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Abstract Southern bluefin tuna (SBT), Thunnus maccoyii (Castelnau), is a quota-managed species that makes
annual winter migrations to the Tasman Sea off south-eastern Australia. During this period it interacts with a
year-round tropical tuna longline fishery (Eastern Tuna and Billfish Fishery, ETBF). ETBF managers seek to
minimise the bycatch of SBT by commercial ETBF longline fishers with limited or no SBT quota through spatial
restrictions. Access to areas where SBT are believed to be present is restricted to fishers holding SBT quota.
A temperature-based SBT habitat model was developed to provide managers with an estimate of tuna distribution
upon which to base their decisions about placement of management boundaries. Adult SBT temperature pref-
erences were determined using pop-up satellite archival tags. The near real-time predicted location of SBT was
determined by matching temperature preferences to satellite sea surface temperature data and vertical temperature
data from an oceanographic model. Regular reports detailing the location of temperature-based SBT habitat were
produced during the period of the ETBF fishing season when interactions with SBT occur. The SBT habitat model
included: (i) predictions based on the current vertical structure of the ocean; (ii) seasonally adjusted temperature
preference data for the 60 calendar days centred on the prediction date; and (iii) development of a temperature-
based SBT habitat climatology that allowed visualisation of the expected change in the distribution of the SBT
habitat zones throughout the season. At the conclusion of the fishing season an automated method for placing
management boundaries was compared with the subjective approach used by managers. Applying this automated
procedure to the habitat predictions enabled an investigation of the effects of setting management boundaries
using old data and updating management boundaries infrequently. Direct comparison with the management
boundaries allowed an evaluation of the efficiency and biases produced by this aspect of the fishery management
process. Near real-time fishery management continues to be a realistic prospect that new scientific approaches
using novel tools can support and advance.
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the risk of over-exploitation, or to aid the recovery of

Introduction over-exploited fisheries (e.g. Walker 2005). One of the

Increasing pressure on marine living resources has seen
unsustainable levels of harvest in fisheries throughout
the world (Hilborn, Branch, Ernst, Magnusson, Minte-
Vera, Scheuerell & Valero 2003; Myers & Worm 2003;
Pauly, Alder, Bennett, Christensen, Tyedmers &
Watson 2003). Approximately 25% of the world’s
fisheries are over-exploited or depleted, and a further
44% are classified fully to heavily exploited (Garcia &
Newton 1997; FAO 2004); a similar situation exists in
Australia (Caton & McLoughlin 2004). Sound man-
agement relies on a number of approaches to reduce

main tools has been catch limits, such as individual
catch quotas, to prevent over-harvest of particular
species (Smith & Smith 2001; Walker 2005). However,
even the most well-intentioned fisher can exceed the
quota when unwanted fish are captured during fishing
operations targeting other species. Spatial manage-
ment — of which Marine Protected Areas are a special
case — is seen as an additional tool to assist recovery or
prevent over-exploitation, and has been applied in
benthic areas for some time (e.g. Hall 1998). Spatial
management requires information on the habitat and
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movements of the species to be exploited or protected
(Perry & Smith 1994; Williams & Bax 2001). In a
number of countries, spatial management is seen as a
way to reduce interactions with a variety of
protected species, such as turtles and seabirds
(Hyrenbach, Forney & Dayton 2000; Polovina,
Kobayashi, Parker, Seki & Balzas 2000; Polovina,
Balazs, Howell, Parker, Scki & Dutton 2004);
however, the same approach can also be applied to
minimise interactions with target and non-target fish
species (Goodyear 1999). In pelagic longline fisheries,
where targeting can be less precise, spatial manage-
ment may be the best way to reduce unwanted
interactions between fishing gear and species of
concern. This spatial approach is, however, inher-
ently difficult as ocean dynamics rather than fixed
topography often govern residency and movement.

Southern bluefin tuna (SBT), Thunnus maccoyii
(Castelnau), is seasonally distributed in the cooler
waters of southern Australia (Caton 1991). A multi-
national convention, the Commission for the Conser-
vation of Southern Bluefin Tuna (CCSBT), is charged
with the sustainable management of the SBT resource
(e.g. Polacheck 2002). One management tool is alloca-
tion of SBT quota to member nations. There is
considerable international pressure to adhere to the
allocated quota (Polacheck 2002). In Australia, the
allocated quota is owned and traded between fishers,
and at present is largely held by fishers involved in tuna
farming around the Port Lincoln area in South Austra-
lia. SBT is purse-seined and towed back live to grow-out
cages at Port Lincoln. However, this is not the only
place in Australia where SBT are captured. The species
is also seasonally present along the south-eastern
seaboard of Australia, where it is incidentally captured
in a major longline fishery (http://www.afma.gov.au/
fisheries/tuna/etbf/default.htm). This fishery targets
tropical tuna and billfish species and operates from a
number of ports along the coast. The incidental capture
of SBT by non-quota holders in this fishery threatens to
violate Australia’s adherence to the CCSBT quota, and
is considered an important management issue.

Spatial management is the current method used to
minimise the capture of SBT by non-quota holders on
the east coast of Australia in the longline fishery. The
Australian Fisheries Management Authority (AFMA)
restricts access to some areas of the fishing grounds to
reduce the risk of SBT capture by operators without
SBT quota. In the 2004 fishery season, the fishing
ground was divided into three zones of which two were
restricted access areas; fishing inside one zone was
restricted to vessels holding at least 4 t of SBT quota
(core zone), while in a second zone (buffer zone)

500 kg of quota was required. In the third zone (open
zone), no quota was required as the catch of SBT was
expected to be negligible, although catch reporting was
still required. These zones are updated throughout the
fishing season as the distribution of SBT changes with
seasonal changes in the local oceanography.

The scientific contribution to this management issue
has been to provide near real-time identification of
SBT habitat to assist in setting the zones. Determining
the distribution of suitable habitat requires informa-
tion on the habitat preference of the species, obtained
from electronic tags, and information about the
current distribution of the habitat, obtained through
the interpretation of satellite-based observations of sea
surface temperature (SST) and a near real-time ocean
model. Electronic tags are providing new insight into
the life of fishes, especially oceanic species with basin-
scale movements (Arnold & Dewar 2001; Gunn &
Block 2001; Itoh, Tsuji & Nitta 2003). Satellite tags in
particular, have been used successfully to obtain
movement and habitat use data for tunas, billfish and
sharks (e.g. Block, Teo, Walli, Boustany, Stokesbury,
Farwell, Weng, Dewar & Williams 2005; Domeier,
Kiefer, Nasby-Lucas, Wagschal & O’Brien 2005). The
definition of habitat for pelagic species is complex,
however; fish distribution generally depends on both
biotic (e.g. prey distribution) and abiotic (e.g. tem-
perature) characteristics. In this paper, habitat is
defined on the basis of temperature preferences, but
it is acknowledged that more complete habitat descrip-
tions will emerge in future.

This paper describes the use of a habitat prediction
model to support fisheries management. The frame-
work presented here has been continuously improved
since AFMA fisheries managers first applied a spatial
management approach in 2000 and has progressed
from interpretation of single SST images and expert
understanding (J. Gunn, personal communication) to
prediction based on SST preferences (Hobday & Gunn
2004), to the current model presented in this paper.
The current approach supports near real-time spatial
management through the development of a vertically
resolved, temperature-based SBT habitat model that
incorporates spatial and temporal variability. This
habitat model and oceanographic data are combined to
develop a near real-time indication of the probability of
SBT occurring in different areas off the east coast of
Australia. Probability-based scenarios are then applied
to the habitat predictions and managers place bound-
aries to divide the fishing ground into three manage-
ment zones. These management zones are changed
regularly throughout the fishing season to reflect
changes in SBT habitat distribution. A comparison
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HABITAT PREDICTION FOR TUNA SPATIAL MANAGEMENT

of the placement of the boundaries by real managers to
hypothetical boundaries placed by a computer algo-
rithm is also presented, together with an investigation
of the effect of: (i) using outdated predictions; and (ii)
update frequency on the performance of the manage-
ment zone approach for SBT.

Methods

Temperature preference of SBT

Information on the temperature and depth prefer-
ences of adult SBT (the principal age classes caught in
the ETBF) in the region of the ETBF fishery were
gathered using pop-up archival tags (PATs) (J. Gunn
and T. Patterson, unpublished data). PATs are
externally attached to SBT and deployed for a pre-
determined period (up to 12 months). Each PAT has
a temperature, depth and light sensor. At the end of
the deployment period, a pin is corroded and the tag
detaches from the fish. Once at the surface, data are
retrieved using the Argos satellite system. The amount
of data a PAT can transmit is limited by its battery
capacity which in turn is limited by the physical size
of the tag. Consequently, only a summary of the data
is returned. This summary is transmitted in the form
of temperature depth profiles and frequency distribu-
tions of temperature and depth. These data summa-
rise fish activity over pre-specified intervals of between
4 and 12 h depending on the deployment period of
the tag.

The temperature preference of SBT for management
support in 2004 was determined from data obtained
from 18 recovered PATs; six recovered in 2001, two in
2002, seven in 2003 and three in 2004. The 18 tags
covered 769 days of potential information. Individual
tags contribute between three (0.39%) and 181 (23.5%)
days of data. Longer record periods (e.g. data sum-
marised every 8 h instead of every 4 h) were used for
tags with longer intended deployment times, conse-
quently the proportion of total data records attributed
to an individual tag is less dominated by single fish
than expected — between 0.56% and 17.7% of records
come from a single fish. These SBT tags covered the
area of interest for the ETBF (Fig. 1).

As the behaviour of SBT, and thus the habitat
preference, is believed to change throughout the year
(J. Gunn & T. Patterson, unpublished data), it was
considered important to include only data from a
similar time of year to the model prediction date. This
is based on the assumption that intra-annual variation
in habitat preference is greater than inter-annual
variation. This assumption is made for a variety of
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Figure 1. Southern bluefin tuna pop-up archival tag deployment and
pop-up positions for 18 tags released off the east coast of Australia
(2001-2004). Filled markers indicate the deployment position and
marker outlines indicate the pop-up positions: circles (2001), stars
(2002), asterisks (2003) and squares (2004).

oceanographic analyses, and the resulting signal over
the course of a year is referred to as a climatology. The
use of a restricted portion of the habitat preference
climatology presents a compromise between using
enough data and choosing data from a time that is
representative of the analysis date. For the analyses
presented here, unless stated otherwise, all data within
30 calendar days of the analysis date were used for
habitat predictions. This window of 60 days was
chosen as it was the smallest time range for which a
reasonable amount of data remains available for the
analysis, and reflects the temporal scale over which
tuna migration (an indication of a change in habitat
preference) occurs.

Calibration of temperature data from tags

The SBT habitat preferences were based on SST data
extracted from PATs. The preferences were then
applied to satellite-based SST observations and sub-
surface model temperatures. It is important to verify
that there is no systematic difference between tag and
satellite temperatures. The tags continue to gather and
transmit SST data after they have detached from the
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fish and are floating at the surface; at the same time
good position estimates from the Argos satellite system
are available. In total, 690 SST transmissions over 185
different days were available from tag deployments.
Statistical analysis revealed that the SST reported by
the tag is 0.76 °C (95% CI is between 0.49 and 1.03 °C)
warmer than the satellite-based SST observation for
the same position. This correction was applied to the
habitat preferences (Hobday & Hartmann 2005).
Unfortunately, sub-surface temperatures were only
available while the tag was attached to the fish and
there was too much uncertainty in the position of the
fish during this time to allow comparison to the
corresponding sub-surface model data. The only time
when both a good position estimate and a sub-surface
temperature profile from the tag were available was
just after release and just prior to the tag popping to
the surface. The number of SBT tags available was
insufficient for calibration of sub-surface temperatures
at this time.

Oceanographic model

Information about the near real-time temperature of
the water column at a particular date and location is
obtained using satellite images and an oceanographic
model. The satellite images provide SST at each
gridpoint (location) in the region of interest and the
oceanographic model provides sub-surface tempera-
tures. The Bluelink oceanographic model incorporates
near real-time satellite altimeter and SST data, and in
combination with a vertical climatology for the
Australian region, resolves vertical ocean structure
at 43 standard depths (0:10:70 75 80:10:110
125:25:300 350:50:1000 1100:100:1600 1750 2000).
The grid scale of the model is 5 km in the horizontal
dimension (http://www.marine.csiro.au/bluelink/).
This oceanographic model is considered an experi-
mental product and will be subjected to continued
validation and improvement; as such its accuracy
remains uncertain (D. Griffin, personal communica-
tion). Unfortunately, with the cancellation of a wide-
swath altimeter due for launch in 2008 and the future
demise of present satellite-based altimeters the data
required by the sub-surface model will degenerate in
coming years. Consequently, the habitat model out-
put will decrease in quality unless other oceanogra-
phic models under development provide significant
improvements that compensate for the poorer obser-
vational data. For the purposes of this study and the
analyses presented, the oceanographic model was
assumed to represent the vertical water structure
adequately.

Depth-integrated analysis (3D habitat model)

The east coast longline fishing fleet generally oper-
ates in the northern (and warmer) side of the area
under SBT spatial management. The management
aim was therefore to restrict fishing vessels with-
out quota to a warmer area than where SBT
occurs. To produce the habitat prediction for a
particular date, the corresponding oceanographic
model and satellite data were extracted. For each
grid point on the extracted data set (latitude,
longitude and depth) the proportions of temperature
observations from the PATs cooler than the tem-
perature from the oceanographic model/satellite data
were recorded. These proportions were then averaged
throughout the water column at each location to
produce an indication of how warm the water
column was in comparison with SBT temperature
preferences.

The statistic derived from this process is a cumula-
tive probability distribution of SBT presence as a
function of increasing water temperature. Manage-
ment can use these data by ensuring that operators
without quota can only access water with values higher
than a particular value of this statistic. For example, if
a fishing vessel is only allowed to fish in areas that have
a value greater than 0.95 for this statistic then it will be
fishing an area where SBT are predicted to spend less
than 5% of their time.

Temperature analysis at a single depth

A formal framework for comparing the temperatures
observed by tags and those obtained from the oceano-
graphic model or satellite observations of SST is
presented here. The suitability of water temperature at
a particular location, time and depth was calculated
first. For the sub-surface analyses it was necessary to
interpolate the tag temperature-depth profiles to match
the depths specified in the oceanographic model; full
details of this procedure are provided in Hobday &
Hartmann (2005).

The observations from each tag were given equal
weighting and pooled. The temperature and propor-
tion of time spent at depth d for the kth observation
were denoted by f, and py, respectively. The number
of available observations was denoted by K. For depth
d, the proportion of tag temperatures cooler than the
temperature obtained from the oceanographic product
(04) was given by:

S = Z Bi where By =, = =By == 1/k.

tra<oq
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With this formulation each observation is treated
equally. In future, it might be appropriate to weight
observations by the proportion of time the fish spent at
that depth during that time period. For example, if a
fish avoided a particular depth because of water with
an unfavourable temperature or frequented a depth of
favourable temperature then weighting might be
appropriate.

Water column analysis

The statistic (s;) calculated in the previous section (the
proportion of time SBT spend in water cooler than at
some point) was for a particular location and depth.
To obtain a statistic (5) for the entire water column at
some location, the previously calculated s, needs to be
combined over all available depths:

§= E wgsq, Wwhere wy are weights and E wg = 1.
d d

The statistic § can be interpreted as the proportion of
time SBT spend in a water column ‘cooler’ than at this
location. This raises the question of what importance
to assign to each depth (w,). Taking a simple mean
over all depths is an arbitrary approach as it would
give equal importance to all depth layers in the
oceanographic data set. These depth layers are irregu-
larly spaced according to oceanographic convention,
thus the mean would be biased towards depth ranges
with finer spacing; the habitat model should produce
results independent of the depth spacing in the
oceanographic data set.

Ideally, each depth layer should be weighted by the
magnitude of the effect that the temperature in that
layer has on tuna presence/absence. In the absence of
any other information, the assumption was made that
the importance of a particular depth layer was directly
proportional to the amount of time fish spent in that
layer over all available records. Under this assumption
the weightings are:

Wy = kakd _ Ekpkd

Z(s kaké k

The maximum depth for the habitat analysis was set
at 200 m. This limit was chosen because it covers all

depths in which the fishery gear operates (in the PAT
data set SBT spent 92% of their time in the top 200 m).

Habitat preference scenarios

The statistic produced in the previous section () is the
cumulative probability distribution of SBT presence as

a function of increasing water column temperature.
Management should aim to ensure that operators with
no or minimal quota can only access areas that have a
high value for this statistic (and consequently a low
probability of SBT presence). However, this is can be a
difficult task — how high a value is high enough? Also,
how should the complex boundaries produced by the
analysis be handled? Any management boundaries
imposed need to be simple to understand and commu-
nicate to operators on the water and thus minimise
compliance monitoring.

The former problem — what statistic value to choose
as a cut-off — was handled through consultation with
management, although ultimately it should be based
on a more scientific basis that aims to restrict expected
bycatch in each of the previously discussed zones to
acceptable levels: the lowest 80% (s < 0.8) was classi-
fied as core zone, the next 15% (0.8 < § < 0.95) as the
buffer zone and the final 5% (s > 0.95) as the open
zone. Other less conservative scenarios to reduce
unwanted SBT catch (e.g. a 50%:35%:15% split) were
considered in the past and rejected by management.
The output provided to management showed the zone
into which each area in the fishing ground was
classified. The boundaries could be complicated and
managers preferred boundaries between the zones
comprising at most a four segment boundary running
roughly west—east from the coast. In 2004, managers
fitted these boundaries by eye after taking other factors
into account (e.g. the positions of fishing harbours).

Automated placement of management boundaries

The analysis that produced the habitat predictions was
relatively objective (apart from the choice of scenario
to define zones), but the placement of the management
boundaries was a subjective process. A process for
automatically allocating management boundaries was
developed that will in future reduce the potential for
subjectivity from the boundary placement by manag-
ers, as well as guide placement in oceanographically
complex situations. A range of boundary complexities
was considered for automated boundary placement;
however, because of the optimisation routine used, it
was of no benefit to use boundaries exceeding three
segments in complexity; this matched the level of
complexity used by fishery managers in 2004.

Objective function choice

To enable automatic selection of best-fit management
boundaries it was necessary to produce an objective
function (f) that described how well a particular set of
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management boundaries classifies the habitat. This
function was based on minimising the area that the
management boundaries misclassify. Thus, placement
of boundaries was systematically varied until the
misclassified area was at a minimum.

Given that each habitat point is in one of three
categories, there are six possible types of misclassifica-
tions, and three correct classifications (Table 1). Those
three categories below the diagonal in Table 1 con-
tribute to precautionary management as habitat in
which SBT catch is likely to be low but is still made
inaccessible to the fishing fleet without quota, while the
three categories above the diagonal contribute to non-
precautionary management as habitat in which SBT is
likely to be found and is made accessible to fishing
boats with insufficient quota. Each misclassified area
was weighted by the number of categories by which it
was misclassified (Table 1). For example, core habitat
from the analysis classified as open by management is
two categories from the correct management classifi-
cation, while buffer habitat allocated to the core zone
by management was only one category from the
correct classification. It is possible to introduce a
desired bias towards precautionary or non-precaution-
ary management by changing the weightings associa-
ted with these misclassifications. However, there is a
more transparent means by which this can be achieved,
which is discussed below.

Denoting Table 1 as a matrix C, the sum of those
classification categories that result in non-precaution-
ary management was denoted u, and those that
resulted in precautionary management as /:

2 3 3
UZZZCleHdl:Z;

A simple objective function, f, could sum u and /
however, to keep the contribution to f from both
misclassifications similar (to reduce bias toward
either side) a term was added to the objective
function that is the difference between the two

i—

Jj=1

Cija where Cij = ‘l —]|

components: f=u + [ + klu — [|. The multiplier k
(20) can be adjusted to weight the importance of keeping
the difference between the two components (# — /) low
relative to keeping their combined total (1 + [)low. If k&
is set to 0, no effort is made to reduce the bias; as k is
increased the amount of potential bias is decreased. By
introducing this factor, a trade-off is made; more pixels
may be misclassified overall to minimise the bias.
Additionally, if it is desirable to introduce a systematic
bias towards precautionary or non-precautionary man-
agement a factor w (=0) can be introduced:

f=u+1+klu—wl|.

For w > 1, the bias is towards non-precautionary
management, whereas if w < 1 the bias is towards
precautionary management. For example, if w = 2, to
minimise the term |u — wi| then u = 2/; this would
result in twice as much area being managed in a non-
precautionary manner (x) than in a precautionary
manner (/). This would result in bias towards non-
precautionary management. In this analysis, K = 1 and
w = 1; these values were chosen to achieve unbiased
management boundaries.

Optimiser algorithm for automatic boundaries

The optimisation algorithm used to fit management
boundaries automatically to the SBT habitat areas was
the Nelder—-Mead simplex method as implemented in
Matlab R14 (fminsearch) (The Mathworks, http://
www.mathworks.com). To prevent the two manage-
ment boundaries from crossing it was necessary to
introduce a penalty function as the minimisation
routine does not permit the specification of constraints.
The presence of this penalty function and the existence
of many local minima resulted in the global minimum
generally not being located (especially for more com-
plex boundaries). This was evident from the strong
dependence of the solution on the initial starting point
provided to fminsearch (fminsearch requires an initial
solution which it then perturbs).

Table 1. Habitat (mis)classification categories that can occur during placement of management boundaries

Actual classification from temperature-based habitat model

Managed as Open Buffer Core

Open Correct management (0) Non-precautionary management (1) Non-precautionary management (2)
Buffer Precautionary management (1) Correct management (0) Non-precautionary management (1)
Core Precautionary management (2) Precautionary management (1) Correct management (0)

The relative effect of the (mis)classification on the objective function is indicated in brackets for each category, i.e. weightings used in the

objective function.
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Management decisions made using outdated
information

The automatic boundary allocation analysis described
above also allowed examination of the consequence of
setting management boundaries using outdated habitat
predictions (i.e. the effect of delaying management
decisions). By necessity, the habitat prediction reports
supplied to the fishery managers and used for deciding
on management boundaries were outdated by the time
management decisions were made. An initial 4-day
delay was because of the oceanographic model upon
which this habitat model was based. At times, prob-
lems in the system producing the oceanographic model
output occurred, resulting in further delays. Issues
ranged from problems receiving the satellite data to
problems running the model, and these usually took 1
or 2 days to resolve. As a result, the 2004 habitat
prediction reports delivered to managers relied on
oceanographic model output that was 4-6 days old.

Once the report was electronically delivered to the
fishery managers there were additional delays for
logistical reasons. An understanding of the practical
effect on the habitat classifications as a result of
delayed management decisions was therefore of great
importance. The effect of using outdated predictions
was found by calculating the objective score, and the
misclassified area obtained, when management bound-
aries produced for older analyses were applied to the
more recent analyses. This retrospective analysis pro-
cedure was carried out throughout the 2004 period
using data of different ages. The increase in the
objective function obtained for each day when using
data of a certain age showed the effect of managing
using outdated predictions.

SBT habitat climatology

To inform management and stakeholders about likely
changes in the distribution of SBT habitat and to
compare the distribution of the current habitat pre-
diction with the typical distribution of SBT habitat at
that time of year, an SBT habitat climatology was
formed. This was produced by analysing the satellite
SST data from 1993 onwards and recording the
position of the buffer zone each day. For this analysis
only, the buffer zone was defined by two latitudinal
boundaries placed such that only 5% of the buffer
zone was north and south of these boundaries
respectively. These habitat zone climatologies were
used to compare the present situation with historical
averages and extremes to provide an indication of what
changes can be expected over the year.

There were two major limitations with this habitat
climatology analysis that necessitated the use of an
SST-only model. The oceanographic model that pro-
vided temperature at depth was only available from the
start of 2004, consequently only SST could be used to
generate a multi-year climatology (1993-2004). As a
result of the change in data availability throughout the
year, no restriction on the dates of SBT PAT data
included in the climatology analysis were made. In
future, a climatology based on the depth-integrated
model will be possible.

Results

The development of the model and the individual steps
that are undertaken for each analysis are best illustra-
ted by presenting a series of examples, in this case for 6
August 2004. This date was chosen arbitrarily from
those dates corresponding to management decisions in
2004. Figure 2 shows the cumulative probability of
SBT presence as a function of increasing temperature.
The processing of the SST images used in the analysis
attempts to detect cloud cover and returns missing
values in those areas where cloud cover prevents
reliable SST estimates. In those areas where no SST
values were returned, the habitat suitability analysis
was based entirely on sub-surface model output. The
same analysis conducted on each depth layer individu-
ally showed how the habitat suitability changes
through the water column (Fig. 2). Particularly notice-
able was a north-south line just off the coast that
shows that sub-surface water was less suitable than the
surface water and the eddy at 37° S. The result for the
full water column was obtained when the individual
depth layers were combined (Fig. 3a). The manage-
ment zones previously defined were then applied to
produce the figure that was delivered to management
(Fig. 3b).

Two-tailed analysis and model validation

The methods explained how to derive the habitat
suitability of a particular location by examining the
cumulative probability of SBT presence. Cumulative
probability was used as the ETBF fishery operates in
the northern waters along the east Australia coast
(which are generally warmer) and management zones
the waters from north to south. Alternatively, the
water masses in which SBT presence was most likely
could be identified and these water masses excluded
from the fishery. This approach could be conducted
using the results from the previous analysis, as outlined
below.
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Figure 2. Analysis of southern bluefin tuna (SBT) habitat suitability at four example depths (surface, 50, 100 and 200 m) for 6 August 2004. The
colour indicates the proportion of time SBT spent in water colder than that at a particular point.

The cumulative probabilities § were converted to
two-tailed cumulative probabilities:

§=1[25—1],

such that the water mass containing all values 5 less
than some value x should contain a proportion, x of
the SBT in the total area. Figure 4 shows the values of
s for the same time period depicted in Figure 3. A test
of validity of this two-tailed prediction, and hence the
habitat model was performed using SBT catch data
from the longline fishery. When the values of 5§ were
calculated for locations and dates where SBT were
caught, these values should have a uniform distribu-
tion between 0 and 1. This assumed that the fishing
effort randomly sampled water of all temperatures that
were experienced by SBT in the data set. This
assumption was probably not met (because of differing

availability of different temperature water and selective
targeting by fishing vessels), but nonetheless a
probability plot (Fig. 5) for longline sets in which
SBT were caught showed that § had a relatively
uniform distribution, as expected if the model gener-
ated realistic habitat preferences. Note in Figure 5 that
when all longline sets were included in the analysis
(regardless of whether SBT where caught) 5 did not
show a uniform distribution, indicating that the
predictions produced were specific to SBT.

SBT habitat climatology

The SBT habitat climatology generated with each
habitat prediction allowed a comparison between the
distribution of the current habitat prediction with the
typical distribution of SBT habitat at that time of year
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Figure 3. (a) Depth-integrated analysis of southern bluefin tuna habitat suitability for 6 August 2004. The colour value indicates the probability of
tuna being in water that is generally colder than that found throughout the water column at a particular location. (b) Habitat management zones for 6
August 2004 using 0.8 and 0.95 probability cut-offs for the buffer and core zone respectively. Example management lines are indicated.
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Figure 4. Two-tailed southern bluefin tuna (SBT) habitat probability
distribution. By including all pixels coloured less than a particular value
in an area, a confidence limit on SBT catches equivalent to that value is
formed. For example, 95% of SBT catches are expected to occur in the
waters corresponding to the colours less than 0.95 on this scale.

(Fig. 6) and informed management and stakeholders
about likely changes in the distribution of SBT habitat
over the year. These illustrations were distributed
to stakeholders to show the likely management
restrictions that may occur through the fishing sea-
son, and are now considered an important stake-
holder communication tool (http://www.afma.gov.au/
fisheries/tuna/etbf/notices/default.htm).
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Figure 5. The cumulative probability of obtaining model output scores
for all ETBF longline sets from 2001 to 2004 (crosses) and for those
longline sets on which southern bluefin tuna were caught (circles). This
probability plot is analogous to a quantile-quantile (QQ) plot. The data
used to produce this figure were obtained from the AFMA observer
logbook database version held at CSIRO Marine and Atmospheric
Research.

Placement of management boundaries

The location of the SBT management boundaries
during the 2004 season was changed regularly by the
longline fishery managers in response to predictions
of the temperature-based habitat model. Boundaries
were placed to best match the east—west extent of the
habitat zones from the habitat scenario. A northern
boundary specified the start of the buffer zone; only
vessels with SBT quota in excess of 500 kg could fish
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Figure 6. Southern bluefin tuna buffer zone climatology derived using
SST data from 1993 to 2004. The northern and southern boundary of
the buffer zone in the current year, and the maximum/minimum latitude
of the buffer zone in any year are also shown. To produce this clima-
tology it was necessary to relax the date restriction condition and use
the SST-only approach. Additional details provided in the text.

south of this boundary. The southern boundary
specified the start of the core zone; only vessels with
quota in excess of 4t could fish south of this
boundary. Boundary placement was by inspection of
the figures, not by algorithm.

In the 2004 season (June to November), fishery
managers made a total of seven boundary placements.
A selection of boundaries is shown in Figure 7 along
with the habitat model output upon which they were
based. These varied from simple boundaries running
cast—-west (e.g. 4 June, Fig. 7), to more complex
boundaries comprising several segments (e.g. 12 July,
Fig. 7). No boundary had more than three segments.
These management boundaries approximate the edges
of the core and buffer zones but do not capture the full
complexity of the habitat shape.

=+
=3
S
Q
3
I
%
S

06-Aug-2004

Figure 7. Examples of actual management boundaries placed by fish-
ery managers (AFMA) (left panels) and those calculated using the
optimiser algorithm (right panels) for the 2004 season. These bound-
aries are overlaid on the habitat zone images on which both were based.
The upper line divides the open zone from the buffer zone, while the
lower line divides the buffer zone from the core zone. Management
decisions early in the season were based on the output from an earlier
analysis method, the output of which is shown here to provide a
comparison with the automated boundary placement method. This
earlier analysis was more susceptible to surface cloud contamination as
is apparent on the first three panels where it was used. In one case,
management chose to place only one boundary (12 September 2004).

12-Sep-2004
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Automated placement of boundaries: comparing
management decisions

The management boundaries automatically placed by
the optimising algorithm were compared with those
chosen subjectively by the fishery managers. To
conduct this comparison, the same images with which
the management boundaries were chosen were subjec-
ted to the optimiser. The optimiser was allowed to
construct boundaries that were equally complex.
Figure 7 shows the boundaries that were determined
by managers and those produced by the optimiser,
while Figure 8 compares the management outcome
achieved with these approaches.

The optimiser management boundaries always
improved upon the management-placed boundaries
(AFMA) when the objective function values were
compared. However, at times (27 May and 12 Sep-
tember) the AFMA boundaries classified a larger
proportion of the area correctly (Fig. 8), but this was
at the expense of biasing the management in a
precautionary or non-precautionary direction (and
therefore a worse solution according to the objective
function). For example, on 27 May, AFMA manage-
ment boundaries classified more pixels correctly, but
the boundaries were biased towards precautionary
management (Fig. 8). The solution produced by the
optimiser algorithm for the same model output date
classified more pixels incorrectly, but incorrectly clas-
sified an equal number of pixels in both categories. On

=== AFMA: Correctly classified
I Optimiser: Correctly classified
E== AFMA: Non-precautionary
[ Optimiser: Non-precautionary
[__IAFMA: precautionary

[ 1Optimiser: precautionary

Proportion of area

1 SHLI| EEH] B
6 Aug 12 Sep 13 Oct 28 Oct

0 Bl 0 SEEE E
27 May 25 Jun 08 Jul O
Figure 8. Comparison of the management boundaries allocated by
fishery managers (AFMA) in 2004 and the corresponding placements
made using the automated boundary allocation process (optimiser). The
proportion of the area classified correctly, in non-precautionary, and in
precautionary categories is shown on the y-axis. The date of model
output used in allocating management boundaries is shown.

the remaining 5 days, the algorithm classified more
pixels correctly and did so in an unbiased manner (i.e.
the area managed in a precautionary manner was the
same as the area managed in a non-precautionary
manner). Note that five of the AFMA boundary
placements showed a bias towards non-precautionary
management, and only two (27 May and 8 July) were
biased towards precautionary management (Fig. 8).

Delays in allocating management boundaries

There were several causes of data delays that resulted
in outdated habitat information. The oceanographic
model produced data that were about 4 days old and
there were also delays of between 0 and 8 days from
the delivery of the habitat prediction report to the date
when management boundaries were changed. Thus,
managers in 2004 used model output that was between
4 and 12 days old at the time of the management
decision. Once a boundary was placed by management,
it remained for between 11 and 37 days before being
updated. Habitat predictions were delivered every
14 days; but, when the habitat zones were static, no
changes to spatial management rules were needed.
Figure 9 shows the increase in misclassified area as a
function of the age of the data used for setting
management boundaries; this shows, for example, that
for 5-day-old data there is an increase of approxi-
mately 30% misclassified area (misclassified area goes
from 11% to 14%). The large confidence interval in
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Figure 9. The increase in the proportion of the total area that was
misclassified as a function of the age of the data used for the man-
agement decisions. The dotted lines indicate the 95% confidence
interval. Management boundaries with two segments were used for this
analysis.
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Figure 10. Decomposition of the misclassified area into the compo-
nents contributing to precautionary (dotted line) and non-precautionary
management (solid line) as a function of the age of the data used for the
management decisions. Management boundaries with two segments
were used.

Figure 9 (and subsequent figures) is because of the
variable rate of habitat change throughout the season
(see Fig. 6). For example, during August the rate of
habitat movement south is lower than later in the
season, and thus the effect of managing with outdated
information is reduced. Later in the season, habitat is
moving more rapidly and using old data can lead to
greater misclassification. Averaging this pattern leads
to a wider confidence interval.

The increase in the two misclassification compo-
nents, u and /, that contribute to the objective function
was investigated individually (Fig. 10). Different beha-
viour is exhibited by each component because during
the period of management (July to November) core
SBT habitat is contracting to the south. Consequently,
the management boundaries using outdated predic-
tions are ‘left behind’ to the north resulting in a
precautionary bias.

Frequency of boundary updates by management

An important factor determining the efficiency of the
management boundaries is the frequency with which
they are updated. The more frequent the updates, the
better management can respond to the rapid changes
that can occur. There are, of course, practical limita-
tions, including the need to communicate changes to
the fishing fleet and permit the fleet the time to adjust
to changes, such that a boat fishing the open zone does
not find itself deep in core zone following an overnight
zone reclassification.
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Figure 11. Increase in the proportion of the total area misclassified as
the frequency of management boundary updates decreased; the dotted
lines indicate the 95% confidence interval. The 0-day point is compar-
able with the 4-day mark in Figure 9 as the best data available for
making management decisions was 4 days old.

The misclassified area increased as the interval
between management updates increased (Fig. 11).
For example, if boundaries were not moved for
10 days there was an average increase in the misclas-
sified area of approximately 20%. This was based on
the assumption that decisions are made using the best
possible data; in this case experience has shown that
4-day-old data are attainable and this delay was used
for this analysis. To put the potential changes in
perspective, during the 2004 season the intervals
between management boundary changes were 23, 11,
30, 37, 36 and 17 days. In future years, when more
SBT model output is available, it will be possible to
indicate the expected increase in misclassified area as a
function of both the time of year and the age of the
analysis used for management.

Discussion

The development of a real-time spatial management
support tool for fisheries management has been a
success; it has been adopted by the relevant Australian
fishery managers and has helped reduce unwanted
bycatch of SBT in cases where quota to land the
species is in limited supply to fishers. This scientific
support for management aims to underpin real-time
adaptive management in a transparent and objective
fashion. Such management is one way of increasing
sustainability of marine fisheries, and in this case, also
underpins a national commitment to an international
management agreement. Additional outputs, such as
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the habitat climatology, provided stakeholders with a
better understanding of the scientific process and an
appreciation of the value of near real-time spatial
management approach in managing a complex issue.

This temperature-based habitat model has evolved
over approximately 4 years, from an SST-only model
to a depth-integrated model, and has become an
important part of the management process in this
Australian longline fishery. The increase in SBT
temperature preference data from PAT tags over this
time period has also allowed a restriction to habitat
preferences close to the time considered. These
improvements and a consultative period of develop-
ment have led to stakeholder and management con-
fidence in the approach. The visualisations and
climatologies are also readily understood by the
stakeholder group, which is an additional benefit.
Providing management support tools that address
these issues is a challenge for fisheries science, given
the complexity of assumptions and models that
underlie some analyses (Froese 2004).

Habitat characterisation

The pelagic habitat of SBT has been defined on vertical
temperature preferences alone because these are the
data obtained from both tags and output of the near
real-time ocean model. As ocean models begin to
describe other pelagic habitat characteristics effect-
ively, such as productivity (e.g. Lehodey, Andre,
Bertignac, Hampton, Stoens, Menkes, Memery &
Grima 1998), at scales relevant to management,
habitat prediction could be based on information
gathered from other sources, such as catch distribu-
tions and more complicated habitat preferences
(e.g. Bertrand, Josse, Bach, Gros & Dagorn 2002).
These habitat characterisations have been a corner-
stone of fisheries oceanography (e.g. Swartzman,
Stuetzle, Kulman & Powojowski 1994; Bigelow, Boggs
& He 1999), yet without information on the three-
dimensional ocean structure, flexible spatial manage-
ment options are harder to implement. Without the
ocean models, habitat predictions and subsequent
spatial management options would be restricted to
static closures (e.g. Goodyear 1999), or surface
identification of habitat features (e.g. Polovina et al.
2000; Zagaglia & Stech 2004).

Evidence for changes in local and regional ocean-
ography are now emerging from ocean models and
these changes are at scales relevant to local resource
users. Habitat models can be used to demonstrate the
range of changes in resource distribution that are likely
under these scenarios. In combination with socio-

economic elements, these models will support more
comprehensive management approaches for enhancing
ecological as well as economic sustainability. [For
example, changes in target species distribution as
predicted by habitat models may allow foresight in
the development of port facilities, or other regional
development investment.

Future implementation and improvements

The increase in the misclassified area with delays in
management decisions showed that every effort should
be made to base decisions on the most recent data
available, which, given the delayed nature of the
oceanographic model output, will usually be around
4 days old. The increase in the misclassified area may
result in an additional SBT bycatch and/or in an
unnecessary closure of fishing grounds. In future, as
the ocean model is further developed, this delay should
be reduced and could eventually allow future ocean
state predictions (D. Griffin, personal communica-
tion). Management may still choose to delay imple-
mentation of zones, to allow fishers a chance to vacate
a now-closed area. already happened!

Improvement of the current SBT habitat model will
also occur in future years. In particular, the estimated
zones will be determined with greater confidence, as
more SBT habitat preference data from PATs are
collected and vertical water mass characterisation is
improved. Against this background of biological
model improvement is the expected loss of satellite
platforms which will reduce the availability of data for
oceanographic models. Changes in habitat preference
as a function of fish size can be investigated, as can
interannual variation in habitat preference. As tagging
techniques are improved to allow deployments of
increasing duration, it will become more probable that
tuna will move out of the area of interest (the east
coast). Thus, despite these deployments providing a
wealth of new data it will become more important to
ensure that the data incorporated into the analysis
were collected while the fish was in the appropriate
area. This will require effort in the area of geolocation
which is currently of limited accuracy for PAT tags
(J. Gunn and T. Patterson, unpublished data).

Additional validation of the model and method is
important. For example, the expected reporting of SBT
captures by observers aboard ETBF longline vessels in
each of the three zones can be evaluated when a
validated catch data set is collected. It might be
expected that only 5% of longline sets would capture
SBT or 5% of the CPUE would occur in the region
that was defined as the most extreme 5% of the SBT
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habitat. This use of probability levels for each zone
also acknowledges that the predictions of where SBT
will occur will not be possible with 100% certainty.
In future the decision on probability levels should be
made in combination with a calculation of the
potential catch if that probability is realised. Such
performance measures should be incorporated in this
type of spatial management tool and will lead to
improvements in the scenarios that underpin the
management approach.

This habitat prediction approach allowed changes in
management as SBT habitats moved in response to
local oceanography. The importance of regular man-
agement boundary movements using the most recent
analyses was demonstrated. Both fishers and managers
have accepted the advantages of updating closure areas
during the season to avoid SBT bycatch. Managers are
committed to updating management boundaries as
regularly as possible given the inherent practical
limitations and ensure that decisions based on current
analyses are obtained to assist in making these
decisions. The automated boundary placement
approach could be used to assist management in
boundary placement in future, but, certain extensions
need to be incorporated before the removal of the
human element would be advocated. These include the
ability of the optimiser to provide several different
solutions that are (approximately) equal in their
quality from the optimiser’s perspective but may have
different practical implications for the industry. The
management boundaries to date have been allocated
by managers and it is therefore necessary to provide a
relatively simple classification of the survey area into
the three different zones. However, even within these
zones there are substantial differences in the likelihood
of SBT presence. For example, the core zone includes
habitats which range in expected suitability (e.g. 100%
to 15%). The optimisation routine can easily handle
the full detail of the analysis and an extension to use
this might prove beneficial.

Near real-time spatial management

There are few examples of near real-time spatially
explicit information provided to fishery managers to
enhance sustainable fisheries and reduce unwanted
species interactions. One other example is the rapid
assessment of population composition based on gen-
etic structure (Beacham, Lapointe, Candy, Miller &
Withler 2004). In this case, the fishing effort allowed on
salmon at particular locations is regulated according to
the presence of particular stocks through a season. The
turnaround time in providing management informa-

tion was on the timescale of days (Beacham ez al.
2004).

Habitat description to predict species distribution
has been attempted for a variety of benthic and pelagic
species (Brill 1994). For benthic species, where it is often
the distribution of habitat features, such as bottom type
that dictate distribution, habitat identification may not
need to be updated provided that habitat damage has
not occurred. Some benthic species, such as Atlantic
cod, Gadus morhua L., show an interaction between
temporally variable environmental features and consis-
tent spatial features, such that habitat suitability at a
point varies temporally (Perry & Smith 1994). Real-
time habitat identification for these benthic species and
most pelagic species is a challenge because the distribu-
tion of habitat is temporally variable. The availability
of an ocean model for habitat prediction for SBT was
considered important because these tuna are out of the
surface layer for more than 60% of the time. Thus, sub-
surface structure was expected to play a large part in the
habitat distribution. For species which spend a greater
proportion of time at the surface, such as yellowfin
tuna, Thunnus albacares Bonnaterre, a suitable habitat
prediction model could be based only on real-time SST
imagery, which is routinely available. Reliance on
surface images does mean that cloud cover will be an
issue in some regions. Habitat prediction for benthic
species or pelagic species which spend a great deal of
time at depth, such as bigeye tuna, Thunnus obesus
Lowe, or swordfish, Xiphias gladius L., would also rely
on ocean models to predict the 3D structure of the
habitat and perhaps other variables such as prey
distribution. The approach outlined is equally applic-
able to any species for which suitable data exist; such
data are being gathered for a variety of top pelagic
predators by researchers throughout the world. The
dual breakthroughs have been the development of tags
that can report vertical water column data on a near
real-time basis, and the development of a three-dimen-
sional ocean model that is updated and available to
fishery scientists on a space and time scale that is
suitable for management uptake. As habitat preferences
and distributions are developed for a range of species,
tradeoffs between access to desirable species and
protected species can also be evaluated.

Forecasts of habitat distribution cannot be made
using real-time observations alone, but might rely on
statistical descriptions of expected habitat distribution
(Lehodey 2001) or ocean forecast models. [Forecasts of
future habitat distribution at a scale relevant to
fisheries managers are likely in the next few years,
and will allow a range of management and fishery
responses, including forecasts of fishing regions and
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decisions regarding quota purchase. This advance will
allow even more flexible options for safeguarding
sustainability or allow even great exploitation, depend-
ing on how information is used (Basson 1999).
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