheries science. LMRs respond to climate variability

via changes in physiology and behavior. For species and systems where climate-fisheries links are well
established, forecasted LMR responses can lead to anticipatory and more effective decisions, benefitting
both managers and stakeholders. Here, we provide an overview of climate prediction systems and
advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then
describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to decades,
before highlighting a range of pioneering case studies using climate predictions to inform LMR decisions.
The success of these case studies suggests that many additional applications are possible. Progress,
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however, is limited by observational and modeling challenges. Priority developments include strengthen-
ing of the mechanistic linkages between climate and marine resource responses, development of LMR
models able to explicitly represent such responses, integration of climate driven LMR dynamics in the
multi-driver context within which marine resources exist, and improved prediction of ecosystem-
relevant variables at the fine regional scales at which most marine resource decisions are made. While
there are fundamental limits to predictability, continued advances in these areas have considerable
potential to make LMR managers and industry decision more resilient to climate variability and help sus-
tain valuable resources. Concerted dialog between scientists, LMR managers and industry is essential to

realizing this potential.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Paleoecological and contemporary analyses demonstrate that
large fluctuations in fish populations are associated with variations
in climate (Baumgartner et al., 1992; Finney et al., 2002, 2010;
Lehodey et al., 2006; Brander, 2010; Holsman et al, 2012;
Barange et al., 2014). Clearly, climate-driven variability has always
been part of the fisher and fisheries manager experience. However,
the management response to climate variability has often been
reactionary, and enacting efficient coping strategies has, at times,
been difficult (McGoodwin, 2007; Chang et al., 2013; Hodgkinson
et al, 2014). For instance, unrecognized periods of
environmentally- or climate-driven reduction in productivity con-
tributed to the demise of Pacific sardine (Sardinops sagax) fishery in
California in the 1950s (Murphy, 1966; Lindegren et al., 2013;
Essington et al., 2015), the collapse of the Peruvian anchoveta
(Engraulis ringens) fishery in the 1970s (Clark, 1977; Sharp,
1987), and overfishing of cod (Gadus morhua) in the Gulf of Maine
(Pershing et al., 2015; Palmer et al, 2016). Unanticipated

temperature-induced changes in the timing of Gulf of Maine Atlan-
tic lobster (Homarus americanus) life-cycle transitions resulted in
an extended 2012 fishing season and record landings, but out-
stripped processing capacity and market demand, leading to a col-
lapse in prices and an economic crisis in the lobster fishery (Mills
et al., 2013). Similarly, an unforeseen extreme low water tempera-
ture event resulted in a $10-million-dollar loss to the Taiwanese
mariculture industry in 2008 (Chang et al., 2013). Failure to pre-
pare for inevitable climate variability on seasonal to decadal scales
can also alter the rebuilding times of stocks that have previously
been overfished (Holt and Punt, 2009; Punt, 2011; Pershing et al.,
2015) and break down international cooperative harvesting agree-
ments for border straddling stocks and highly migratory species
(Miller and Munro, 2004; Hannesson, 2006, 2012).

Negative impacts of climate variability on coastal economies
can be exacerbated when fishers, aquaculturists, and fisheries
managers make decisions about future harvests, harvest alloca-
tions, and operational planning based on previous experience
alone, without consideration of potential novel climate states
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(Hamilton, 2007). For instance, current fisheries abundance fore-
casts are largely based on historical recruitment (i.e. addition of
new individuals to the fishery) estimates, and aquaculture harvests
on the basis of historical growth patterns. While this approach
makes harvest decisions robust to a range of historical uncertainty,
it may be insufficient when an ecosystem shifts to a new produc-
tivity state, when a productivity trend moves beyond historical
observations, or when the degree of variation in productivity
changes (Wayte, 2013; Audzijonyte et al., 2016). Past patterns
may not always be a good indication of future patterns, especially
under anthropogenic climate change (Milly et al., 2008). Species
will experience new conditions across multiple ecologically signif-
icant climate variables (Williams and Jackson, 2007; Rodgers et al.,
2015), challenging our ability to manage living marine resources
(LMRs) under the assumption of stationarity. Adapting our decision
frameworks to climate variability at seasonal to decadal scales can
serve as an effective step towards improving our long-term plan-
ning ability under future climate change (Link et al., 2015).

Incorporating environmental forcing into management frame-
works for LMRs is challenging because the emergent effects of cli-
mate on marine ecosystems are complex. For example,
atmospheric forcing can drive changes in ecologically significant
physical or chemical variables that directly affect organismal phys-
iology and behavior (e.g. temperature-driven changes in oxygen
demand; Portner and Farrell, 2008), species distribution (e.g.
Portner and Knust, 2007), phenology (e.g. Asch, 2015), and vital
rates, such as growth (e.g. Kristiansen et al., 2011; Audzijonyte
et al, 2013, 2014, 2016). Additionally, climate can indirectly
impact LMR productivity by affecting key biotic processes, such
as variation in prey fields and energy transfer in response to fluc-
tuations in alongshore and cross-shelf transport (e.g. Bi et al,
2011; Keister et al., 2011; Combes et al., 2013; Wilderbuer et al.,
2013) or to climate-driven changes in primary productivity and
phytoplankton size-structure (Daufresne et al., 2009). Climate-
related variations in the abundance of predators, competitors,
and parasites can also have an indirect effect on LMRs (e.g.
Boudreau et al., 2015), and concurrent responses to fishing, habitat
loss, and pollution may further complicate observed responses
(Brander, 2007; Halpern et al., 2008, 2015; Andrews et al., 2015;
Fuller et al., 2015).

While such biophysical complexities challenge efforts to imple-
ment climate-informed fisheries management frameworks, con-
certed observational and modeling efforts across decades have
led to some improved understanding of climate-ecosystem inter-
actions in many regions (Lehodey et al., 2006; Alheit et al., 2010;
Ainsworth et al., 2011; Hunt et al., 2011; Di Lorenzo et al., 2013;
Bograd et al., 2014). These gains have been mirrored by improved
climate predictions at the temporal and spatial scales relevant to
LMRs and their management, e.g. days to decades (Hobday and
Lough, 2011; Stock et al., 2011). Operational seasonal predictions
have now enabled development of climate services for a range of
applications relevant to society (Vaughan and Dessai, 2014). For
example, improvements in model spatial resolution have allowed
skillful prediction of hurricane activity at a sub-basin scale relevant
to climate risk management (Vecchi et al., 2014). Seasonal climate
forecasts have also reduced vulnerability of the agricultural sector
to climate variability (Meinke and Stone, 2005; Meza et al., 2008;
Hansen et al., 2011; Zinyengere et al., 2011; Takle et al., 2014;
Zebiak et al.,, 2015 and references therein) and have informed
water resources decision making (Hamlet et al.,, 2002; Abawi
et al., 2008). Furthermore, seasonal climate forecasts have been
incorporated into human health early warning systems for dis-
eases, such as malaria, that are influenced by climatic conditions
(Abawi et al, 2008) and for outbreaks of noxious jellyfish
(Gershwin et al., 2014). Enhanced capability has also made possible
skillful seasonal forecasts of LMR-relevant variables at fine spatial

and temporal scales useful to industry (defined here to include
fisheries and aquaculture industries) and management (Stock
et al., 2015; Siedlecki et al., 2016). While multi-annual to decadal
predictions are at an initial stage of development and are not yet
operational (Meehl et al., 2014), in specific ocean regions, particu-
larly the North Atlantic, multi-annual forecasts appear skillful over
several years (Yang et al., 2013; Msadek et al., 2014a; Keenlyside
et al.,, 2015), and may show promise for some LMR applications
(Salinger et al., 2016).

The objective of this paper is to assess present and potential
uses of these advances in climate predictions to facilitate improved
management of wild and cultured LMRs. This effort was initiated at
the workshop “Applications of Seasonal to Decadal Climate Predic-
tions for Marine Resource Management” held at Princeton Univer-
sity on June 3-5 2015, which brought together 60 scientists
spanning climate and marine resource disciplines. This resulting
synthesis establishes a common understanding of the prospects
and challenges of seasonal to decadal forecasts for LMRs to support
further innovative and effective application of climate predictions
to management decisions. In Section 2, we describe climate predic-
tion systems and discuss their strengths and limitations. In Sec-
tion 3, we briefly summarize climate-sensitive decisions made
within management of commercially exploited species, protected
and endangered species, and for fishing and aquaculture industry
applications. Section 4 presents case studies drawn from peer-
reviewed literature highlighting the scope of past and present
applications. Sections 5 and 6 distill successful components across
these existing applications and identify priority developments
based on the material in Sections 2-4. Section 7 offers concluding
remarks on prospects for expanded use of climate predictions for
marine resource management.

2. Predicting environmental change across space and time
scales

Advances in global dynamic climate prediction systems raise
the prospect of skillful environmental prediction at the time scales
relevant to LMR management and industry decisions. In this sec-
tion, we first describe these prediction systems (Section 2.1),
emphasizing characteristics relevant to informing the manage-
ment decisions which will be described in Section 3, and then dis-
cuss evaluation of forecast skill (Section 2.2). Lastly, we provide a
brief overview of existing studies of prediction skill for LMR-
relevant climate variables (Section 2.3).

2.1. Overview of climate prediction systems

There exist two types of climate prediction models: dynamical
models based on knowledge of the underlying physics of the cli-
mate system, and statistical models based on empirical relation-
ships. The focus here is on dynamical seasonal to decadal
prediction systems derived from Global Climate Models (GCMs),
but it is important to note that statistical climate prediction mod-
els have also been used with success at seasonal time scales (Xue
et al,, 2000; van den Dool, 2007; Muifioz et al.,, 2010; Newman
et al., 2011; Barnston et al., 2012; Ho et al., 2013; Barnston and
Tippett, 2014; Chapman et al., 2015). Statistical climate predictions
require considerably less computing resources than dynamical
prediction systems and are used by climate offices throughout
the world, particularly where high-performance computing facili-
ties are not available. However, when developing a statistical fore-
cast, care must be taken to not impart artificial skill through the
method used to select predictors (DelSole and Shukla, 2009) or
through the forecast sets used for training and skill assessment
not being sufficiently independent of each other. Statistical predic-
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Fig. 1. Overview of simulation design for seasonal and decadal predictions and climate projections. GHG refers to greenhouse gases. Note that the year for shifting from pre-
industrial to historical forcing in climate projections, here set to 1860, can differ between climate models. “Forcings” in the climate change context refer to specified solar

insolation and concentrations of radiatively active atmospheric constituents.

tions are also limited by the assumption that historically observed
statistical relationships between climate variables will be main-
tained in the future (Mason and Baddour, 2008). By contrast,
dynamical seasonal to decadal climate predictions arise more
directly from fundamental physical principles expected to hold
under novel climate states (Randall et al., 2007). Dynamical models
can also forecast quantities that are difficult to observe and thus
develop statistical models for (e.g., bottom temperature). We note,
however, that many small-scale processes, such as cloud micro-
physics or submesoscale fronts and eddies, are not resolved by
most GCMs and uncertainty connected to the parameterization of
such “sub-grid scale” processes within GCMs can impact prediction
skill (Warner, 2011).

Dynamical climate predictions on seasonal to decadal time
scales rest on the premise that knowledge of the present climate
and the dynamic principles governing its evolution may yield use-
ful predictions of future climate states. Four core components are
thus required to make such predictions at global scales and trans-
late them for users: (1) global dynamical climate models, (2) global
observing systems, (3) a data assimilation system, and (4) analysis
and dissemination systems to provide predictions to stakeholders
across sectors. We provide a brief overview of each of these com-
ponents below.

2.1.1. Dynamical coupled global climate models for seasonal to decadal
prediction

GCMs are comprised of atmospheric, ocean, sea-ice and land
physics and hydrology components, each governed by dynamical
laws of motion and thermodynamics solved numerically on a glo-
bal grid. GCMs used for seasonal to decadal prediction are largely
analogous to those used for century-scale climate change projec-
tion (e.g. Stock et al., 2011), but the simulation design is different

(Fig. 1). In the climate change case (Fig. 1, bottom), the goal is to
track the evolution of the climate over multi-decadal time scales
as it responds to accumulating greenhouse gases (GHGs) and other
anthropogenic forcing. The simulations have three components: a
pre-industrial control of several hundred to several thousand years
where the model comes to quasi-equilibrium with preindustrial
GHGs and aerosol concentrations, a historical segment where
GHGs increase in accordance with observed trends, and a projec-
tion following one of several future GHGs scenarios (Moss et al.,
2010; van Vuuren et al., 2011). Because initial conditions at the
start of the preindustrial period are largely “forgotten” except pos-
sibly in the abyssal ocean, the only aspects linking historical and
future simulations to a specific year are the GHGs, land cover
changes, solar forcing, land use changes, and other radiatively
active atmospheric constituents (e.g. aerosols). Internal climate
variations arising from interactions in the components of the cli-
mate system itself such as the El Nifio Southern Oscillation (ENSO)
are represented in climate simulations, but their timing/chronol-
ogy does not and is not expected to agree with past observations.
The objective is to obtain an accurate representation of the evolv-
ing climate statistics over multiple decades, including the statistics
of internal climate variation, rather than precise predictions of the
climate state at a given time. Indeed, ensembles of historical and
future simulations begun from different initial conditions, and con-
taining different realizations of internal climate variations, are
often employed in obtaining these statistics (Kay et al., 2015).

On the other hand, seasonal (months to a year) prediction skill
(Fig. 1, top) largely depends on initializing the model using infor-
mation specific to the current climate state. Owing to the chaotic
nature of the atmosphere, daily weather has a deterministic pre-
dictability limit of 5-10 days (e.g. Lorenz, 1963; Goddard et al.,
2001). In seasonal forecasts, the predictability horizon is extended
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by forecasting monthly or seasonally-integrated statistics rather
than daily weather, and by exploiting the more slowly evolving
elements of the climate system, such as the ocean. It is assumed
that the initial climate state sufficiently determines the future evo-
lution of internal climate variations so that skillful predictions of
climate states within the forthcoming months are possible. The
presence of ENSO in June, for example, will impact extra-tropical
sea-surface temperature (SST) in September via teleconnections
that are now substantially captured by many GCMs, albeit some
important biases remain (Deser et al., 2010).

In today’s coupled dynamical prediction systems, seasonal pre-
diction is thus classified as an initial value problem rather than a
boundary value problem. As the response to changes in external
forcing like GHGs occurs over much longer time scales, their pre-
dictive skill is more dependent on initialization to current climate
conditions rather than boundary conditions (i.e. external forcing).
Although external forcing changes are typically small over periods
spanned by individual seasonal forecasts, they can be significant
over the multi-decadal periods spanned by successive real time
forecasts and the accompanying retrospective forecasts discussed
in Section 2.1.3, and therefore should ideally remain included in
seasonal forecast models (Doblas-Reyes et al., 2006; Liniger et al.,
2007). Annual to decadal predictability (1-30 years), in contrast,
arises from both predictable internal climate variations following
model initialization and external forcing, presenting a hybrid prob-
lem (Fig. 1, middle panel, Meehl et al., 2014).

Another difference between GCMs configured for climate pro-
jections and seasonal to decadal predictions systems has been
the successful expansion of the climate change GCM configuration
to earth system models (ESMs) that include biogeochemistry (e.g.
Bopp et al.,, 2013). ESMs can simulate biological and chemical prop-
erties (e.g. oxygen, pH, nutrients, primary and secondary produc-
tion) strongly linked to LMRs (Stock et al., 2011), and thus they
have been broadly applied to assess climate change impacts on
LMRs (e.g. Cheung et al., 2009; Barange et al., 2014). While incor-
poration of earth system dynamics in global seasonal to decadal
prediction models remains in an early stage of development
(Séférian et al., 2014; Case Study 4.6), it may yield benefits at the
seasonal to decadal scale. In Section 2.3, discussion of LMR-
relevant seasonal to decadal predictions will be focused on the
physical variables produced by the operational seasonal to decadal
global forecast systems, but priority developments to expand bio-
geochemical prediction capabilities will be discussed in Section 6.

2.1.2. The global climate observing system supporting climate
prediction

The initialization of seasonal to decadal climate predictions is
generated via a range of data assimilation approaches (Sec-
tion 2.1.3) that draw observational constraints from the global cli-
mate observing system. This system collates diverse observations
of many climate quantities across the globe including those
obtained from satellites, land-based weather stations, radiosondes,
weather radars, aircrafts, weather balloons, profiling floats, moored
and drifting ocean buoys, and ships (see http://www.wmo.
int/pages/prog/gcos/index.php?name=0bservingSystemsandData
for a list of the global climate observing system’s observational
networks and climate variables). Expansion of the global climate
observing system across decades has improved prediction skill.
For instance, establishment of the Pacific Tropical Atmosphere-
Ocean (TAO) moored buoy array in the early 1990s (McPhaden,
1993) was key in enhancing seasonal prediction skill of ENSO
and ENSO-related SSTs (Ji and Leetmaa, 1997; Vidard et al.,
2007). Similarly, the addition of Argo profiling floats (http://doi.
org/10.17882/42182) to the global ocean observing network
improved seasonal SST forecast skill (Balmaseda et al., 2007).

2.1.3. Assimilating observations to constrain the initial climate state

While the advent of satellites and of observing platforms, such
as the TAO array and Argo floats, have considerably increased the
number of available observations, much of the Earth system, par-
ticularly in the deep ocean (>2000 m), remains unobserved. Cli-
mate prediction systems combine observational and model
constraints using a data assimilation system to fully initialize cli-
mate predictions. Diverse approaches are used, from nudging
methods to four-dimensional variational analyses and ensemble
Kalman filters. For instance, the NOAA Geophysical Fluid Dynamics
Laboratory (GFDL) coupled data assimilation system produces an
estimate of the present climate state by using an ensemble Kalman
filter algorithm to combine a probability density function (PDF) of
observations, both oceanic and atmospheric, with a prior PDF
derived from the dynamically coupled model (Zhang et al., 2007).
For more details on data assimilation techniques we refer readers
to Daley (1991), Kalnay (2003), Tribbia and Troccoli (2008),
Edwards et al. (2015), Zhang et al. (2015), and Stammer et al.
(2016).

Assimilating observations produces an initialized climate state
that differs from what the climate models would simulate were
they running freely. This is because dynamical climate models
are an approximation of the real world, and as such can show sys-
tematic bias (Warner, 2011). Once a seasonal forecast begins,
dynamical models drift back to their freely running state. In some
cases, drifts can be as large as the signal being predicted, particu-
larly for longer lead-times, and can degrade forecast skill
(Goddard et al., 2001; Magnusson et al., 2013; Smith et al,
2013). It is therefore important to remove this drift to obtain the
signal of interest for input into LMR models. While diverse
approaches for this have been proposed, they primarily involve
subtracting the mean drift from across a set of retrospective fore-
casts (hindcasts). For example, to correct for model drift in a
January-initialized SST anomaly forecast for May, the mean drift
for January-initialized May forecasts from the past 30 years is sub-
tracted from the predicted temperature trend.

While a primary goal of data assimilation is forecast initializa-
tion, the estimates of atmospheric or ocean state produced via data
assimilation are also useful for model verification and calibration,
retrospective studies of past ocean variability, and “nowcasts” of
present conditions. Such historical time series of past ocean state
estimates are referred to as reanalysis datasets. While often taken
as “observations” they are obtained using the model and a data
assimilation system in the same way as was described for model
initialization. Hence, reanalyses are model-dependent and each cli-
mate prediction center produces its own version of what the earth
system looked like in the past (Table A1). While such reanalyses
are generally in agreement for variables that are widely sampled
(e.g. SST after the advent of satellites) over scales resolved by the
GCMs, there are differences, reflecting model uncertainty, the scar-
city of observational data, and the fact that single observations
may not be representative of the large-scale climate state. One
way to estimate uncertainties among ocean reanalyses is to con-
duct ocean reanalysis intercomparisons (Balmaseda et al., 2015).
Table A1 lists six operational ocean reanalysis products that are
available for the period from 1979 to present and that are used
in a Real-time Ocean Reanalysis Intercomparison Project (Xue
et al., in press). One example of uncertainties of ocean reanalysis
products is shown in Fig. 2 for temperature anomalies at a depth
of 55 m during April 2015. Some areas, such as the west coast of
North America, clearly stand out as being consistent between
reanalysis products. This has also been shown in some recent sea-
sonal forecast efforts in the region (Siedlecki et al., 2016), increas-
ing confidence in their treatment as “observations”. By contrast,
temperature values along the Northeast shelf of North America
are more uncertain. This highlights the importance of confirming
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Fig. 2. Temperature anomalies at 55-m depth from six different ocean reanalysis products for April 2015 relative to each-product 1981-2010 climatology. The bottom left
panel shows the ensemble mean, and the bottom right the ratio of signal (ensemble mean) to noise (ensemble spread).

consistency of reanalyses with observations at the scales of interest
when possible (Stock et al., 2015), and the paucity of oceanic vari-
ables for which we can robustly evaluate prediction skill.

2.1.4. Analysis and dissemination in support of diverse stakeholders
The goal of analysis and dissemination systems is to take the
raw output from the predictions and package it in a way that can
be easily accessible and understood by stakeholders. Generally,
because of the variety of users and applications of seasonal fore-
casts, most climate prediction centers focus on ensuring that sea-
sonal climate model output is corrected for model drift (see
Section 2.1.3 for more details) and verified. Forecast verification,

which entails an assessment of forecast skill, is described in Sec-
tion 2.2. Any further post-processing, such as downscaling to
application-relevant spatial scales, is performed on an ad hoc basis
in collaboration with users.

Climate forecasts are inherently uncertain because of the chao-
tic nature of the climate system, whereby small differences in ini-
tial conditions can lead to a diverse range of climate states (Lorenz,
1963; Wittenberg et al., 2014), as well as our imperfect under-
standing of the climate system. In an attempt to capture some of
this uncertainty, a collection of forecasts differing in their initial
conditions or model parametrizations, referred to as an ensemble,
is produced (see Section 2.2 for more details). For a forecast to be
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Fig. 3. Left panel: One-month lead probabilistic forecast of SST for summer (June, July, and August, JJA) initialized in May 2016 from the North American Multi-Model
Ensemble (NMME). This forecast was produced using all the ensemble members provided by each model participating in the NMME. It therefore reflects both initial condition
and model uncertainty. Warm colors (yellow-orange) indicate areas with a significant probability of experiencing upper-tercile temperatures, with the probability of such
terciles ranging from 40-100% depending on the degree of shading. Analogous interpretations exist for the anomalously cool (blue colors) or near climatological (gray colors)
conditions. Right panel: Ranked probability skill score for the forecast presented in the left panel. The color bar represents the relative improvement of the probability forecast
(left panel) over climatology, with 0 indicating no skill over climatology. Note the higher predictive skill in the North Atlantic, North Pacific and at the equator. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

useful for decision making, it needs to represent the likelihood of
different outcomes. Probabilistic forecasts constructed from infor-
mation provided by the ensemble forecast fill this need. Such fore-
casts are commonly communicated as probabilities that the
outcome will be in the lower, middle or upper tercile of the clima-
tological PDF (Fig. 3), although many other possibilities exist. Reli-
ability, the property that forecast probabilities are similar to
observed frequencies, is crucial for decision making. However,
probabilistic forecasts based on raw forecast output tend to be
overconfident, and are thus often recalibrated to improve their reli-
ability (Sansom et al., 2016). Deterministic forecasts describing the
average outcome of the forecast ensemble are also sometimes dis-
seminated. While relatively simple to interpret, they are generally
less useful than probabilistic forecasts because they contain no
measures of uncertainty or the likelihood of alternative outcomes.

Once the climate predictions are verified, most prediction cen-
ters deliver forecasts to users via the internet. For example, sea-
sonal forecasts from NOAA NCEP, GFDL, and numerous other
modeling centers can be downloaded from the North American
Multi-Model Ensemble (NMME) (Kirtman et al., 2014) website at
http://www.cpc.ncep.noaa.gov/products/NMME/. Hindcasts (i.e.
retrospective forecasts) are archived on the same site, and skill
assessment maps are also made available. It should be noted that
because of the large variety of users and the limited resources
devoted to delivery systems, model output presentation and visu-
alization is rarely customized to specific user needs. Thus, there is
utility in repackaging standard forecasts specifically for the fish-
eries and aquaculture sectors as “targeted forecasts” (Hobday
et al., 2016; Siedlecki et al., 2016).

2.2. Forecast skill

In addition to providing users with information on forecast
uncertainty through well-calibrated probabilistic forecasts as dis-
cussed above, skill information is essential for LMR managers or
fishing industry personnel to assess confidence in seasonal to dec-
adal forecasts. Hence, model verification, which assesses prediction
quality of the forecast through skill assessment, is essential for sea-
sonal to decadal predictions to be practically useful to decision-
making. As well as enabling drift correction as described in Sec-
tion 2.1.3, retrospective forecasts are used by climate prediction

centers to establish forecast skill. This involves initializing a suite
of predictions across the past several decades and testing whether
predictions would have been successful (e.g. given an estimate of
climate conditions in January of 1982, how well can the model pre-
dict temperature and precipitation anomalies for the rest of 1982).
These retrospective forecast suites are also made available to
potential users to assess predictability of particular variables of
interest.

Numerous prediction skill measures have been developed
(Stanski et al.,, 1989; von Storch and Zwiers, 2001; Jolliffe and
Stephenson, 2003; Mason and Stephenson, 2008; van den Dool,
2007; Wilks, 2011). Generally, stakeholders are interested in the
correctness of a forecast (Mason and Stephenson, 2008), and thus
the anomaly (see Section 2.1.3 for details on how anomalies are
calculated) correlation coefficient (ACC) and root mean square
error (RMSE) between the model retrospective forecast and obser-
vations are among the most commonly used prediction skill mea-
sures for deterministic forecasts. For a probabilistic forecast, the
Brier Score (BS) is often used to measure of the mean squared prob-
ability error of whether an event occurred. The value of the dynam-
ical prediction can also be assessed by comparing the skill of a
dynamical forecast output to that of climatology. For instance,
the ranked probability skill score (RPSS), a commonly used mea-
sure of probabilistic prediction, is used to reflect the relative
improvement given by the forecast over climatology (Fig. 3). Sea-
sonal to decadal prediction skill is also often compared against that
of a persistence forecast. A persistence forecast is a forecast pro-
duced by simply projecting forward the current climate anomaly.
For example, a January one-month lead SST forecast would be com-
pared against a persistence forecast derived from maintaining the
December temperature anomaly into January. Statistical predic-
tions, particularly for decadal forecasts whose skill also depends
on changes in radiative forcing not represented in a persistence
forecast, can also act as useful tools against which to assess
dynamical prediction skill (Ho et al., 2013). While statistical or per-
sistence forecasts provide an important benchmark against which
to assess the added value of dynamical seasonal forecasts, a skillful
statistical (e.g. Eden et al., 2015) or persistence forecast can be as
relevant to users as a skillful dynamical forecast.

As discussed in Section 2.1.4, for a forecast to be useful to LMR
managers and the fisheries and aquaculture industries, not only
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Note that the operational GFDL seasonal climate prediction system uses CM2.5FLOR. Refer to Saba et al., 2016 for further details on the models and experiments.

does it need to be skillful, but its uncertainty has to be representa-
tive of the spectrum of potential outcomes. Climate prediction
uncertainty arises from different sources (Payne et al., 2016), with
internal variability and model uncertainty being the most impor-
tant for seasonal to decadal predictions, particularly at regional
scales (Hawkins and Sutton, 2009). Internal variability uncertainty
stems from emergent chaotic properties of the climate system, and
causes predictions differing only a little in initial conditions to
evolve to quite different climate states (Lorenz, 1963; Wittenberg
et al., 2014). In an attempt to capture some of this internal variabil-
ity uncertainty, climate prediction centers produce different fore-
casts characterized by the same global dynamic model started
with slightly different initial conditions chosen to reflect equally
probable initial states given a set of observational constraints.
The collection of such forecasts is referred to as a single-model
ensemble.

Forecast uncertainty also arises from our incomplete under-
standing of the climate system, as reflected in the forecast model
being a simplification of the real world. Model error can stem from
uncertainties in the parameterizations of physical processes that
are either not well understood, act at a scale below the model’s
spatial or temporal resolution, or are too computationally expen-
sive to be modeled explicitly. Errors in numerical approximations
also add to model uncertainty. Multi-model ensembles are a way
to characterize forecast uncertainty arising from this model uncer-

tainty. In such ensembles, simulations from entirely different mod-
els, often from various prediction centers, are combined to produce
a forecast output. The North American Multi-Model Ensemble
(NMME) (Section 2.1.4) is an example of such a forecast. Seasonal
forecasts from leading US and Canadian prediction systems are
combined to produce a multi-model ensemble mean seasonal fore-
cast. Single model forecasts are also provided, but the multi-model
mean has been shown to have higher prediction skill than any sin-
gle model (Becker et al., 2014). The skill increase comes from error
cancellation and the non-linearity of model diagnostics (Becker
et al., 2014). In addition to a more accurate measure of central ten-
dency, use of a multi-model ensemble often allows for a more com-
plete representation of forecast uncertainty. Ensemble methods
thus allow forecasts to be probabilistic, reflecting the range of all
potential outcomes (Goddard et al., 2001). To base decisions on a
comprehensive assessment of risk, incorporation of seasonal to
decadal predictions into LMR applications should include these
estimates of forecast uncertainty.

Dynamical processes that operate at scales finer than a model’s
resolution must be parameterized. The spatial resolution of a
model grid dictates the breadth of processes that may be simu-
lated, and differences in this resolution can influence model error
and thus limit forecast skill. Indeed, an increase in resolution from
the 100 to 200-km atmospheric resolution common to many of the
current seasonal to decadal prediction systems (Kirtman et al.,
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2013), to 50-km resulted in better seasonal temperature and pre-
cipitation forecast skill, particularly at a regional scale (Jia et al.,
2015). Nevertheless, in regions where local and/or unresolved
sub-grid scale processes strongly modulate the basin-scale climate
signal, even such relatively high resolution (50-km atmosphere
and 100-km ocean) predictions have limited skill. For example, glo-
bal climate models that have an ocean resolution of 100-km to
200-km have a bias in both ocean temperature and salinity in com-
plex coastal environments such as the US Northeast Continental
Shelf (Saba et al., 2016). These biases may partially explain the rel-
atively poor predictive skill of seasonal SST anomalies predictions
in this region (Stock et al.,, 2015). When both atmosphere and
ocean model resolution are increased (50-km atmosphere, 10-km
ocean), such biases are substantially reduced (Fig. 4) because the
Gulf Stream coastal separation position as well as regional bathy-
metry are more accurately resolved. We stress, however, that while
enhanced resolution appears critical for some scales and ecosys-
tems, existing models show considerable prediction skill for mar-
ine resource relevant variables at other scales and ecosystems
(Section 2.3). High resolution GCMs (10-km ocean versus 100-km
in many prediction systems), are also considerably more computa-
tionally expensive to run, currently limiting their use in opera-
tional climate prediction systems. Furthermore, biases can
remain at this resolution, and can be quite large in specific ocean
regions (Delworth et al., 2012; Griffies et al., 2015). This is due,
in part, to the challenges of optimizing sub-gridscale parametriza-
tions for higher resolution models (Goddard et al., 2001).

An alternative means of addressing resolution challenges is to
embed a regional dynamical downscaling model in a global climate
prediction system (e.g. Section 4.5, Section 6). Most of the world’s
fish catch is produced (Pauly et al., 2008) and most aquaculture
operations are located in coastal and shelf seas. Regional models
have the added advantage of improved resolution of coastal pro-
cess (e.g. tidal mixing) that impact predictive skill of LMR-
relevant variables at decision-relevant scales. However, these
advantages must be weighed against the challenges, such as
boundary condition inconsistencies, encountered when nesting
models of considerably different structure and resolution
(Marchesiello et al., 2001; Brennan et al., 2016).

It is important to note that while some of the current uncer-
tainty in seasonal to decadal predictions can be reduced by, for
example, improved model parameterizations, expanded observa-
tional networks, or increased model resolution, irreducible uncer-
tainties will remain. Owing to the chaotic nature of the
atmosphere, there are inherent seasonal and decadal predictability
limits, which need to be clearly communicated to stakeholders
(Vaughan and Dessai, 2014; Zebiak et al., 2015). For instance, on
the west coast of the US, the seasonal upwelling season ends
abruptly with the fall transition. This transition is driven mostly
by storms, and consequently may not be predictable on seasonal
time scales.

Finally, since reanalysis products are often treated as observa-
tions in forecast verification (Section 2.1.3), it is important for
users to confirm the fidelity of such data sets to their specific area
of interest prior to integration with LMR management frameworks.
Where possible, this should be done with additional hydrographic
data that may not have been incorporated in the reanalysis. We
refer readers to Stock et al. (2015) for an example on how such
an analysis can be performed.

2.3. Prediction of living marine resource-relevant physical variables

Variables routinely predicted using current seasonal to decadal
forecast systems are LMR-relevant (e.g. SST), and the objectives of
seasonal to decadal climate prediction are consistent with the spa-
tiotemporal scale of many fisheries management decisions. How-

ever, oceanic prediction skill has often only been assessed with a
view to its influence on regional weather prediction, rather than
being of primary interest in itself (Stockdale et al., 2011). There
are, however, a growing number of prediction studies for quanti-
ties and spatiotemporal scales relevant to LMR science and man-
agement challenges (Fig. 5). Below we discuss several of these,
including predictability of SST anomalies, sea ice, and freshwater
forcings that influence LMRs, along with recent advances for antic-
ipating extreme events.

SST anomalies are both important drivers and meaningful indi-
cators of ecosystem state (e.g., Lehodey et al., 2006; Brander ,
2010). Efforts to assess the predictability of SST anomalies have
emphasized ocean basin-scale modes of variability often linked
to regional climate patterns (e.g., ENSO; Barnston et al., 2012).
However, recent work has also revealed considerable SST predic-
tion skill for many coastal ecosystems (Stock et al., 2015). Over
short time scales, skill often arises from simple persistence of SST
anomalies due to the ocean’s substantial thermal inertia
(Goddard and Mason, 2002). In many cases, however, skill exceeds
that of persistence forecasts and can extend across leads of 6-
12 months (Fig. 6). Such seasonal SST predictability may arise from
diverse mechanisms, including the seasonal emergence of pre-
dictable basin-scale SST signatures following periods dominated
by less predictable local variation, transitions between opposing
anomalies due to the seasonal migration of ocean fronts, or the
predictable re-emergence of sub-surface anomalies following the
breakdown of summer stratification (Stock et al., 2015). Additional
analysis suggests that multi-model based SST predictions can fur-
ther improve regional SST anomaly prediction skill and more reli-
ably represent prediction uncertainty and the potential for
extremes (Hervieux et al., in review). The considerable prediction
skill at this LMR-relevant scale has allowed for some pioneering
use of SST predictions for marine resource science and manage-
ment (e.g., see case studies in Section 4), and suggests ample
potential for further expansion.

In a few ocean regions, most notably the North Atlantic, SST
predictions are skillful for several years (Yang et al., 2013;
Msadek et al., 2014a; Keenlyside et al., 2015). This time scale is
of particular interest for many LMR applications (Fig. 5). The pre-
dictive skill on these time scales emerges from phenomena, pri-
marily in the ocean, that have inherent decadal scales of
variability (Salinger et al., 2016). Perhaps the most prominent
among these is the Atlantic Meridional Overturning Circulation
(AMOC). Decadal-scale variations in AMOC-related ocean heat
transport can influence SST over a wide area of the North Atlantic,
and are thought to be a critical component of North Atlantic basin-
scale SST variation characterized by the Atlantic Multidecadal
Oscillation (AMO). For example, the abrupt warming observed in
the mid-1990s in the North Atlantic has been retrospectively pre-
dicted in several models (Pohlmann et al.,, 2009; Robson et al,,
2012; Yeager et al., 2012; Msadek et al., 2014a), with an increase
of the AMOC being responsible for the warming. The Pacific Deca-
dal Oscillation (PDO) also has decadal scales of variability and can
be predicted a few years in advance, with significant impacts
across a broad area of the North Pacific and adjacent continental
regions (Mochizuki et al., 2010; Meehl and Teng, 2012). More ide-
alized predictability studies also suggest the potential for substan-
tial decadal predictive skill in the Southern Ocean (Boer, 2004),
associated with deep vertical mixing and substantial decadal scale
natural variability (Salinger et al., 2016). Nevertheless, unlike sea-
sonal climate predictions, which are operational, the field of deca-
dal prediction is in a very early stage (Meehl et al, 2014).
Performance of decadal predictions needs to be assessed over a
wider range of models and systematic model errors have to be
reduced further to increase their utility to the marine resource
community. Furthermore, the limited number of decadal-scale
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fluctuations of the 30-40 year period for which retrospective fore-
casts are possible severely restricts the effective sample size with
which to characterize decadal prediction skill. Models may demon-
strate an ability to capture several prominent events over this time
period, but it is difficult to robustly generalize skill for this limited
sample of independent decadal-scale events.

Sea ice is another LMR-relevant variable (Coyle et al., 2011;
Hunt et al., 2011; Saba et al., 2013), whose seasonal predictive skill
has been assessed at a regional scale. Based on estimates by the
National Snow and Ice Data Center, September Arctic sea ice extent
has declined at a rate of about 14% per decade since the beginning
of satellite records (Stroeve et al., 2014), a trend largely attributed
to warming due to accumulating GHGs (e.g. Stroeve et al., 2012). In
addition to these long-term changes, large year-to-year variations
have been observed in the position of the summer and winter sea
ice edge. Operational and quasi-operational initialized predictions
show some skill in predicting summer Pan-Arctic sea ice extent

when it reaches its minimum in September, with significant corre-
lation 3-6 months in advance at best in a few dynamical models
(Sigmond et al., 2013; Wang et al., 2013; Chevallier et al., 2013;
Msadek et al., 2014b). Sea ice thickness appears to provide the
memory for sea ice extent predictability from one summer to the
next. Hence more accurate predictions could be expected with
improved observations of sea ice thickness and sea ice thickness
initialization (Guemas et al., 2016). While predictions of summer
sea ice have important implications for shipping and resource
extraction, sea ice extent in late winter affects spring phytoplank-
ton bloom timing and ultimately fish production (Hunt et al.,
2011). However, while enhanced forecast skill with up to 3-
4 months of lead-time relative to a persistence forecast has been
reported during fall and early winter, forecast skill remains limited
in late winter (Sigmond et al., 2013; Msadek et al., 2014b). Pro-
cesses driving winter sea ice predictability include the representa-
tion of atmospheric dynamics like the position of the blocking high
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(Kwok, 2011), but also oceanic processes like heat convergence
that drives SST anomalies in the marginal seas (Bitz et al., 2005).
On-going studies based on improved model physics, improved
parameterizations, and increased resolution in the atmospheric
and oceanic components of the models are expected to improve
representation of atmospheric dynamics, oceanic processes, and
the mean distribution of sea ice, its seasonal variations, and possi-
bly its predictability. Such improvements may also impact SST pre-
diction skill (Stock et al., 2015).

While oceanic variables are of major importance for production
and distribution of wild and aquaculture species, river temperature
and flow are additional influences on recruitment and survival of
commercially-important anadromous fish species, such as Pacific
and Atlantic salmon (Bryant, 2009; Jonsson and Jonsson, 2009)
and stocks such as northwest Atlantic river herring that have fallen
below historical levels (Tommasi et al., 2015). In addition, these
variables affect nearshore ocean dynamics and hence impact aqua-
culture of estuarine species. Seasonal stream flow predictability is
thus of high interest to some industry groups and fisheries man-
agement agencies. Land models incorporated in current seasonal
to decadal climate prediction systems, however, only provide a
coarse representation of topography, river networks, and land
cover, and forecasts of hydrological properties are not very skillful
if taken directly from global dynamical forecast systems (Mo and
Lettenmaier, 2014). Historically, land resolution in models has lim-
ited topographic variability, which impacts snowfall, and as a
result has downstream influences on surface hydrology (e.g.
reduced soil moisture and stream flow) in mountainous regions
and surrounding areas dependent on orographic precipitation
and spring and summer snowmelt (Kapnick and Delworth, 2013;
Kapnick et al., 2014). This bias is pronounced in western North
America where mountain hydrology drives water availability
(Barnett et al., 2005). As a result, higher resolution hydrological
models have been forced by the larger scale input from coarser glo-
bal climate models to produce hydrologic forecasts at scales useful
for decision makers (e.g. Mo and Lettenmaier, 2014). As prediction
systems increase in atmospheric and land surface resolution, pre-
cipitation and temperature prediction skill over mountain regions
also increases as topography is better resolved (Jia et al., 2015).

Aside from issues in resolution, hydrologic predictability is lar-
gely a function of initial land surface conditions (primarily soil
moisture and snow cover) and seasonal forecasts of rainfall and
temperature (Shukla et al., 2013; Yuan et al., 2015). In regions
where snow and soil moisture provide a long hydrological mem-
ory, such as the western United States or high altitude locations,
accurate initial conditions can provide skillful forecasts out to 3-
6 months, particularly during cold seasons (Koster et al., 2000;
Mahanama et al,, 2012; Shukla et al., 2013). Similarly, in regions
where the flow regime is controlled by groundwater rather than
rainfall, persistence of initial flow can provide a skillful seasonal
forecast (e.g. Svensson, 2016). However, over most of the globe,
persistence skill decreases after a month (Shukla et al., 2013),
and improvements in the predictability of streamflow are made
by incorporating climate information into hydrological forecasting
systems. Climate predictions systems can provide such climate
forcing inputs (i.e. precipitation and temperature predictions)
(Mo and Lettenmaier, 2014). However, the precipitation prediction
skill of current global dynamical forecast systems is often too low
to extend hydrological forecast skill beyond 1 month, particularly
in dynamically active regions (Mo and Lettenmaier, 2014). Skillful
seasonal hydrological predictions out to 3-9 months lead-times
have been obtained, however, by integrating into hydrological
models rainfall predictions derived from a climate index, such as
the NAO, from a climate prediction system (e.g. Svensson et al.,
2015). Alternatively, skillful seasonal hydrological predictions have
been achieved by statistically integrating a climate index directly

into a hydrological forecast system (e.g. Piechota and Dracup,
1999; Karamouz and Zahraie, 2004; Wang et al., 2011; Bradley
et al., 2015).

Over recent years substantial effort has been placed on seasonal
predictions of extreme phenomena, particularly tropical (Camargo
et al.,, 2007; Vecchi and Villarini, 2014) and extratropical (e.g., Yang
et al., 2015) cyclones. These extreme events threaten fishers’ safety
at sea and can dramatically impact the aquaculture and fishing
industry through lost production and income with changes in fish
survival and growth, reduction in water quality, and destruction of
essential fish habitat (e.g. coral reefs, seagrass beds) or infrastruc-
ture (Chang et al., 2013; Hodgkinson et al., 2014). Although indi-
vidual tropical cyclones are very much “weather” phenomena,
with no path to predictability beyond a few days, some aggregate
statistics of tropical cyclones are strongly influenced by predictable
large-scale aspects of climate, such as ENSO or other modes of vari-
ability (e.g., Gray, 1984). This has led to the development of a num-
ber of skillful statistical (Klotzbach and Gray, 2009; Jagger and
Elsner, 2010), dynamical (Vitart and Stockdale, 2001; Vitart,
2006; Zhao et al., 2010; Chen and Lin, 2011; Vecchi et al., 2014;
Murakami et al., 2015), and hybrid statistical-dynamical (Wang
et al., 2009; Vecchi et al., 2011) prediction methodologies, which
have targeted primarily basin-wide (e.g., North Atlantic, West Paci-
fic, etc.), seasonally-integrated statistics of tropical cyclone activ-
ity. More recently, methodologies that exploit the ability of high-
resolution GCMs to represent both regional hurricane activity
and its connection to climate variation and change have led to
skillful seasonal predictions of tropical cyclone activity at more
regional scales (e.g., Vecchi et al., 2014; Zhang et al., 2016;
Murakami et al., 2016). The coming years are likely to see an
expansion in the growth of tools for the seasonal prediction of
tropical cyclones and many other extreme phenomena, such as tor-
nadoes (Elsner and Widen, 2014; Allen et al., 2015), and heat
waves (Jia et al., 2016) enabled by the widespread development
of high-resolution dynamical prediction models, improved under-
standing of the connection of weather extremes to large-scale con-
ditions, and the pressing societal need for information about the
statistics of high-impact weather events at regional scales.

3. Managing living marine resources in a dynamic environment

Management of LMRs is an exercise in trade-offs, requiring that
managers balance multiple, often competing objectives (e.g.
Jennings et al., 2016). For instance, global policies and the legal
mandates of many countries require weighting conservation of
commercial stocks against their exploitation, protecting bycatch
species that are overfished or listed as endangered or threatened,
safeguarding of coastal economies and fishing communities, and
balancing present benefits to stakeholders against future losses
(King et al., 2015). Fisheries managers acting on the best available
science are mandated to prevent overfishing while, on a continuing
basis, achieving high levels of benefits to society from fisheries and
other seafood products. Fishers must balance a parallel tradeoff
between the value of current harvest and the maximum value of
future harvests. Similarly, aquaculture industry participants have
to balance the value of expected returns from capital investment
against its opportunity costs.

LMR industry or management decisions are made all the more
challenging because these objectives must be achieved against
the backdrop of a highly dynamic ocean environment. Different
decisions are made for different spatial and temporal scales (with
regard to both lead-time and the application of the decision), and
thus their effectiveness is influenced by climate-driven variability
from across the climate system (Fig. 5). In this section, we summa-
rize LMR management and industry decisions made with
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lead-times from days to decades and the frameworks used to make
them, identifying the points where seasonal to decadal climate
predictions could inform decisions, and discuss the potential ben-
efits of this information.

3.1. Industry operations

For the aquaculture industry, key decisions include when to
release fry, ‘plant’ and harvest fish/shellfish, and when and what
remedial actions to take to counter or avoid poor conditions.
Extreme events such as floods, storms, and tropical cyclones can
dramatically impact the aquaculture industry through reduction
in water quality and destruction of infrastructure (Hodgkinson
et al., 2014). Anomalously warm or cold conditions can also result
in lost production and income via direct mortality effects, changes
in growth or disease outbreaks (Chang et al., 2013; Spillman and
Hobday, 2014). Hence, nowcasts and daily environmental forecasts
are routinely used to improve the operational planning of the
aquaculture industry. For example, monitoring networks of coastal
water chemistry have been essential to reduce the impact of extre-
mely low pH waters on oyster larval survival, increasing the eco-
nomic resilience of the Pacific Northwest shellfish industry
(Barton et al., 2015). Similarly, estuarine conditions are monitored
to time release of hatchery reared salmon fry with optimal envi-
ronmental conditions for growth and survival (Kline et al., 2008).
While information on current environmental conditions is useful,
seasonal forecasts of particular environmental variables can fur-
ther improve the operational planning activities and climate readi-
ness of the aquaculture industry by giving aquaculture farm
managers time to develop and implement management strategies
that minimize losses to climate, as is outlined in Case Study 4.1
(Spillman and Hobday, 2014; Spillman et al., 2015), or by allowing
hatcheries time to adjust their release schedule (Chittenden et al.,
2010).

For the fishing industry, key decisions include investments in
boats, gear and labor, as well as when, where, and what to fish.
Fishers rely on historical knowledge of the influence of environ-
ment on fish distribution to optimize such investment and harvest
decisions. However, movement of environmental conditions into
new ranges and associated changes in fish distribution (Section 1)
is now affecting the value of fishers’ past knowledge, making it
harder to locate fish and make optimal pre-season investments,
undermining their business performance (Eveson et al., 2015). As
demonstrated in Case Study 4.2, seasonal climate forecasts can
be incorporated into fish habitat models to produce fish distribu-
tion forecasts and improve the operational planning and efficiency
of the fishing industry.

Such habitat models generally use correlative techniques to
define regions of high abundance, or high probability of occur-
rence, for a species of interest in relation to oceanographic condi-
tions. Species distribution data can be sourced from tagging
studies, fisheries-dependent records, fisheries-independent sur-
veys, or other sources. The distribution data is then related to
one or multiple environmental variables (e.g. temperature,
Hobday et al,, 2011) through a variety of statistical methods,
including generalized linear models (GLM), generalized additive
models (GAM), classification and regression trees (CART), and arti-
ficial neural networks (ANN). When making century-scale projec-
tions of how fish distributions will change due to shifts in
climate and marine habitat distribution, other commonly used
models include Maxent (Phillips et al., 2006), Dynamic Bio-
climate Envelope Model (DBEM; Cheung et al., 2009), AquaMaps
(Kaschner et al., 2006), and the Non-Parametric Probabilistic Eco-
logical Niche (NPPEN) model (Beaugrand et al., 2011). These mod-
els vary in assumptions and complexity, and can at times give
markedly different results when applied to the same dataset

(Lawler et al., 2006; Jones et al., 2013; Jones and Cheung, 2014,
Cheung et al.,, 2016a). For this reason, it is advisable to use an
ensemble of multiple models when it is practicable to do so.
Regardless of the statistical model used, all correlative habitat
models assume that the relationships observed between species
distributions and environmental variables in the training dataset
are reliable proxies for actual mechanistic drivers of habitat prefer-
ence. This assumption can be reasonably robust, for example if sta-
tistical associations with temperature closely mirror known
physiological constraints, or more questionable, where a correla-
tion is observed but the mechanistic basis is unknown (Peck
et al., 2013). This can limit the performance of habitat models
when they are extrapolated outside the range of the training data-
set: either spatially into other geographic regions, or temporally
into past or future time periods (Brun et al., 2016).

Long-term industry decisions, such as long-term resource capi-
talization and determination of optimal investment strategies for
long-term sustainability can also be informed by these same habi-
tat models, driven by multi-annual to decadal rather than seasonal,
climate forecasts. Such long-term species distribution forecasts
would help the fishing industry determine, and initiate a discus-
sion with managers on optimal licensing strategies in the face of
a changing environment, such as more flexible quota-transfer
frameworks (Mcllgorm et al., 2010). For the aquaculture industry,
multi-annual to decadal scale species distribution forecasts would
improve capital investment decisions such as where to establish a
new site or estimate and sell risk in a market place (Little et al.,
2015).

3.2. Monitoring and closures

Public health officials and fisheries managers have to make
decisions on when to close a resource to protect the public, the
resource itself, or, as for the case of bycatch species, resources
caught incidentally to fisheries operations. Decisions also have to
be made on how best allocate limited monitoring resources.
Advanced estimates of stock distribution via bioclimatic habitat
models (Case Study 4.5) or more complex ecosystem models (Case
Study 4.6) informed by seasonal climate forecasts can guide plan-
ning for observer coverage and for fishery-independent surveys to
ensure that stocks are monitored across their distributions. Below
we elaborate via three examples on how short-term forecasts of
climatic variability can be linked to triggers for fisheries closures
(e.g., harmful algal blooms), allow time to prepare response plans
(e.g., in response to coral bleaching), and reduce unwanted and
incidental captures.

Harmful algal blooms (HABs), pathogens (e.g. Vibrio spp.), and
dangerous marine species such as jellyfish pose a significant threat
to public health and fishery resources. Total economic costs of
HABs, including public health, commercial fishery, and tourism
impacts, are an average of $49 million per year in the US alone
(Anderson et al., 2000). For instance, an unprecedented coastwide
HAB in spring 2015 caused widespread closures of commercial and
recreational fisheries over the entire U.S. West Coast and led to
substantial economic losses to the seafood and tourism industries
(McCabe et al., 2016). HAB-related fish-mortality is also recognized
as a significant problem in Europe (ICES, 2015), and HAB-related
closures of fisheries in eastern Tasmania and the west coast of
North America have led to economic hardship and are becoming
more frequent (Lewitus et al., 2012; van Putten et al., 2015). To
limit such adverse effects, coastal resource managers have to esti-
mate optimal allocation of monitoring resources, as well as appro-
priate times and locations for beach and shellfish bed closures. If
fishers can anticipate HAB-related closures, they can make
informed decisions about which stocks to target and develop
approaches to compensate for expected lost revenues.
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Nowcasts and short-term (e.g. lead-time less than a month)
forecasts of pathogens and HAB likelihood or distribution have
been successful in helping coastal planners target monitoring,
guide beach and shellfish closures, water treatment practices,
and minimize impacts on the tourism and fisheries and aquacul-
ture industries (http://coastalscience.noaa.gov/research/habs/fore-
casting; Stumpf and Culver, 2003; Constantin de Magny et al.,
2009). Such nowcasts and short-term forecasts are generally
derived from an empirical habitat model (Section 3.1) incorporat-
ing temperature and salinity fields from regional hydrodynamic
models driven by weather models (e.g. Constantin de Magny
et al., 2009), though mechanistic HAB models have also been devel-
oped (McGillicuddy et al., 2011). Integration of seasonal climate
forecasts into such frameworks could extend the lead-times of
HABs and pathogen forecasts, allowing coastal planners and
impacted industries more time to develop response strategies.
Likewise, temperature-based surveillance tools dependent on sea-
sonal SST forecasts have been proposed to help monitor, research,
and manage emerging marine disease threats (Maynard et al.,
2016).

Reduction of incidental capture of protected or over-exploited
species during fishing operations is an important management
objective in many jurisdictions; and fisheries managers are tasked
with deciding what management actions are warranted to achieve
this objective (e.g. Howell et al., 2008; Smith et al., 2007). Spatial
management strategies that restrict fisher access in specific zones
and at specific times have been successfully used to limit interac-
tions between bycatch species and fishing gears (Hobday et al.,
2014; Lewison et al., 2015). However, as fish move to remain in
suitable physical and feeding conditions, fish distributions and
phenology change with varying ocean dynamics (Platt et al,,
2003; Perry et al., 2005; Nye et al., 2009; Pinsky et al.,, 2013;
Asch, 2015), and therefore static time-area closures can be ineffec-
tive (Hobday and Hartmann, 2006; Howell et al., 2008, 2015;
Hobday et al., 2011). Integration of real-time or forecast ocean con-
ditions into a habitat preference model (Section 3.1) is now being
pursued to determine spatial distributions of species of concern
and to set dynamic time-area closures (Hobday and Hartmann,
2006; Howell et al., 2008, 2015; Hobday et al., 2011; Dunn et al.,
2016). For instance, nowcasts of the preferred habitat of logger-
head and leatherback turtles are helping to reduce interactions
between Hawaii swordfish longline fishing vessels and these
endangered species (Howell et al., 2008, 2015). The utility of sea-
sonal forecasts in setting effective dynamic spatial management
strategies (Maxwell et al., 2015) to reduce bycatch is exemplified
in Case Study 4.7.

3.3. Provision of catch advice

Setting annual catch quotas, or adjustments to fishing seasons
or effort, is one of the most critical and difficult decisions taken
by fisheries managers. In the United States, Annual Catch Limits
(ACLs) are mandated to not exceed scientifically determined sus-
tainable catch levels (Methot et al., 2014). Such intensive manage-
ment of fishing levels occurs in other fishery systems and has been
considered key to effective control of exploitation rates (Worm
et al., 2009). ACLs are dependent on a control rule that basically
defines the fraction of the fish stock that can be safely harvested
each year. The control rule is designed to achieve a large fraction
of the biologically possible “Maximum Sustainable Yield”, based
on a forecast of stock abundance over the next one to several years
and biological reference points. Reference points, such as the fish-
ing rate that achieves the maximum long-term average yield
(Fmsy), reflect the long-term productivity of a fish stock and are
the basis for a management system to maintain annual fishing

mortalities at a target level that does not lead to overfishing
(Quinn and Deriso, 1999).

Reference points and forecasts of stock status are based upon
stock assessment models, which commonly are data-assimilating,
age-structured models of a single stock’s population dynamics
(Methot, 2009; Maunder and Punt, 2013). Typically, these lack spa-
tial structure, while focusing on temporal dynamics on an annual
time step over several decades. We refer readers to Quinn and
Deriso (1999) for a detailed description of a range of stock assess-
ment models, differing in complexity and data requirements. The
parameters of the model, e.g., annual recruitment, natural mortal-
ity rates, annual fishing mortality rates, etc., are calibrated by
assimilating data on fishery catch, fish abundance from surveys,
and the age or length composition of fish in the surveys and catch.
Nielsen and Berg (2014) illustrate recent advances.

The effects of ecological (e.g. predator abundance) or physical
factors on population dynamics are rarely modeled explicitly: a
recent meta-analysis showed that just 24 out of the 1200 assess-
ments incorporated such information (Skern-Mauritzen et al.,
2015). These unmeasured, non-fishing driving factors are only
accounted for by allowing the models to incorporate random vari-
ability in key model parameters, particularly recruitment, or by
incorporating empirical measured inputs, particularly regarding
fish body weight-at-age. However, without including the process
causing the fluctuations in the model framework, there is no basis
for refining the random forecast into the future.

Reference points are thus generally computed assuming quasi-
equilibrium conditions and stationary stock productivity (Quinn
and Deriso, 1999). However, in many fish populations, ecosystem
and climate can shift the production curve over time (Mohn and
Chouinard, 2007; Munch and Kottas, 2009; Payne et al., 2009,
2012; Peterman and Dorner, 2012; Vert-pre et al., 2013; Bell
et al., 2014; Perdld and Kuparinen, 2015), calling this assumption
into question. Failure to include variability in any component of
productivity, such as recruitment, natural mortality, and growth,
into the development of reference points and annual catch advice
can lead to unexpected population declines when productivity
shifts to unanticipated low levels (Brunel et al., 2010; Brooks,
2013; Morgan et al., 2014). Furthermore, the use of static reference
points can contribute to inaccurate estimates of stock recovery
time and rebuilding thresholds (Collie and Spencer, 1993; Holt
and Punt, 2009; Hammer et al., 2010; Punt, 2011; Pershing et al.,
2015).

Nevertheless, robust alternatives to the status quo definitions of
reference points have yet to be developed. For stocks that have
undergone recognized shifts in productivity over their catch his-
tory, dynamic reference points can be constructed using data from
the most current regime, as is currently done for Gulf of Alaska
walleye pollock (Dorn et al., 2014) or southeast Australian mor-
wong (Wayte, 2013). However, performance of such reference
points in achieving management objectives as compared to the sta-
tus quo has been mixed (Punt et al., 2014a, 2014b). A common
shortcoming is that using a shorter time series leads to less biased,
but more uncertain, reference points (Haltuch et al., 2009; Dorner
et al.,, 2013; Punt et al., 2014b). Furthermore, even dynamic refer-
ence points assume that the recent past will be representative of
near future conditions. Because of the noisy nature of productivity
parameters, such as recruitment, productivity shifts tend to be rec-
ognizable only well after the change has taken place, preventing
managers from adjusting harvest strategies in a timely manner,
and increasing the risk of overfishing (A'mar et al., 2009;
Szuwalski and Punt, 2013). Statistical techniques such as the Kal-
man filter, which allow for time varying productivity parameters
in stock assessment models, have proven useful in a timely detec-
tion of productivity shifts and improved reference point estimation
for semelparous species (Peterman et al., 2000, 2003; Collie et al.,
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2012). Temporal variability in reference points can also be intro-
duced via environmental covariates on productivity parameters.
When these environmental factors can be skillfully forecasted
and the environment-population dynamics relationship is robust,
the fish productivity forecast is improved (Maunder and Watters,
2003; Schirripa et al.,, 2009; Haltuch and Punt, 2011; Johnson
et al.,, 2015; Miller et al., 2016).

Effectiveness of alternative reference point definitions and
climate-robust harvest control rules can be tested through Man-
agement Strategy Evaluation (MSE). MSE is a simulation tool for
comparing the trade-offs in the performance of alternative man-
agement strategies while accounting from uncertainty from differ-
ent sources, such as climate responses, biological interactions,
fishery dynamics, model parametrizations, observations, and man-
agement approaches (Cooke, 1999; Butterworth and Punt, 1999;
Sainsbury et al., 2000). While the utility of accounting for the envi-
ronment in achieving management objectives has been demon-
strated for some species (Basson, 1999; Agnew et al., 2002;
Brunel et al., 2010; Hurtado-Ferro et al., 2010; Pershing et al.,
2015; Miller et al., 2016), existing MSEs demonstrate that climate
drivers of stock productivity show mixed results with respect to
the effectiveness of alternative, potentially climate-robust, man-
agement strategies when compared to those currently imple-
mented (A'Mar et al., 2009; Punt, 2011; Szuwalski and Punt,
2013; Punt et al., 2014a). One exception is the Pacific sardine fish-
ery; whose catch targets vary with a reference point dependent on
a 3-year moving average of past SST (Hill et al., 2014).

Through the use of seasonal climate forecast information, cli-
mate informed reference points as used operationally for the US
sardine fishery, would be more reflective of future productivity.
This may help managers both adjust annual catch targets in a
timely manner and set more realistic rebuilding targets
(Tommasi et al., in press). Effectiveness of such climate-informed
reference points will depend upon achieving climate forecast skill
at the seasonal to decadal scale, and on past observations used to

identify environmental drivers of productivity being able to ade-
quately characterize future relationships.

Addition of climate forecast information into stock assessment
models may also reduce uncertainty bounds on stock status projec-
tions by narrowing the window of probable outcomes as compared
to the use of the entire historical range (Fig. 7a). Furthermore, if a
stock productivity parameter is subject to an environmentally-
driven shift or directional trend, future values may lie outside of
the historical probability space, leading to biased estimates of
stock status under the assumption of stationarity (Fig. 7b and c).
As a result, a climate forecast may serve as an advance warning
of shifts in environmental conditions and stock productivity
parameters, and may reduce bias in stock status estimates
(Fig. 7b and c).

It must be stressed that the theoretical value of climate forecast
information detailed in Fig. 7 is dependent on both the strength of
the environment-fisheries relationship and climate forecast skill.
That is, we assume that the environment-fisheries relationship is
robust and stationary, that a relatively high proportion of the unex-
plained variability can be explained by the environmental data
(e.g. Basson, 1999), and the environment can be well predicted.
For instance, if the environment-fisheries relationship breaks
down, climate-driven harvest control rules will perform poorly
(Fig. 2d), highlighting the need for a strong mechanistic under-
standing of the environment-fisheries link (Dorner et al., 2013),
or more conservative management approaches when the fluctua-
tions cannot be predicted with adequate precision.

3.4. Spatial issues and protected areas

In addition to multi-year forecasts of stock status and revisions
of reference points (Section 3.3), multi-year to decadal fisheries
management decisions encompass long-term spatial planning
decisions regarding changes to closed areas, the setting of future
closures, preparation for emerging fisheries, and adjustment of
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quotas for internationally shared fish stocks. Even decisions about
which management body has jurisdiction may need adjustment
over time.

As for short-term spatial management rules aimed at bycatch
reduction (Section 3.2), stock distributions employed in the setting
of current long-term closed areas are generally taken as static. Fish
assessment models generally lack spatial structure, and thus have
no inherent capability to forecast changes in stock distribution as
ocean conditions shift the distribution of the stock, nor to calculate
the localized impact of a spatially restricted fishery or reserve
(McGilliard et al., 2015). However, the spatial distribution of many
marine species has been shown to be particularly sensitive to
changes in climate over multi-annual to decadal scales (Nye
et al., 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Bell
et al., 2015; Thorson et al., 2016).

Such climate-driven distributional shifts can have important
implications for spatial management measures. For example, shifts
of juvenile plaice (Pleuronectes platessa) towards deeper waters
have made a closed area (the “Plaice Box”) set up in the North
Sea to prevent recruitment overfishing less effective (van Keeken
et al., 2007). One potential solution for stocks that have undergone
recognized shifts distribution over their catch history is use of
dynamic seasonal-area closures. Climate predictions, particularly
of surface and bottom temperatures, could be used to drive species
habitat models that help define fishery closure areas (Section 3.1;
Link et al., 2011; Makino et al.,, 2014; Shackell et al., 2014;
Rutterford et al., 2015). Furthermore, seasonal to decadal predic-
tions (as well as nowcasts and hindcasts) of environmental condi-
tions may contribute to management even if they are not directly
incorporated within stock assessments. For instance, the Northeast
US butterfish (Poronotus triacanthus) assessment investigated
methods to incorporate historical change in thermal habitat to
evaluate changing availability to the survey. While habitat-driven
time-varying survey catchability was not included in the final
assessment, the focused effort to evaluate survey catchability over-
all altered assessment estimates of scale, permitted more robust
estimation of natural mortality, and ultimately increased the catch
quota relative to previous results.

Shifting species distributions can also create important new
fishing opportunities, such as the squid fishery in the Gulf of Maine
that appeared during a particularly warm year (Mills et al., 2013).
Hence, forecasts of species distributions driven by multi-year to
decadal climate predictions can help identify which species are
likely to spark new fisheries, and then prioritize them for addi-
tional research, experimental fishing programs, or short-term clo-
sures during the colonization phase. Such forecasts can also warn
of distributional shifts outside of the range of current fisheries
operations, and may prevent overfishing of the remaining portion
of the stock.

Advance warning of shifting distributions is particularly impor-
tant when they impact international agreements, since negotia-
tions can take years. For example, mackerel faced a “double
jeopardy” scenario when they partially shifted into Icelandic and
Faeroese waters and the additional harvest pressure led to over-
fishing of the stock (Astthorsson et al., 2012; Hannesson, 2012;
Dankel et al.,, 2015). Pre-agreements between organizations or
nations can be drafted to create a clear set of rules for how to
adjust quotas and allocations based on indicators of changes in a
stock distribution, perhaps including side-payments to compen-
sate for lost fishing opportunities (Miller and Munro, 2004). For
instance, forecasts of ocean conditions are used to forecast the pro-
portion of Fraser River salmon migrating around the south end of
Vancouver Island, thus dramatically affecting international alloca-
tion of the catch opportunity (Groot and Quinn, 1987). Forecasts
may also be critical for building a common understanding of stock
trajectories and for motivating the need for pre-agreements.

4. Case studies

The previous two sections have provided an overview of the
range of marine resource decisions that could be improved with
climate forecasts and of climate forecast skill for LMR-relevant
variables across decision making time scales. In this section, we
highlight pioneering applications of the climate predictions dis-
cussed in Section 2.

4.1. Seasonal forecasts to improve prawn aquaculture farm
management

Pond-based prawn aquaculture in Australia is primarily located
on the northeast coast of Queensland (Fig. 8). Growing season
length, timing of harvest, and farm production in this region are
strongly influenced by environmental conditions, such as air tem-
perature, rainfall, and extreme events, including tropical cyclones.
Anomalously cool or warm temperatures can impact production
and timing of harvest, thus affecting delivery to market. Rainfall
extremes, including tropical cyclones, affect freshwater quality
and supply to farms, road access in the case of flooding, and can
also cause loss of farm infrastructure. In this situation, predictions
of environmental conditions weeks to months in advance can
improve risk management and allow implementation of proactive
management strategies to reduce unfavorable impacts and maxi-
mize positive effects of conditions on farm production.

Seasonal forecast products for Queensland prawn farms were
first developed in 2011-2012 (Spillman et al., 2015) and currently
continue to be delivered via a password protected website. Regio-
nal temperature and precipitation forecasts are derived from the
global dynamical seasonal prediction system POAMA (Predictive
Ocean Atmosphere Model for Australia; Spillman and Alves,
2009; Spillman et al.,, 2011), and then downscaled using local
weather station information for participating prawn farms. The
forecasts were verified by assessing the probabilistic skill of the
model predicting the upper terciles for maximum air temperature
and rainfall, and the lower tercile for minimum temperature, as
these were the events of greatest concern to prawn farm managers.
Forecast accuracy is generally higher for temperature than rainfall,
and declines with lead-time (Fig. 8). Forecasts out to lead-times of
2 months, which aligns with several farm operational planning
timeframes, such as those for feed management or harvest time
(Hobday et al., 2016), are sufficiently skillful to be integrated
within prawn farm management decision framework (Spillman
et al,, 2015).

Feedback from prawn farm managers following delivery of the
first few forecasts led to refinement of forecast format, visualiza-
tion and delivery, and resulted in an industry award for the project
team. This approach has been applied to other marine aquaculture
industries (e.g. salmon; Spillman and Hobday, 2014), with industry
recognition that a range of management decisions can be sup-
ported by environmental forecasts to improve aquaculture produc-
tion in the face of climate variability and change.

4.2. Seasonal forecasts to improve economic efficiency of a large-scale
tuna fishery

Large numbers of juvenile quota-managed southern bluefin
tuna (SBT) (Thunnus maccoyii) occur in the Great Australian Bight
(GAB) during the austral summer (Dec-Apr), where they are caught
in a purse-seine fishery worth ~AUD 60 million annually. In recent
fishing seasons, unexpected changes in the distribution of SBT
were observed that affected the timing and location of fishing
activity and contributed to economic pressure on the fishery. In
particular, in the 2011/12 season, SBT moved through the GAB
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(Adapted from Spillman et al., 2015).

quickly and were distributed further east than in the past two dec-
ades. This resulted in less than 15% of purse-seine catches being
taken from fishing grounds reliably used over the previous
20 years. The following season (2012/13) also saw unusual SBT dis-
tribution patterns that again impacted the fishery. As a result of
these observed changes, the Australian Southern Bluefin Tuna
Industry Association recognized the need for scientific support to
improve operational planning in the purse-seine fishery. Many
decisions central to SBT industry members planning their fishing
operations need to be made weeks to months in advance, so sea-
sonal forecasts of environmental conditions were regarded as a
useful tool.

Environmental variables influencing the spatial distribution of
SBT in the GAB during summer were explored using location data
collected on SBT over many years from electronic tags, and com-
paring the ocean conditions where fish were found with the condi-
tions available to them throughout the region and time period of
interest (Eveson et al., 2015). SST was found to have the greatest

influence, with fish preferring temperatures in the range of 19-
22 °C. Once habitat preferences were established, this information
was coupled with POAMA (see Section 4.1) to predict locations of
preferred SBT habitat in future. Both the habitat preference model
and POAMA were evaluated against historical observations, and it
was concluded that SST-based habitat forecasts for SBT in the GAB
have useful skill for lead-times up to 2 months. A daily-updating
website was created to provide industry with forecasts of environ-
mental conditions and SBT distributions for the next fortnight and
next 2 calendar months from the date of issue (Fig. 9), along with a
suite of other relevant information, including skill of the forecasts
(www.cmar.csiro.au/gab-forecasts). Based on feedback from indus-
try stakeholders obtained both formally through a survey and
informally through an industry liaison representative, the informa-
tion provided on the website has proven to be a valuable tool for
fishers making decisions such as when and where to position ves-
sels and to conduct fishing operations (Eveson et al., 2015). As the
SBT fishery is quota-managed, the forecasting approach will not
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Fig. 9. Left: Maps showing the average SST for the GAB as forecast by POAMA on 17 Dec 2015 for the next fortnight and the next two calendar months. The mean SST over the
whole area shown is given in the top left corner of each map. The black line represents the 200-m contour. Right: Corresponding areas of preferred SBT habitat, where values

>1 indicate more preferred habitat and values <1 indicate less preferred habitat.

lead to increased catches (and thus impact sustainability), but will
enable fishers to catch their quota more efficiently, thereby
increasing profitability.

4.3. A statistical seasonal forecast to improve the operational planning
of a lobster fishery

The US fishery for American lobster is one of the most valuable
in the country. Landings in Maine alone accounted for nearly US
$500M in 2015. The fishery is open year-round, but the catch is
highly seasonal. In Maine, where the majority of lobsters are
landed, landings typically begin increasing rapidly during the first
week of July, when lobster migrate inland and begin to molt. Dur-
ing 2012, the Gulf of Maine was at the center of a prolonged “mar-
ine heatwave,” which caused temperatures in the spring to lead the
normal annual cycle by 3-4 weeks (Mills et al., 2013). The annual
lobster migration and molt took place nearly a month early, result-
ing in very high catches in early June instead of early July. The sup-
ply chain was not ready for the influx of newly molted soft-shell
lobsters, and the imbalance between supply and demand led to a
severe decline in price. Furthermore, record warm air tempera-
tures contributed to increased mortality of lobsters during storage
and transport. Thus, even though lobster landings set a record in
2012, it was an economically challenging year for many
lobstermen.

Motivated by the events in 2012, the possibility of an early
warning indicator of lobster fishery timing was explored and it
was found that the date when landings in Maine begin to increase
is negatively correlated with subsurface temperatures in March
and April. Based on this relationship, a statistical forecast system

was developed that takes temperatures at 50 m from a network
of coastal ocean buoys operated by the Northeast Regional Associ-
ation of Coastal Ocean Observing Systems (NERACOOS) in spring
and estimates the probability of the fishery shifting into the
high-landings period during a particular week in June or July. For
the last two years, the first forecast of the year has been announced
to the industry at the Maine Fishermen’s Forum and then updated
weekly at www.gmri.org/lobster-forecast and via Twitter (Fig. 10).
Forecasters have now begun to work more closely with harvesters,
dealers, and marketers in the industry to assess how it can be fur-
ther improved to meet their needs. Other work has identified value
in using sea temperature observations and models to help forecast
outbreaks of lobster epizootic shell disease (Maynard et al., 2016).

4.4. Seasonal forecasts to improve coral Reef management

Increases in ocean temperature over a coral’s tolerance limit are
the leading cause of coral bleaching events (Hoegh-Guldberg et al.,
2007). Since 1997, NOAA’s Coral Reef Watch has been using SST
satellite data to provide near real-time warnings of coral bleaching
(Liu et al., 2014). While coral reef managers and scientists have
been able to use these nowcasts to execute operational response
plans, managers recognized the need for longer lead-time forecasts
to improve management responses to coral bleaching. Following
these requests, NOAA Coral Reef Watch developed the first sea-
sonal coral bleaching outlook, based on a statistical model from
NOAA’s Earth System Research Laboratory (Liu et al., 2009). In
2009 the Australian Bureau of Meteorology developed the first
dynamical seasonal forecasts for coral bleaching risk on the Great
Barrier Reef, based on seasonal SST predictions from POAMA (see
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Section 4.1; Spillman and Alves, 2009; Spillman, 2011). NOAA Coral
Reef Watch, in turn, developed a dynamical 4 month lead coral
bleaching outlook for coral reefs globally using seasonal SST pre-
dictions from the NOAA National Centers for Environmental Pre-
diction (NCEP) global dynamical climate prediction system, the
CFS model (Eakin et al., 2012).

These seasonal coral bleaching forecasts are made publicly
available on the internet (http://www.bom.gov.au/oceanography/
oceantemp/GBR_SST.shtml, http://coralreefwatch.noaa.gov/satel-
lite/bleachingoutlook_cfs/outlook_cfs.php) and they allow coral
reef managers around the world to develop timely and proactive
bleaching response plans, brief stakeholders and allocate monitor-
ing resources in advance of bleaching events. Resource managers
and scientists have been using these bleaching outlooks exten-
sively throughout the 2014-16 global coral bleaching event
(Eakin et al., 2014, 2016).

For example, in August 2010, following severe coral bleaching,
the Thailand and Malaysian governments closed numerous popu-
lar dive sites to reduce additional stress to severely bleached reefs
(Thomas and Heron, 2011). In May 2016, Thailand again closed ten
reefs, this time in advance of the bleaching peak (The Guardian
2016, https://www.theguardian.com/environment/2016/may/26/

thailand-closes-dive-sites-over-coral-bleaching-crisis. ~ Accessed
August 15, 2016) and in response to these forecast systems. More
recently, once Coral Reef Watch alerts were issued in late June
2015 of the high potential for bleaching in Hawaiian waters
(Fig. 11), the Hawaii Department of Land and Natural Resources
(DLNR) immediately began preparations of resources to monitor
this event. Having only seen significant multi-island bleaching in
the main islands twice before, in 1996 and 2014 (Jokiel and
Brown, 2004; Bahr et al., 2015), a much more comprehensive effort
was needed. Additional volunteers were trained, who, together
with teams from the state, University of Hawaii, NOAA, and XL
Catlin Seaview Survey, were deployed across most of the islands.
This group was able to document and monitor this unprecedented
event, while the DLNR was able to alert the public and work with
marine resource users to encourage reduction of activities that
could further stress the corals during the bleaching event. Addi-
tionally, DLNR undertook an effort to collect specimens of the rar-
est coral species from the main Hawaiian Islands and safeguard
them in their coral nurseries on Oahu and Maui. Many of these spe-
cies suffered severe bleaching and mortality, and DLNR staff have
been unable to find one of these species alive off Oahu since the
2015 event. Both Bureau of Meteorology and NOAA seasonal fore-
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Fig. 11. Comparison of (a) Coral Reef Watch 4-Month Bleaching Outlook with (b) 4-month composite of maximum Bleaching Alert Area from real-time satellite data for the
same period, August-November 2015. The levels refer to potential bleaching intensity, with possible bleaching starting at a warning thermal stress level, bleaching likely at an
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cast tools were also used extensively by reef management during
the most recent bleaching event on the Great Barrier Reef in the
summer of 2015/2016, currently believed to be the worst on record
(http://www.gbrmpa.gov.au).

4.5. Seasonal forecasts of Pacific sardine habitat
Pacific sardines are notable as one of the few stocks managed

with respect to climatic variability in the US. Just recently, sardine
distribution and migration forecasts have been produced (Kaplan

et al., 2016; Fig. 12) for the US Pacific Northwest and Canadian Bri-
tish Columbia, based on 6-9 month predictions of ocean conditions
(http://www.nanoos.org/products/j-scope/; Siedlecki et al., 2016).
These predictions rely upon the NOAA NCEP global dynamical cli-
mate prediction system Climate Forecast System (Saha et al., 2006)
to force a high resolution (~1.5 km) Regional Ocean Modeling Sys-
tem (Haidvogel et al., 2008). The efforts are fully described in
Siedlecki et al. (2016), including skill assessment for SST, bottom
temperature, and oxygen. Relationships between sardine distribu-
tion and ]-SCOPE predictions of ocean physics and chlorophyll
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Fig. 12. Probability of sardine presence, for July (left) and August (right) of 2015. These two to three month forecasts are the average of a three-member ensemble, initialized
as April 15th, May 1, and May 15th. Due to relatively warm sea surface temperature, the forecasts predict habitat suitable for sardine throughout the region. The exception is
low salinity water for which the model would expect sardine to be found at more intermediate rather than warm temperatures. This leads to low probability of presence in
the less saline Columbia River plume. Note that recent declines in sardine stock size (which is not included in the model) may be resulting in unoccupied, but suitable, habitat

in the northern region.

were estimated for 2009. The final fitted relationships between SST
and salinity had moderate skill to predict sardine distributions
(presence or absence) in summer 2013 and 2014, with up to 4-
5 month lead-times. Skill assessment focused on a “hit rate” met-
ric, area-under-the-curve (AUC), which balances the desire to cor-
rectly predict sardine presence against the risk of false positives.
One caveat to the sardine forecasts is that they predict available
sardine habitat (Fig. 12) without accounting for sardine stock size.
Recent declines in sardine abundance (Hill et al., 2015) have likely
meant a contraction of the stock southward (MacCall, 1990),
despite availability of suitable habitat in the US Pacific Northwest
and British Columbia.

As with many pelagic species, sardines are seasonally migratory
and forecasts of their distribution by J-SCOPE may be relevant for
fisheries management and industry. The sardine stock is landed
by US, Mexican and Canadian fishers and the extent of the north-
ward summer migration is dependent on both water temperature
and population contraction due to low population abundance. The
sardine forecasts by Kaplan et al. (2016) predict the extent of this
northward migration and could be used to plan fishing operations
(e.g. whether Canadian fish processors should expect sardine deliv-
eries) or fisheries surveys. Additionally, quotas apportion a fixed
percent of sardine catch to Canadian vessels, and J-SCOPE provides
foresight that this portion may be unharvested in a particular cold
year. Furthermore, sardine straddle international boundaries, and
short-term seasonal forecasts may help international management
and industry to cope with and prepare for the long-term distribu-
tion shifts expected under climate change (Pinsky and Mantua,
2014). To date, forecasts have primarily been delivered through
collaboration with NANOOS (Northwest Association of Networked

Ocean Observing Systems) via the web (http://www.nanoos.org/
products/j-scope/). Web products include predictions of ecological
indicators relevant to the regional fishery management council,
and will soon be incorporated in NOAA’s Integrated Ecosystem
Assessment (Harvey et al., 2014). Other outreach efforts are ongo-
ing and aim to produce targeted forecasts (as discussed for Aus-
tralia above in Section 4.1) for fishery managers and
stakeholders, and to better integrate with fishery management
council needs.

4.6. Short-term forecasts of Indonesian tuna fisheries to control illegal
fishing

The last decade has seen the generalization of satellite Vessel
Monitoring Systems to monitor licensed fishing vessels, the use
of satellite radar images to detect illegal fishing and the develop-
ment of Electronic Reporting Systems (ERS) to provide catch statis-
tics in real time. Integration of these developments in fishery
monitoring with an operational forecasting model of fish spatial
dynamics that has the ability to predict the distribution of fish
under the influence of both environmental variability and fishing
is assisting Indonesian fishing authorities in controlling illegal fish-
ing and implementing conservation measures. This operational
monitoring framework (Gehlen et al, 2015) was developed
through the INDESO project and integrates a high resolution regio-
nal model system coupling ocean physics to biogeochemistry
(NEMO/ PISCES; Gutknecht et al., 2016; Tranchant et al., 2016) to
a spatially explicit tuna population dynamics model (SEAPODYM;
Lehodey et al, 2010, 2015). SEAPODYM simulates functional
groups of organisms at the intermediate trophic levels (Lehodey
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Fig. 13. Example output from the global (top) and regional (bottom) SEAPODYM model configurations developed though the INDESO project.

et al., 2010, 2015) and the dynamics of their predators (e.g. tuna)
(Lehodey et al., 2008). The model is complemented by a quantita-
tive parameter estimation and calibration approach (Senina et al.,
2008) which enables the application of the model to fish stock
assessment and testing of management scenarios (Sibert et al.,
2012).

Tuna are highly migratory species, and their habitats cover large
expanses of the global ocean. Thus, the simulation of fish stock
dynamics at high resolution in the Indonesian region requires
accounting for exchanges (fluxes) with populations outside of the
regional domain (i.e. Pacific and Indian Ocean) under the influence
of both environmental variability (e.g. ENSO) and fishing mortality.
Boundary conditions for the regional 1/12° SEAPODYM implemen-
tation are obtained from a 1/4° global operational configuration
(Fig. 13) driven by temperature and currents from the operational
ocean prediction system Mercator-Ocean PSY3V3 (Lellouche et al.,
2013). Biogeochemical forcings (net primary production (NPP), dis-
solved oxygen) are either derived solely from the coupled physical-
biogeochemical model NEMO/ PISCES (forecast mode) or from
NEMO/PISCES and satellite ocean color and SST data (to estimate
NPP; Behrenfeld and Falkowski, 1997), along with climatological
dissolved oxygen (O,) (hindcast and nowcast modes). The regional

operational model SEAPODYM also uses a climatological data set
(i.e., monthly average of the last 5 years) of fishing effort prepared
from the best available information to apply an average fishing
mortality. The forecasting system runs every week and delivers
one week of hindcast, one week of nowcast, and 10 days of fore-
cast. These outputs are used by the Indonesian Fishing Authority
to improve the collection and verification of fishing data, to assist
illegal fishing surveillance, and to establish conservation measures
(e.g., identification and protection of spawning grounds and nurs-
eries) required for the sustainable exploitation of this essential
resource (Marion Gehlen, personal communication, June 22, 2016).

4.7. Seasonal forecasts for dynamic spatial management of the
Australian east coast tuna fishery

Since 2003, a dynamic spatial management approach has been
used to limit unwanted capture of a quota-managed species, SBT,
in the Australian eastern tuna and billfish fishery. The approach
combines a habitat model, conditioned with temperature prefer-
ence data obtained from pop-up satellite archival tags deployed
on SBT and an ocean model to produce near real-time habitat now-
casts, delivered by email and utilized the same day by fishery man-
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Fig. 14. Habitat maps indicating zones of SBT distribution (see text for explanation of zones), obtained using POAMA seasonal forecasts of ocean temperature. The upper left
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agers during the fishing season (Hobday and Hartmann, 2006;
Hobday et al., 2010). Managers use this information along with
other data inputs (such as recent fishing catch rates) to restrict
access in the core (high probability of occurrence) zone to vessels
that have both observers and SBT quota. The habitat model was
extended in 2011 to include a seasonal forecasting component
using ocean temperature forecasts from the seasonal prediction
system POAMA, with useful forecast skill out to several months
(Hobday et al., 2011). Both nowcast and seasonal forecast habitat
maps produced for managers show probabilistic zones of tuna dis-
tribution coded as “OK” (unlikely to encounter SBT), “Buffer”

(likely to encounter SBT) and “Core” (very likely to encounter
SBT) (Fig. 14). Incorporating a seasonal forecasting component
has been an important step in informing and encouraging both
managers and fishers to think about decisions on longer time
scales (Hobday et al., 2016). Forecasts are now delivered via a ded-
icated webpage (http://www.cmar.csiro.au/sbt-east-coast/). The
dynamic habitat forecasting approach has reduced the need for
large areas closures while still meeting the management goal,
but does require fishing operators to develop more flexible fishing
strategies, including planning vessel movements, home port selec-
tion and quota purchase.
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5. Recommended practices

Following Hobday et al. (2016) and Siedlecki et al. (2016), there
are three main components to a successful LMR forecast frame-
work: assessment of needs, forecast development, and forecast
delivery. Here, we break down the forecast development and deliv-
ery stages further to provide more details of the forecast imple-
mentation process (Fig. 15). Identification of a clear management
need via effective communication between climate scientists and
management or industry stakeholders from the start of the forecast
development process is essential for the utility and widespread
adoption of climate prediction tools for LMRs (Hobday et al.,
2016; Harrison and Williams, 2008; Fig. 15). This needs assessment
should include the determination of relevant variables, spatial
domain, spatial resolution, and timescales. Once needs have been
assessed, it is incumbent upon scientists to provide balanced com-
munication of both capabilities and limitations to evaluate
whether forecasts are likely to be useful to their partners.

Forecast development is underpinned by an understanding of
the mechanisms relating physical climate variables to the LMR of
interest. Once such linkages are found, three forecast development
steps follow: an assessment of the skill of the physical climate vari-
able forecast, an assessment of the skill of the LMR model forecast,
and the uncertainty associated with each. The prediction skill for
the physical climate variables must be assessed at an appropriate
timescale relative to the management decision timeframe and at
a spatial resolution able to resolve environmental driving mecha-
nisms. Skill assessment will make use of retrospective forecasts
and observations. When reanalyses are used in lieu of observa-
tions, their accuracy at the scale of interest should be confirmed
against data prior to forecast skill assessment whenever possible
(Section 3). If the skill evaluation indicates that the variables of
interest cannot be skillfully forecasted at an adequate lead-time
and/or relevant spatial scale, stakeholder expectations may be re-

evaluated and alternate variables or scales of interest investigated
(i.e. it may be necessary to return to the needs assessment step).
Alternatively, downscaling or bias correction techniques may
improve skill at the desired scale in some cases (Section 6). Skill
may be assessed using at least measures of correlation, variability,
and bias between forecast and observations, although further ver-
ification analyses are possible (Mason and Stephenson, 2008).
Once a physical climate variable forecast has been developed
and determined to be skillful, the value of using it in an LMR model
must be determined. LMR model skill assessment can employ skill
metrics based on “hit rate”, such as AUC or area-under-the-curve
(Fielding and Bell, 1997) and the True Skill Statistics (Allouche
et al., 2006), to evaluate whether the LMR forecasts reproduce bio-
logical phenomena (e.g., presence of tuna, occurrence of a coral
bleaching event). While it is well known that climate affects LMRs
(Section 1), most of derived climate-LMR relationships are empiri-
cal, with climate variables often acting as proxies of complex
trophic effects, interspecies interactions, and dispersal processes.
For climate information to be included in LMR management frame-
works, the environment-fisheries relationship has to be robust and
preferably based on mechanistic, ecologically-sound hypotheses. A
sufficiently long observational data series is required for model cal-
ibration and verification (Haltuch and Punt, 2011), including out-
of-sample validation (Francis, 2006; Mason and Baddour, 2008;
Mason and Stephenson, 2008). In addition, if the environment-
fisheries relationship relies on stock assessment model output
(e.g. recruitment), it is important that this relationship be devel-
oped within the stock assessment model itself rather than as a post
hoc analysis to ensure uncertainties associated with the stock
assessment model are properly propagated (Maunder and
Watters, 2003; Brooks and Deroba, 2015). Furthermore, to increase
confidence in the robustness of these empirical relationships,
meta-analytical techniques can be employed to ensure that the
proposed hypothesis is robust across a species range (Myers,
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1998), taking into account, however, that environmental variables
may affect species differently across their latitudinal range (e.g.
Mantua et al., 1997).

As environment-LMR associations may change over time (e.g.
with changing baselines under climate change), these empirical
relationships need to be periodically re-evaluated as new environ-
mental and LMR data are collected. LMR forecast development will
therefore be an iterative process and management has to be
dynamic to allow for changing management decisions as the
environment-fisheries relationship evolves with the continuous
integration of new information. Environment-LMR correlations
have been observed to be more robust when tested with new data
at the edges of a species range (Myers, 1998). These populations
may serve as initial case studies with which to develop dynamic
management frameworks that integrate climate prediction infor-
mation. Table A2 includes a list of LMRs for which a sufficient
understanding of how they respond to climate variability has been
achieved, and which may serve as additional case studies. These
include those determined by Myers (1998) as robust to re-
evaluation and those that already make use of environmental
information in their management as described by Skern-
Mauritzen et al. (2015).

To provide a thorough presentation of risk to decision makers, it
will be important to assess the uncertainty of the climate predic-
tion as well as that of the LMR models. For the climate prediction,
this will involve quantification of processes, variability and model
uncertainty via the use of single and multi-model ensembles (Sec-
tion 3). Forecasts will be inherently probabilistic, and ensembles
can be used to estimate the probability. On the fisheries side, there
is also uncertainty associated with LMR models’ parameterizations
(Cheung et al., 2016a, 2016b). As for climate predictions, ensemble
approaches can be employed in LMR models to account for the
high level of uncertainty in the parameterization of biological pro-
cesses (e.g. Kearney et al., 2012; Laufkotter et al., 2015, 2016).
Uncertainty in the environment-LMR relationship will also need
to be accounted for by, for instance, running multiple simulations
of the LMR model differing in their stochastic error of the LMR-
environment relationship (e.g. Lindegren et al., 2013).

Finally, an effective forecast delivery mechanism is required.
The climate prediction needs to be delivered in a format that can
be effectively incorporated into LMR models and decision frame-
works, such as population models used in fish stock assessment.
As in all the stages of LMR forecast development, consistent user
engagement is essential to ensure sustained use of such prediction
tools (Harrison and Williams, 2008; Hobday et al., 2016). For
instance, the general difficulty people have in understanding
uncertainty and probabilities has limited the use of climate predic-
tions in the natural resource sector (Nicholls, 1999; Marshall et al.,
2011). Collaboration with social scientists on the most appropriate
presentation and delivery options may enhance adoption of fore-
cast information (Harrison and Williams, 2008). Automated web-
based delivery systems are a common delivery method, although
ongoing contact with end users and acknowledgement of user
feedback is important to build engagement and for continued fore-
cast use (Hobday et al., 2016). Funding for delivery system mainte-
nance, user engagement, and continued user training should be
included in projects to maintain iterative LMR operational forecast
systems.

The value of integrating climate predictions into LMR decision
frameworks has to then be demonstrated to managers or industry.
This can be undertaken by employing cost-benefit analyses (e.g.
Asseng et al., 2012) and MSE (Section 3.3, Tommasi et al, in
press). For example, MSEs can assess the performance of different
management strategies (e.g. with and without climate predictions)
in relation to a suite of performance metrics while taking uncer-
tainty into account. They may also include economic models to

better evaluate the specific economic value of integrating climate
forecasts into LMR decisions (e.g. Richardson, 2000). While MSEs
have been developed in the context of fisheries science, such deci-
sion support systems could also be applied to industry or coastal
manager’s decision frameworks. Results from these assessments
would inform both climate and LMR prediction development by
highlighting further refinements needed to better inform decisions.

6. Priority developments

While the potential benefits of seasonal climate forecasts in
reducing the climate vulnerability of the fishery and aquaculture
industry and in improving fisheries management are clear (Sec-
tion 4), barriers to their widespread adoption also exist. Social, cul-
tural, economic, or political constraints, such as existing
regulations or dissemination difficulties, can limit forecast use
(Nicholls, 1999; Goddard et al., 2001; Harrison and Williams,
2008; Davis et al., 2015). However, the discussion herein will be
limited to priority developments aimed at reducing technical
impediments to climate forecast application. These technical barri-
ers include incomplete understanding of environment-LMR rela-
tionships, limited length and availability of physical,
biogeochemical and biological time series for model development
and validation, and the irreducible predictability limits at seasonal
to decadal scales. There is also need for methodological advance-
ments in LMR models to explicitly consider environmental produc-
tivity indicators and spatial distributions, and apply empirical
models in non-stationary systems. Finally, there is a need for
reduction in climate model bias through improvements in model
formulation and initialization, verification of LMR-relevant physi-
cal variables at LMR-relevant spatial scales beyond SST, the devel-
opment of biogeochemical forecasting capabilities in global
prediction systems, and improvements in climate predictability
at LMR-relevant regional scales through higher resolution global
prediction systems or the development of downscaling
frameworks.

On the LMR model side, predictive capacity is constrained by
our incomplete understanding of environment-LMR relationships,
especially their response to environmental fluctuations (e.g.
Chavez, 2003; Di Lorenzo et al., 2009; Le Mézo et al., 2016). As a
case in point, only 2% of managed fisheries worldwide explicitly
integrate past environmental information into their current tacti-
cal decision making and provide an existing framework to readily
incorporate climate forecast information (Skern-Mauritzen et al.,
2015). This lies in stark contrast to ubiquitous climate-marine
resource correlations reported in the literature (e.g. Hare et al.,
2010; Mueter et al., 2011; Ottersen et al., 2013). For most popula-
tions, the length of available, co-occurring fishery, biological and
environmental time series may be too short to robustly identify
the environment-LMR relationship (Haltuch and Punt, 2011) or
to develop a habitat preference model, highlighting the importance
of maintaining and expanding existing observational data series for
environment-LMR model development and verification. Funding
for ocean and LMR observations is limited. Given the importance
of having climate observations over a period long enough to span
different environmental regimes, LMR observations that cover a
wide range of population sizes, and large sample sizes to improve
estimation of model parameters, establishment of new monitoring
networks must be carefully balanced with the critical need to
maintain current sampling programs (Haltuch and Punt, 2011;
Dorner et al., 2013). Maintenance and expansion of physical cli-
mate observing systems, as discussed in Section 3, are also essen-
tial to climate model development to improve climate
predictability through better model initialization (e.g. Servonnat
et al.,, 2014). Including concurrent measures of basic biogeochem-
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ical and lower-trophic-level measurements should be integrated
into existing observing systems, when possible, to facilitate better
understanding of physical-biological interactions in the marine
environment and better assessment of model predictive capability.
That said, while spatially-or temporally-constrained (or incom-
plete) environmental data may be limited in quantitative utility,
such data can help provide qualitative context for decision-
making. For example, time series of conditions can be used to
delineate regime-specific parameter estimates or emergent pat-
terns in indicators can provide justification for precautionary man-
agement actions and intensified monitoring (Zador et al., 2016).

Non-stationarity issues are particularly critical for decadal to
centennial predictions. However, for many populations, knowledge
of environment-fishery interactions is limited to basic correlations.
These correlative (and often linearly approximated) relationships
provide a useful, existing tool to start integrating climate predic-
tions into LMR models. But if an ecosystem were to shift into a
new, no-analog state and the ecosystem processes that were
empirically described by this correlative relationship were to
change, subsequent management decisions may perform poorly
(Dorner et al., 2013). Similar shifts can occur at shorter time-
scales. For example, many species distribution models developed
with one decade of data perform poorly when used to project spe-
cies distribution during another decade (Brun et al., 2016). For bias
correction of physical climate models, non-linear statistical tech-
niques that are better at simulating distribution extremes appear
to perform better under novel climate conditions (Gaitan et al.,
2014). More sophisticated, model-free statistical approaches also
appear promising in establishing environmental influences on
LMRs that can be applied in a management framework, particularly
over short timescales (e.g. Ye et al., 2015). To improve LMR predic-
tive capacity, it will be necessary to expand the use of such tech-
niques into tactical management frameworks, and to characterize
their benefits relative to more traditional statistical techniques as
well as ecosystem models.

Dynamic ecosystem models integrate physical variables, lower-
trophic-level dynamics, LMR dynamics, and human impacts, mech-
anistically, and are critical to enhance our understanding of LMR
responses to climate variability (Travers et al., 2007; Rose et al.,
2010; Le Mézo et al., 2016). Such process-based understanding is
necessary to the development of models able to skillfully predict
LMR under novel conditions (Evans, 2012). Furthermore, because
of the inherent complexity, non-linearity, and multi-stressor char-
acteristics of marine ecosystems, multispecies and ecosystem
models can in some cases assess uncertainties and trade-offs more
effectively (Pikitch et al., 2004; Link et al., 2012). Nevertheless,
such models are currently only employed for strategic advice at
the decadal and multi-decadal scale, rather than for short-term
tactical decisions (e.g. Smith et al., 2011; Pacific Fishery
Management Council and National Marine Fisheries Service,
2014; Fulton et al.,, 2014; Marine Stewardship Council, 2014).
One issue of concern with the use of ecosystem models for tactical
decisions is their inability to integrate all of the data streams, such
as catch-at-age data, that are customary in current tactical fisheries
decision frameworks. Another issue is that their complexity comes
at the cost of longer running time, hindering their use within cur-
rent tactical management process timelines. Also, they rely on sta-
tic assumptions and parameterizations, which may not remain
valid under future conditions. Finally, because more processes
are modeled and there is uncertainty in each, the fully character-
ized uncertainty can be large. This may make decision-making
more difficult but, if this uncertainty accurately reflects the true
uncertainty in the system, it will ultimately result in better deci-
sions. Expanded application of such models for tactical manage-
ment decisions will be dependent on improving their
parameterizations, specification of initial conditions, extending

quantitative model assessments, and reducing their uncertainties
through additional physiological studies, process studies, and
modeling experiments aimed at understanding the mechanisms
driving LMR’s responses to climate. LMR surveys that include more
hydrographic, biogeochemical, and lower-trophic-level (plankton)
observations will also be critical to make progress towards
expanded use of ecosystem models in LMR forecasting
applications.

Highly resolved spatial and population dynamics models of a
specific target species coupled to a coarser, lower-trophic-level
model (Lehodey et al., 2008; Senina et al., 2008; Section 4.2) or
“models of intermediate complexity” — MICE - (Lindegren et al.,
2009; Collie et al., 2014; Plaganyi et al., 2014) may be more imme-
diately suited for tactical management decisions, as their uncer-
tainties are more tractable. MICE use statistical parameter
estimation methods common in current tactical fisheries models
to fit multispecies models to data for small groups of interacting
species. Such models are becoming sufficiently advanced, includ-
ing both species interactions and impacts of temperature on pop-
ulation dynamics (Holsman et al., 2016), and can be used in
concert with single-species models to provide tactical fisheries
advice from a multi-model suite, similar to operational prediction
systems used in weather forecasts (Ianelli et al., 2016). Combining
such models with seasonal and decadal forecasts will help evalu-
ate risk profiles and trajectories of recovery plans, assess the flex-
ibility of harvest policies to dynamic conditions, and identify areas
of management vulnerability to climate change (e.g., are dynamic
management policies available in hand to respond to sudden shifts
in ecosystem structure or driving processes?; Holsman et al,
2017). While MICE are quite promising for tactical decision mak-
ing in the near future, simulation testing to determine whether
they can provide adequate information for tactical management
under various information conditions typical of fisheries manage-
ment needs to be undertaken. If successful, such applications may
also provide a valuable template for the expansion of holistic
whole ecosystem models from strategic to tactical management
decisions.

Expanded use of seasonal to decadal forecasts is also limited by
problems of relevance in terms of critical variables, and spatial and
temporal scales (Nicholls, 1999; Hobday et al., 2016). For some
LMR-relevant variables, there are irreducible predictability limits
at seasonal to decadal scales due to the chaotic nature of the atmo-
sphere (Deser et al., 2012). Such variables will remain unpre-
dictable even with a perfect data assimilation system and model
formulation, and hence management frameworks robust to unpre-
dictable variation will need to be developed. It will be important
for climate scientist to continue assessing predictability limits of
LMR-relevant variables and to communicate such limitations to
users, e.g., by providing reliable probabilistic forecasts accompa-
nied by appropriate measures of historical skill.

For some regions and time scales, however, predictability of
LMR-relevant variables is limited by the systematic errors of GCMs
(Goddard et al., 2001). It is critical to find ways to either reduce this
model bias or reduce its negative impacts on forecast skill through
novel techniques (e.g., Batté and Déqué, 2016). Reduction in model
bias will involve improvement in both model physics and
parametrizations, as well as data assimilation systems (Goddard
et al,, 2001; Meehl et al., 2014; Siedlecki et al., 2016). For instance,
as variability in ocean circulation can depend on both temperature
and salinity variations in the ocean’s interior, improved observa-
tions of these quantities, as well as improved assimilation systems
to make optimal use of these observations, are critical. As resolu-
tion of GCMs increases, representation of the physical processes
responsible for regional climate predictability improves (e.g. Jia
et al., 2015), and, in some cases, this may lead to improved forecast
skill of LMR-relevant variables.
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Forecasts at the multi-annual to decadal time scales, while of
great interest to LMR management and industry, are not yet oper-
ational (Section 3). Continued research to improve our theoretical
understanding and representation of the physical processes and
feedbacks responsible for decadal scale climate variability are
required to reduce model bias and improve decadal forecast skill
(Meehl et al., 2014). Furthermore, in order to better assess the per-
formance of decadal forecasts, predictability studies across more
models and with larger ensembles need to be carried out (Meehl
et al., 2014). Demonstration of reliable skill, however, will remain
limited by the small sample size available for verification due to
the high time series autocorrelation and limited quantity of inde-
pendent samples at decadal time scales (Kumar, 2009; Meehl
et al., 2014). Furthermore, it is important to stress that the decadal
predictability of regions, such as the North Pacific, subject to strong
atmospheric forcing, will remain limited (Branstator and Teng,
2010; Meehl et al., 2014).

In addition to improvements in models and initialization, pre-
dictability across spatiotemporal scales of more LMR-relevant
physical variables such as bottom temperature, sea surface height,
onset of upwelling, or salinity need to be examined. Biogeochemi-
cal prediction (e.g. chlorophyll biomass, net primary productivity
(NPP), export production fluxes, aragonite saturation in coastal
zones, oxygen concentration) is also of major relevance to
ecosystem-based management of marine resources (Levin et al.,
2009; Stock et al., 2011). While biogeochemical prediction is in
its early stages and no coupled physical-biogeochemical seasonal
to decadal forecasting systems are yet operational (but see Case
Study 4.6 for their use in sub-seasonal prediction), recent work
shows some potential. Predictive skill up to several months has
been shown in the northern CCS for bottom oxygen (Case Study
4.5, Siedlecki et al., 2016), and up to 3 years for NPP in some ocea-
nic domains (Séférian et al., 2014; Chikamoto et al., 2015). In most
cases, the increased predictability in NPP arises from that of nutri-
ents, which directly benefit from the initialization of the model
physical fields (Séférian et al., 2014). These pioneering results
demonstrate that biogeochemical prediction shows promise and
highlight the need to both develop integrated physical-
biogeochemical forecast systems, and further quantify biogeo-
chemical predictive skill over a variety of space and time scales
to inform ecosystem-based management approaches to LMRs.
Application of ESMs in a climate change framework has demon-
strated that uncertainty in LMR projections can be large due to
uncertainty in the many modeling components, from GCMs to
upper-trophic level models, required to assess climate change
impacts on LMRs (Cheung et al., 2016b). Computing and personnel
resources will hence be required to develop an ensemble approach
for biogeochemical prediction able to account for this uncertainty.
An assessment of prediction skill beyond SST to other properties
driving biological responses will also necessitate supporting, col-
lecting, and maintaining sampling programs and observing
systems.

The spatial resolution of global climate models poses another
limitation to their skill at the regional scale relevant to LMR deci-
sions. Downscaling techniques can be used to generate finer-
scale information from large-scale climate predictions. By relating
well predicted large-scale factors to a local process of interest,
downscaling, in addition to providing higher spatially and tempo-
rally resolved data, may produce LMR-relevant variables not skill-
fully generated by global prediction systems (e.g. Siedlecki et al.,
2016). There are two types of downscaling techniques: statistical
and dynamical. The first links the large-scale output from a global
prediction system to local scale variables using statistical-
empirical relationships. The second uses the large-scale output as
boundary conditions to regional-scale, physics-based dynamical
models.

Statistical downscaling techniques are computationally inex-
pensive, so the large ensembles required to appropriately charac-
terize initial condition and model uncertainty of seasonal to
decadal predictions (Section 2.1.2) can be run relatively fast. The
ability to quickly produce output is an advantage particularly rele-
vant for downscaling of seasonal predictions, as they have to be
produced in a timely manner to be relevant to the decision-
making process (Laugel et al., 2014). However, to construct robust
statistical relationships, long observational records are required
(Section 4.1 and 4.3), though are not always available. Second, all
statistical downscaling techniques assume that the large-scale,
local climate relationship will remain the same in the future. While
these assumptions may hold for the relatively short timeframe of
seasonal predictions, they may deteriorate over longer-range dec-
adal predictions.

By contrast, dynamical downscaling techniques explicitly
model the physical processes involved and therefore may perform
better than statistical methods under changing or unprecedented
conditions (e.g. van Hooidonk et al., 2015). Dynamical downscaling
models, however, will still inherit any bias of large-scale GCMs,
and may even amplify such systematic errors (Goddard et al.,
2001; Hall, 2014). This stresses again the need to reduce bias in
global predictions systems to improve predictability of LMR-
relevant variables at a regional scale. Further research will also
be necessary to assess the relative costs and benefits of statistical
versus dynamical techniques for downscaling of LMR-relevant cli-
mate predictions. This will require more resources allocated
towards the development of downscaling frameworks for LMR-
relevant climate predictions in regions of interest for LMRs. For
instance, coupling to fine resolution coastal models, like the efforts
in the northern CCS and Indonesian region (Case Studies 4.5 and
4.6), is a promising approach that warrants more studies in other
regions. Furthermore, modeling studies aimed at understanding
the extent to which LMR-relevant local processes are interactive
with the large-scale and to what extent they are primarily “driven”
by large-scale processes are required. Such studies would help to
identify the type of downscaling method most appropriate and
indicate regions requiring higher-resolution global climate predic-
tion systems to further enhance predictability and support deci-
sion making at fine spatial scales.

7. Concluding remarks

It is widely recognized that the productivity and distribution of
LMR populations change over time in response to climate and
ecosystem variability and long-term trends. Fishers, aquaculturists,
coastal planners, and fisheries managers recognize that many of
their operational planning and management decisions should
account for this dynamism. We have shown how recent improve-
ments in global dynamical climate prediction systems have
resulted in skillful predictions of LMR-relevant variables at many
of the spatial and temporal scales at which LMRs are managed,
and how such predictions are already helping industry and man-
agers make decisions in dynamic environments. By describing cli-
mate prediction systems and their capabilities, as well as the range
of decisions currently taken by managers and the fisheries and
aquaculture sector that may benefit from the inclusion of future
climate information, new applications may be developed for wider
use. Successful integration of climate information into LMR deci-
sion frameworks will depend on close collaboration and open dia-
logue between potential users and climate scientists.

While some progress has been achieved within existing frame-
works and resources, challenges in both climate and fisheries mod-
els need to be addressed to further expand utility of such
predictions for LMRs (Section 6). To ensure widespread application
of climate forecasts into LMR decision making and prevent unin-
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tended consequences of climate and fisheries interactions, new
methodological approaches that capture complex ecosystem
dynamics and the full range of LMR drivers need to be developed.
Such frameworks will inherently be probabilistic and consist of
ensemble methods to account for uncertainties in both climate
and LMR models, improve model accuracy, and help end users
understand risk. These frameworks will also evolve over time as
our understanding of environment-LMR links, which remains poor
for many species and regions, is improved through more field
observations and experimental studies. Therefore, management
decision systems will need to become more flexible to the inclu-
sion of new information streams at a variety of both spatial and
temporal scales, as well as to frequent re-evaluation.

As we acknowledged above, seasonal to decadal predictions of
climate and LMR dynamics will sometime fail despite the best
efforts, especially given the increasing potential for no-analog sys-
tem states and ecological surprises (Williams and Jackson, 2007;
Doak et al., 2008). To cope with this inevitability, we also encour-
age the development of approaches for managing unexpected
changes once they have happened (Schindler and Hilborn, 2015).

As predictability is the ultimate test of scientific theory, rou-
tinely using these climate-forecast informed frameworks to make
predictions of LMR dynamics will also improve understanding of
ecosystem dynamics. In addition, skillful predictions at seasonal
to multi-annual scales will lend confidence to the use of such mod-
els to project LMR dynamics over longer temporal scales, and can
be used to build stakeholder confidence in the use of longer term
climate projections. With exploited systems being more sensitive
to environmental variability (Hsieh et al., 2006; Perry et al.,
2010), development of such capabilities will be essential to the

Table A1

development of climate-ready management systems to effectively
manage and culture LMRs in a future environment where long
term change renders historical experience less valuable.
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Appendix A

See Tables A1 and A2.

List of six operational ocean reanalysis products from 1979-present used in the Real-time Ocean Reanalysis Intercomparison Project. See http://www.cpc.ncep.noaa.gov/products/
GODAS/multiora_body.html for a link to download some of these reanalysis products. The data assimilation column lists the observation types used for their estimation (T/S for
temperature and salinity; SLA: altimeter-derived sea level anomalies; SST: sea surface temperature, SIC: sea-ice concentration), as well as assimilation techniques used for
reanalysis: Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter (EnKF), Variational methods (3DVar). The atmospheric surface forcing is usually provided by
atmospheric reanalyses, using either direct daily fluxes, or different bulk formulations. There are also systems that use fluxes from coupled data assimilation systems (Coupled

DA).
Product Forcing Ocean model Data assim. method Ocean observations Analysis period
NCEP GODAS (NGODAS) NCEP-R2 1° x 1/3° MOM3 3DVAR T/SST 1979-present
GFDL (ECDA) Coupled DA 1° x 1/3° MOM4 EnKF T/S/SST 1979-present
BOM (PEODAS) ERA40 to 2002; NCEP-R2 thereafter 1° x 2° MOM2 EnKF T/S/SST 1970-present
ECMWEF (ORAS4) ERA40 to 1988; ERAI thereafter 1° x 1/3° NEMO3 3DVAR SLA/T/S/SST/SIC 1979-present
JMA (MOVE-G2) JRA55 corr + CORE Bulk 1° x 0.5° MRL.COM3 3DVAR SLA/T/S/SST/SIC 1979-present
NASA (MERRA Ocean) MERRA + Bulk 0.5° x 1/4° MOM4 EnOI SLA/T/S/SST/SIC 1979-present

Table A2

Living marine resources for which there is a linkage between their dynamics and environmental variability. These includes those determined by Myers, 1998 as robust to re-
evaluation, marked by an *, and those described by Skern-Mauritzen et al., 2015 as making use of environmental information in their management, marked by a . For all other

examples, the reference is provided.

Species Region Environmental driver Reference
Cod’,f Barents Sea Temperature

Cod’ Eastern Baltic Salinity

Cod” Labrador Salinity

Cod” NW Atlantic Calanus spp. abundance
Eurasian Perch’ Windemere and Baltic region Temperature

Pike Perch” Netherlands and Baltic region Temperature

Herring Southern British Columbia Temperature

Herring Northern Newfoundland Temperature

Sardine’, California Temperature

Sardine' Mediterranean Chlorophyll a

Anchovy’ Mediterranean Chlorophyll a

Sea Bass’ South Britain Temperature
Smallmouth bass’ Lake Opeongo Temperature

(continued on next page)
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Species

Region

Environmental driver

Reference

Smallmouth bass”
White Hake'

Mutton Snapper’

Yellowtail flounder”
Plaice’
Skipjack tuna’

Swordfish’
Striped Marlin'

Pacific hake

Sablefish

Pink salmon'

Coho and Chinook
Salmon

Chinook Salmon

Lobster”
Northern shrimp’
Banana prawn’

North Lake Huron

Southeastern Atlantic

(West Africa)

South Atlantic/Gulf of

Mexico

Southern New England

Kattegat
Eastern Pacific

Southeastern Pacific
Northeastern Pacific
California Current
California Current
North Pacific
Columbia River
Snake River

Gulf of Maine

Gulf of Maine
Gulf of Carpentaria

Temperature
NAO

Temperature and salinity

Temperature

Wind

Temperature, ocean currents,
primary production

Ocean climate, hydrography, primary

production

Ocean climate, hydrography, primary

production
Ocean currents
Ekman transport, sea level

Agostini et al. (2006)
Schirripa and Colbert (2006)

Temperature and prey availability

PDO and prey availability

Air temperature, river flow,
upwelling, PDO
Temperature

Temperature

Salinity

Peterson and Schwing (2003), Bi et al. (2011), Peterson and Burke (2013),
and Burke et al. (2013)
Zabel et al. (2013)
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