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Abstract: Capture of the target, bycatch, and protected species in fisheries is often regulated through spatial measures that
partition fishing effort, including areal closures. In eastern Australian waters, southern bluefin tuna (SBT, Thunnus maccoyii)
are a quota-limited species in a multispecies longline fishery; minimizing capture by nonquota holders is an important man-
agement concern. A habitat preference model (conditioned with electronic tag data) coupled with ocean reanalysis data has
been used since 2003 to generate real-time predicted maps of SBT distribution (nowcasts). These maps are used by fishery
managers to restrict fisher access to areas with high predicted SBT distribution. Here we use the coupled ocean–atmosphere
model, POAMA (predictive ocean atmosphere model for Australia), and a habitat model to forecast SBT distribution at lead
times of up to 4 months. These forecasts are comparable with nowcasts derived from the operational system, and show skill
in predicting SBT habitat boundaries out to lead-times of 3–4 months. For this fishery, seasonal forecasts can provide man-
agers and fishers with valuable insights into future habitat distributions for the upcoming months, to better inform opera-
tional decisions.

Résumé : Les captures des espèces ciblées, accessoires et protégées dans les pêches commerciales sont souvent règlemen-
tées au moyen de mesures spatiales qui partitionnent l’effort de pêche et qui incluent aussi des fermetures de zones. Dans
les eaux de l’est de l’Australie, le thon rouge du sud (SBT, Thunnus maccoyii) est une espèce règlementée par des quotas
dans une pêche multispécifique à la palangre; la minimisation des captures par ceux qui ne possèdent pas de quota est une
importante préoccupation de gestion. Un modèle de préférence d’habitat (conditionné avec des données provenant d’étiquet-
tes électroniques) couplé à des données de réanalyse de l’océan sert depuis 2003 à produire des cartes de la répartition pré-
dite des SBT en temps réel (prévisions immédiates). Ces cartes servent aux gestionnaires de la pêche pour restreindre
l’accès des pêcheurs aux zones dans lesquelles on prédit une forte répartition des SBT. Nous utilisons ici le modèle couplé
océan–atmosphère POAMA (Predictive Ocean Atmosphere Model for Australia) et le modèle d’habitat afin de déterminer la
répartition des SBT pour des périodes futures allant jusqu’à quatre mois. Ces prédictions sont comparables aux prévisions
immédiates dérivées du système opérationnel et se montrent capables de prédire les frontières de l’habitat jusqu’à des pério-
des futures de trois à 4 mois. Dans cette pêche commerciale, les prédictions saisonnières peuvent fournir aux gestionnaires
et aux pêcheurs des perspectives précieuses sur les répartitions futures des habitats pour les prochains mois afin d'établir des
bases sérieuses pour les décisions opérationnelles.

[Traduit par la Rédaction]

Introduction
In many fisheries, the capture of the desired target species

is accompanied by the capture of other species (bycatch), in-
cluding protected species (Hall 1998; Tuck et al. 2001; Lew-
ison et al. 2004). Improvements in gear selectivity have
reduced the amount of bycatch in some cases, such as prawn
and trawl fisheries (e.g., Griffiths et al. 2006; Ward et al.
2008). In fisheries where gear modification cannot be used
to select particular species, spatial identification of core hab-
itat has been proposed to manage unwanted interactions (e.g.,

Goodyear 1999; Grantham et al. 2008). Core habitat can be
identified via physiological studies, species observations,
catch data, and from electronic tags. Information on the envi-
ronmental preferences of a wide range of pelagic target and
bycatch species has been collected using electronic tags
(Block et al. 2003; Weng et al. 2005; Wilson et al. 2005). A
goal in many of these tagging studies has been to generate
habitat preference maps that can be used in fishery manage-
ment (Hobday and Hartmann 2006; Teo et al. 2007; Hobday
et al. 2009).
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Real time spatial management has been used in the multi-
target species Australian east coast longline fishery (Eastern
Tuna and Billfish Fishery, ETBF) to minimize unwanted cap-
ture of southern bluefin tuna (SBT, Thunnus maccoyii) since
2003 (Hobday and Hartmann 2006; Hobday et al. 2009).
SBT habitat preferences based on historical pop-up satellite
archival tag (PSAT) data are combined with near real-time
satellite sea surface temperatures and altimeter-based esti-
mates of subsurface ocean temperature (SynTS; Ridgway
and Dunn 2010) to describe three zones of expected SBT dis-
tribution (Hobday and Hartmann 2006). These zones corre-
spond to regions where few SBT are found and fishing is
unrestricted (OK habitat), the region where most SBT are ex-
pected (core habitat) and an intermediate region (buffer habi-
tat) (Hobday et al. 2009; Hartog et al. 2011). The name “OK
zone” has been used by the fishery since 2003, and refers to
the zone being “OK for fishing without restrictions”. The re-
sulting habitat map is essentially a nowcast, i.e., a depiction
of current conditions, as opposed to a forecast, which is a
prediction of future conditions.
Based on this habitat nowcast, three corresponding man-

agement zones are then created by fishery managers in the
ETBF. Access by ETBF fishers to these zones is regulated
based on the level of observer coverage and on the amounts
of SBT quota they are holding (Hobday et al. 2009), and en-
forced with observer coverage and vessel monitoring systems.
The habitat nowcast and management update of the zones oc-
curs approximately every 2 weeks during the period when
SBT are commonly captured in the ETBF (May–November).
Over time, the management lines that divide the zones have
become more complex and are updated with greater fre-
quency during the fishing season, resulting in reduced inter-
action with SBT (Hobday et al. 2010). Several similar spatial
management approaches have been proposed elsewhere in the
world to minimize the bycatch of billfish (Goodyear 1999),
tuna (e.g., Teo et al. 2007; Armsworth et al. 2010), and tur-
tles (e.g., Howell et al. 2008). For example, the scheme de-
scribed by Howell et al. (2008) is based on a voluntary
regulation of fishing activity based on the real-time distribu-
tion of isotherms that delineate core turtle habitat (Pacific Is-
lands Fisheries Science Center).
Both voluntary and compulsory spatial management strat-

egies result in limits on where fishing operations can occur.
Information about the likely future habitat distribution may
offset some of the disadvantages arising from spatial restric-
tions (e.g., Armsworth et al. 2010) and allow fishers and
managers to plan activities and regulation. For example, in
the case of operational SBT habitat nowcasts in the ETBF,
the climatology is provided with each habitat nowcast. A cli-
matology is a long-term average, and in this case, is com-
posed of the average position of the habitat boundaries of
predicted SBT habitat for each day of the year over a
16 year period (1993–2008). The SBT habitat boundaries for
the current year are plotted against this climatology to allow
managers and fishers to plan ahead based on how present
SBT habitat conditions vary from the long-term mean
(Fig. 1).
The seasonal cycle of SBT habitat is strongly influenced

by that of the East Australia Current (EAC; Ridgway and
Godfrey 1997). The EAC is a southward flowing western
boundary current between 18°S and Tasmania, and is a re-

gion of intense eddy activity. The current is generally stron-
ger and closer to the coast in summer (December–March)
than in winter (Tomczak and Godfrey 1994). In warmer-
than-average years, when the EAC moves further south, SBT
habitat is also compressed to the south, while in cooler years,
SBT habitat, and hence spatial management restrictions, are
found further north than usual. In the east coast region con-
sidered, the core zone is typically 60% of the study area (24°
S–42°S, 148°E–170°E), the buffer zone is approximately
30%, and the remaining fraction of the study area (10%) is
the OK zone (Hobday et al. 2010).
More robust predictions can potentially be made using sea-

sonal forecast models, as climatological approaches may have
limited value in regions with substantial interannual variabil-
ity and under a changing climate. Seasonal predictions can be
used to provide managers and fishers with more information
about likely ocean conditions several months into the future.
These predictions may be based on statistical relationships
derived from historical data (e.g., Penland and Matrosova
1998; Lima et al. 2009), or multivariate dynamic model sim-
ulations (e.g., Kirtman et al. 1997; Spillman et al. 2010b).
For example, the Australian Bureau of Meteorology dynamic
seasonal forecast model POAMA (predictive ocean atmos-
phere model for Australia) is used to issue operational El
Niño Southern Oscillation (ENSO) and equatorial Indian
Ocean sea surface temperature (SST) forecasts, both of which
have high skill (Wang et al. 2008; Lim et al. 2009; Zhao and
Hendon 2009). POAMA is also used to forecast SST anoma-
lies in the Great Barrier Reef up to 6 months into the future
(Spillman and Alves 2009; Spillman et al. 2009, 2010a). Ad-
vance warning of anomalously warm ocean temperatures, the
primary cause of mass coral bleaching (Hoegh-Guldberg
1999), allows for proactive management responses to mini-
mize reef damage. The forecasts form an integral part of the
Great Barrier Reef Marine Park Authority Coral Bleaching
Response Plan and reef management plans (Maynard et al.
2009). POAMA is also used to issue operational ENSO fore-
casts
Seasonal prediction also has the potential to be very useful

in fishery management. Fishery managers may use seasonal
forecasts to manage expectations about upcoming manage-
ment restrictions, guide observer deployments, or plan other
management interventions. A longer-term view can also be
useful to fishers, who may need to plan vessel movements or
port usage (rental of moorings, crew movements), and to pur-
chase or sell access rights or quota based on expected ocean
conditions that may influence management decisions. Fishing
strategies may also change, based on the expectation of when
a fishing region will receive additional effort from fishers
who are displaced from closed areas, or who move into open
areas (Armsworth et al. 2010). As an initial step, it is neces-
sary to assess whether seasonal forecast models can offer im-
proved habitat predictions compared with those derived from
climatologies. To date, we know of no fisheries that use sea-
sonal forecasting ocean models in management. However,
rapid advances in model development and information on
fish habitat preferences are increasing the potential use of
seasonal models in fisheries management, and it is being
considered in the ETBF.
Here we use the POAMA seasonal forecast model coupled

to the existing SBT habitat preference model to generate
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monthly habitat forecasts for SBT. Firstly, we compare
monthly habitat nowcasts produced using the BLUElink Re-
analysis (BRAN; Schiller et al. 2008) with nowcasts from the
existing operational habitat system. BRAN is considered to
be an improved representation of the ocean compared with
SynTS (Oke et al. 2008), so replacing SynTS is desirable.

We then assess the performance of POAMA habitat forecasts,
using the BRAN nowcasts as the new benchmark. In particu-
lar, we evaluate the skill of POAMA predictions of future
SBT habitat at lead-times of 0–4 months to determine
whether POAMA predictions of the location of future SBT
habitat improve upon climatological estimates. If skill is

Fig. 1. (a) Sea surface temperature maps, and (b) southern bluefin tuna (SBT) habitat nowcast maps using the operational SBT habitat model
for 15 June 2006. (c) Daily operational nowcast climatology of SBT habitat zones, with example operational nowcast boundaries shown for 15
June 2006. The monthly mean position of the boundaries between core and buffer zones (lower line), and buffer and OK zones (upper line)
for 1994–2005 is indicated by the yellow band. The blue lines indicate the maximum northerly and southerly extent of these boundaries re-
corded during the period. The position of the habitat boundaries in the current year (2006) up to the date of the current habitat nowcast (15
June) is depicted by the red band. SBT habitat nowcast maps and climatology are updated online approximately every 2 weeks during the
fishing season (AFMA 2011). Grey squares and circles represent forecasts from the predictive ocean atmosphere model for Australia
(POAMA) for the location of the habitat boundary for future months, with decreasing size indicating a reduction in skill levels the farther into
the future the predictions are made.
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present, seasonal forecasting could offer fishers and managers
additional insight into future ocean, fishing and management
conditions.

Materials and methods

Ocean temperature reanalysis and forecast products
Three ocean temperature products were used in this study

to drive a statistically based SBT habitat model. Two are de-
rived from ocean data reanalysis products, and the third is a
coupled dynamic ocean–atmosphere model capable of sea-
sonal forecasting (Fig. 2). An ocean reanalysis is an assimila-
tion of past ocean data, often using very sophisticated
techniques, to give a three-dimensional (3D) depiction of the
ocean state at a particular time in the data period. A reanaly-
sis is generally used as observations, or the best estimate of
the ocean state, against which to validate model forecasts.
Use of this data to drive a secondary model gives rise to es-
sentially what is termed a nowcast, i.e., a representation of
current conditions. Coupled ocean–atmosphere models are
based on physics and predict future ocean conditions, based
only on the best available knowledge of the present ocean
state. A hindcast is a retrospective prediction of past condi-
tions, initialised only with information available before the
hindcast start date, and run forward in time in forecast
mode. A forecast is generated in a similar way but is done
in real-time to predict future conditions.
When comparing the variability of different products,

anomalies are commonly used, i.e., the deviations about the
mean. In this study these are created by removing the
monthly climatology from the monthly values, where the cli-
matology is the long-term average for each month over a sub-
stantial period of time. A climatological forecast uses these
long term mean values as forecasts for each future month
and assumes there is no interannual variability.
Conversely, a persistence forecast uses the current ob-

served conditions as a predictor of future conditions: e.g., for
a forecast beginning on 1 May 2003, the current observed
conditions for April 2003 are used as the forecast and per-
sisted for the duration of the forecast period. Persistence is a
commonly used benchmark in seasonal forecasting (e.g.,
Barnston et al. 1999; Wang et al. 2002; Doblas-Reyes et al.
2005), and is often used as a minimum skill forecast, with
model skill beyond that of persistence attributed to model dy-
namics The correlation skill of persistence forecasts is equal
to the skill assuming a first order autoregressive process
(AR1).

Operational reanalysis (SynTS)
The reanalysis product SynTS is used to generate the op-

erational habitat nowcasts. A mean ocean state field for
1992-present is derived from CTD surveys and Argo floats
or Australian waters (100°E–180°W; 50°S–10°N), using so-
phisticated spatial interpolation schemes (Ridgway and Dunn
2010). Satellite altimetry sea level anomalies are used to di-
rectly correct sampling errors in surface heights, salinities,
and temperatures, with corrections projected through the
water column using an empirical model to modify the mean
subsurface fields. The empirical model is based on a multiple
linear regression technique (SynTS) using on independent
ocean data for 1950–1992 (Ridgway and Dunn 2010). The

reanalysis has a daily temporal resolution and horizontal res-
olution of ∼28 km (0.25°), with 25 depth layers in the upper
200 m.

Ocean reanalysis (BRAN)
The BLUElink Ocean Reanalysis (BRAN) is a global

ocean reanalysis, produced using a global high-resolution
Ocean General Circulation Model (OGCM) and an advanced
data assimilation scheme (Oke et al. 2008; Schiller et al.
2008). Altimetric sea-level anomalies, satellite SST, and in
situ temperature and salinity profiles for 1993–2006 were as-
similated, giving a cohesive picture of the monthly mean ob-
served state of the ocean for this period (Schiller et al. 2008).
The spatial resolution of BRAN is 0.1° (∼10 km) in the hor-
izontal and 10 m in the vertical down to 200 m. Temporal
resolution is daily, although we have used monthly averages
here for comparison with the monthly seasonal forecasts.

Seasonal forecast model (POAMA)
POAMA(version 1.5b) consists of a global coupled ocean–

atmosphere model and data assimilation systems for the initi-
alisation of the ocean, land, and atmosphere, and was devel-
oped jointly by the Australian Bureau of Meteorology and
the Commonwealth Scientific and Industrial Research Organ-
isation (CSIRO) Division of Marine and Atmospheric Re-
search. The atmospheric model component has a horizontal
spectral resolution of T47 (roughly equivalent to 2.5° ×
2.5°) and 17 vertical levels. The ocean model grid spacing is
2° in the zonal direction and 0.5°–1.5° in the meridional di-
rection, with 25 vertical levels, of which 12 are in the upper
185 m. Further details can be found in Spillman and Alves
(2009) and Spillman et al. (2010b).
A 10 member ensemble of retrospective forecasts (hind-

casts) was generated by starting the model 10 times on the
first day of each month for 1993–2006, initialized only with
ocean information available before the start date and running
forward in forecast mode for 9 months. Lead-time is defined

Fig. 2. Habitat maps for the distribution of southern bluefin tuna
(SBT) are produced using three sources of ocean information:
SynTS, BLUElink Ocean Reanalysis (BRAN), and the predictive
ocean atmosphere model for Australia (POAMA). Nowcasts using
SynTS and BRAN were first compared to determine whether BRAN
was suitable for comparison with POAMA as explained in the text.
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as the time elapsed between the model start date and the
forecast date, i.e., if the start date is 1 May 2003 and the
forecast is for August 2003, the forecast lead-time is
3 months, while the forecast for May 2003 is defined as
lead-time 0 months. Generally forecast accuracy is highest
for lead-time 0 months and decays as forecasts predict further
into the future (i.e., increasing lead-time). Ensemble members
are averaged to give the overall ensemble mean forecast,
which is used throughout in this study.
To assess the accuracy of the POAMA temperature fore-

casts, the heat content of the upper ocean was used to give a
depth integrated indication of skill. Skill is calculated by cor-
relating POAMA heat content forecasts with observed heat
content from BRAN in both space and time for 1993–2006.
The correlation coefficient (r) is defined as the ratio of the
covariance of POAMA and BRAN heat content to the prod-
uct of their standard deviations, with a skill value of 1.0 indi-
cating a perfect fit between model and observed values.
Comparisons at a range of depths with BRAN show that
POAMA has highest skill in the top 100 m, with tempera-
tures underestimated below this depth.

Southern bluefin tuna habitat predictions
The SBT habitat model is based on thermal habitat prefer-

ences of adult SBT, derived from PSAT deployed on the east
coast of Australia (Patterson et al. 2008). Temperature prefer-
ences from the historical tag-based dataset are stratified ac-
cording to depth, and used as weightings within the model
for the average time SBT spend at each depth. The model is
then forced with either observed or predicted ocean tempera-
tures to determine the location of preferred SBT habitat at a
particular time. The resulting habitat preference is the verti-
cally integrated probability of SBT occurrence in each pixel
or grid cell (i.e., at resolution of the forcing ocean tempera-
tures) in the eastern Australia region (see Hobday and Hart-
mann 2006; Fig. 1b). Depths were restricted to the upper
100 m, owing to lower skill below this depth in the POAMA
forecasts. According to the archival tags, SBT spend 90% of
their time shallower than 200 m, and 74% shallower than
100 m; thus we considered the upper 100 m to be satisfac-
tory in this study. Habitat preferences were produced for
each month of the fishing season (May–November) for
1994–2006 using the SynTS reanalysis, BRAN reanalysis,
and POAMA forecast ocean temperatures (Fig. 2).
The probability of an SBT being found at a location (pixel)

is based on cumulative probability of temperature preferences
in the model domain (24°S–42°S, 148°E–170°E). For exam-
ple, the 80% value in the probability distribution indicates the
temperature below which 80% of SBT are expected to occur.
This continuous habitat preference is simplified to create
three distinct habitat zones: the core zone is defined as the
area in which SBT spend at least 80% of their time based on
habitat preferences; the buffer zone, where SBT spend only
15% of their time (i.e., the 80%–95% probability region),
and the OK zone, where SBT are expected less than 5% of
the time (i.e., the 95%–100% probability region). The lati-
tudes at which 95% of the core pixels and 95% of the buffer
pixels occur (both counting from the south) are referred to
hereinafter as the core and buffer habitat boundaries, respec-
tively (as in Hobday and Hartmann 2006).

Operational habitat nowcasts
Operational habitat nowcasts are produced every 2 weeks

for ETBF managers during part of the fishing season. The
habitat model inputs for these nowcasts are temperature data
from the SynTS ocean reanalysis for the upper 100 m. In op-
erational usage, satellite SST data is used for the surface
layer in the habitat model (previously called “BLUElink-
based products” in Hobday and Hartmann (2006)) but was
replaced by the surface layer of SynTS in this study, to ac-
count for the missing data owing to cloud cover in the satel-
lite SST product. SynTS was produced in real time in the
past, thus was suitable for use in operational forecasting;
however, an improved product, BRAN, is now available, and
is evaluated here to replace the SynTS product.

BLUElink ocean reanalysis habitat nowcasts
BRAN habitat nowcasts were generated for each month of

1994–2006 using ocean temperatures in the upper 100 m of
the BRAN reanalysis to force the SBT habitat model. BRAN
habitat nowcasts are first compared with the SynTS opera-
tional nowcasts to ensure that using the two different obser-
vational reanalysis products does not result in significantly
different results, and thus BRAN nowcasts are suitable for
comparison with the seasonal model forecasts. These BRAN
nowcasts are then used for verification of forecasts produced
by POAMA, as BRAN is considered to be a more accurate
representation of ocean state than the SynTS product used
operationally. We used a monthly average of BRAN for com-
patibility with the seasonal model.

Predictive ocean atmosphere model for Australia seasonal
habitat forecasts
The habitat model inputs for the seasonal habitat predic-

tions were scaled monthly POAMA ocean temperature fore-
casts for the upper 100 m. To scale the POAMA monthly
ocean temperatures, first the model monthly climatology was
removed to create temperature anomalies. The model clima-
tology is the long-term monthly mean ocean temperatures
for 1993–2006, computed relative to start month and lead-
time for the model, and is removed to reduce the effects of
any model bias (Stockdale 1997). The temperature anomalies
were then interpolated and smoothed to match the BRAN
spatial grid, i.e., ∼10 km in the horizontal and 10 m in the
vertical direction. Second, the BRAN monthly climatology
for 1993–2006 was then added to the anomalies to give abso-
lute temperatures. This approach scales the mean of the fore-
cast but not the variability, the latter being the primary aim
of predictions, i.e., how much each month deviates from the
long term mean. POAMA habitat forecasts were then gener-
ated using the scaled POAMA ocean temperatures for each
month at lead-times of 0–4 months for the period 1994–
2006.

Persistence habitat forecasts
BRAN habitat nowcasts were also used to create persis-

tence forecasts for comparison with POAMA forecasts. A
persistence forecast simply uses current observed habitat lo-
cations as a predictor of future conditions, e.g., if the habitat
latitude boundary nowcast is currently 1° further north than
the climatology, that differential is maintained for future
dates in the coming season.
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Metrics for habitat comparisons
Latitude anomalies were used to compare the core and buf-

fer boundary locations between the operational nowcasts,
BRAN nowcasts, and POAMA forecasts. These were calcu-
lated by removing the monthly latitude boundary climatology
from the boundary values (e.g., May 2003 minus May aver-
age across all years). For BRAN nowcasts, latitude anomalies
are derived using the average BRAN habitat boundary loca-
tion for each month of 1994–2006. Similarly, for POAMA
habitat forecasts, latitude anomalies are derived using the
mean POAMA boundary location for each month at each
lead-time in the same period.
We first compared habitat boundary locations of the

BRAN nowcasts with those of the operational nowcasts.
This was done to ensure the BRAN nowcasts were suitable
as a substitute for the operational nowcasts for comparisons
with POAMA forecasts. Preliminary analysis showed the
monthly BRAN nowcasts and operational nowcasts agreed
well, with average monthly differences in boundary location
of less than 0.25° latitude for 1994–2006.
We then validated POAMA habitat forecasts in two ways.

Firstly, we compared the BRAN nowcast habitat boundary
anomaly for each month in 1994–2006 with those generated
using POAMA forecasts at lead-times of 0–4 months for each
month in each year (an example of BRAN and POAMA hab-
itat maps is shown in Fig. 3). We evaluated how frequently
both BRAN and POAMA latitude anomalies at each lead-
time were north or south of the monthly climatological loca-
tion of BRAN and POAMA habitat boundaries, respectively.
Secondly, POAMA habitat forecasts were compared with per-
sistence habitat forecasts (based on BRAN habitat nowcasts),
as a minimum skill test.

Results

SBT habitat nowcast comparisons
There is good agreement between the SynTS and BRAN

SBT habitat nowcast values for the period 1994–2006, with
normalized RMS difference values of 0.116° and 0.095° lati-
tude for the northern buffer and northern core, respectively.
Variability of the core and buffer habitat zones about their
climatology, based on the SynTS nowcasts, is approximately
1°–2° of latitude for 1994–2006 (Fig. 4a). The variability in
the buffer boundary location (Fig. 4c) is greater than that of
the core boundary (Fig. 4b). The BRAN nowcasts of the core
habitat boundaries are shifted slightly to the south (indicating
colder water) of the SynTS climatology (Fig. 4d), and again
the variability in the buffer location (Fig. 4f) is greater than
for the core (Fig. 4e). In summary, the overall magnitude of
the deviations of the monthly BRAN habitat boundary now-
casts from the SynTS daily climatology are generally small,
establishing the suitability of the BRAN nowcasts for use as
the benchmark for skill assessment of POAMA habitat fore-
casts at different lead-times.

POAMA ocean temperature forecast skill
The skill of POAMA forecasts of heat content anomalies

of the upper 100 m in the East Australian region, when using
BRAN as observations, is shown for each month of May-
November 1993–2006 (Fig. 5), and shows the model is poten-
tially useful. Model skill is highest at lead-time 0 months and

decreases with increasing lead-time for all months shown. At
lead-time 0 months, skill is highest south of 36°S and east of
163°E for all months, with areas of low skill confined mostly
around 32°S. This low skill is most likely a result of high var-
iability in this region owing to the EAC and the associated
intense eddy activity (Tomczak and Godfrey 1994), which
cannot be resolved by the model. The months May, June, and
July seem to have higher skill than those later in the season at
all lead-times shown, which may also be linked to seasonal
variations in EAC activity. As lead-time increases, areas of
low skill extend further offshore (Fig. 5), although these areas
are outside the usual region fished by the ETBF fleet.

POAMA habitat forecasts
POAMA forecasts of core and buffer habitat boundaries,

together with deviances from the operational daily climatol-
ogy, are shown for 1994–2006 (Fig. 4). Predictions of the
core and buffer habitat boundaries are shifted to the south
compared with the daily operational climatology (Fig. 4g).
The variability in the POAMA predicted core and buffer lo-
cations is similar (Fig. 4h), although overall deviation from
the operational climatology is greater for the POAMA buffer
boundary forecasts (Fig. 4i).
The deviations of the POAMA core zone boundary from

the BRAN nowcast values for each month of 1994–2006 at
different lead-times are summarized (Fig. 6). Early in the
fishing year (May) the core habitat for SBT is generally to
the south of the region, then extends northwards in the aus-
tral winter before retracting to the south again into summer
(Fig. 1c). There is a slight seasonal signal to the deviances
in the location of the POAMA core zone boundaries for all
lead-times. POAMA temperature inputs have been bias cor-
rected using BRAN climatology, therefore these deviances
are most likely due to the nonlinearity of the statistical habi-
tat model. The POAMA habitat predictions in May tend to
become slightly positive at the lead-times of 3 and 4 months,
indicating that POAMA habitat forecasts occasionally pre-
dicted the core boundary slightly north compared with the
BRAN nowcasts (Fig. 6).
In June, the deviance tends to be positive at all lead-times,

indicating that the core boundary is often forecast further
north than in the BRAN nowcasts, whereas for July and Oc-
tober, the deviance is small. The deviance does not increase
markedly for increasing lead-times, suggesting that the
POAMA forecast is potentially useful out to a lead-time of
4 months, based on this analysis (Fig. 6); however, forecast
skill does deteriorate regionally (Fig. 3).
Of particular interest to fishers and managers is whether

the boundaries of the habitat zones can be forecast as being
further north or south of the long term average location for
that time of year (i.e., north or south of the climatology).
Calculating the frequency with which POAMA forecasts of
habitat boundaries agreed with BRAN habitat nowcasts dur-
ing 1994–2006, i.e., both boundaries either north or south of
the climatological location, showed that at lead-times of 0–
4 months, the agreement between the location of boundaries
ranged from 76% to 68% for the core zone at lead-times of 0
and 1–3 months, respectively (Fig. 7).
This agreement was lower for the more variable buffer

zone, ranging from 66% to 51% agreement at lead-times of 1
and 3 months, respectively (Fig. 7). Using only the upper and

Hobday et al. 903

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
C

SI
R

O
 o

n 
05

/2
9/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



lower quartiles of the POAMA forecasts (i.e., the 25% of
most northern and 25% of most southern), agreement with
the subsequent observation is even greater at lead 0 for the
core (89%) and buffer (88%), and declines to 83% and 81%,
respectively, at lead 1, 78% and 81% at lead 2, 83% and 83%
at lead 3, and to 80% and 80% at lead 4. The location of the
boundaries north or south of the average locations highlights
the interannual variability in the location of the zones and the

benefits of a using a dynamic forecast over a climatological
forecast in those years.
The skill of model predictions in predicting the northern

boundaries of the core and buffer zones was also compared
with that of persistence forecasts. The skill of the POAMA
forecast of the latitude anomaly for the core habitat boundary
was high and declined over time, but importantly, was higher
than the BRAN persistence forecast for all months at all leads

Fig. 3. (a) BLUElink Ocean Reanalysis (BRAN) nowcast and (b, d, f, h, and j) predictive ocean atmosphere model for Australia (POAMA)
habitat forecasts of southern bluefin tuna (SBT) habitat zones for July 2002 at lead-times of 0–4 months. (c, e, g, i, and k) Difference in
POAMA habitat maps for each lead-time compared with the BRAN nowcast. Blue indicates agreement in habitat classification, green indi-
cates a difference of one habitat type (e.g., core instead of buffer), and brown indicates a difference of two habitat types (e.g., core instead of
OK).
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(Fig. 8). For the more variable buffer habitat, POAMA fore-
cast skill is similar to that of persistence forecasts at short
lead times though higher for long lead times. If the skill of
climatological forecasts were plotted on this figure, the line
would be at zero for all lead-times, as we are assessing the
skill of forecasts to determine whether a year varies from cli-
matology or not. Thus, if we had only today’s operational
habitat nowcast and assume that this habitat location would

not change in the next 4 months, the results show that the
model gives additional information above that assumption:
the model has useful skill.

Discussion

The environment-based real-time prediction of SBT habitat
for dynamic spatial management is one of the only examples

Fig. 4. Seasonal cycle in the location of southern bluefin tuna (SBT) habitat boundaries for 1994–2006. (a) Operational monthly habitat
boundary nowcasts and deviations from the daily operational climatology for (b) the northern core and (c) northern buffer zones. (d) BLUE-
link Ocean Reanalysis (BRAN) monthly habitat boundary nowcasts and deviations from the daily operational climatology for (e) the northern
core and (f) northern buffer zones. (g) Predictive ocean atmosphere model for Australia (POAMA) monthly habitat boundary forecasts at lead-
time 0 months and deviations from the daily operational climatology for (i) the northern core and (j) northern buffer zones. The operational
habitat boundary climatologies for the northern core and northern buffer boundaries are depicted as dotted and dashed lines, respectively, in
(a, d, and g). Box and whisker plots show the median, upper and lower quartile, with whiskers at the each end of the box to show the extent
of the rest of the data. Outliers (pluses) are data with values beyond the ends of the whiskers.
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Fig. 5. Skill of the predictive ocean atmosphere model for Australia (POAMA) forecasts of heat content anomalies of the upper 100 m in
eastern Australia waters for (a–c) May, (d–f) June, (g–i) July, (j–l) August, (m–o) September, (p–r) October, and (s–u) November 1993–2006
at lead-times = 0 months (first column), 2 months (second column), and 4 months (third column). Significant correlations are shaded (r ≥ 0.3
is significant at p = 0.15; Student’s t test, n = 14 years).
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in the world where management uses such information (Hob-
day et al. 2009), although several voluntary schemes exist
(e.g., Howell et al. 2008). Over time, managers in the Aus-
tralian fishery have updated management lines more often,
and used more complex lines to manage the fishery (Hobday
et al. 2010). Additional benefit to fishers and managers could
be obtained if information about future ocean conditions and
distribution of fish habitat was available, allowing planning
for the coming months. The overall purpose of this study was
to examine whether a dynamic seasonal ocean–atmosphere
model could offer useful forecasts, compared with a climato-
logical forecast provided by the operational SynTS system.
Comparisons of BRAN habitat nowcasts with those from

the SynTS habitat system, showed a high degree of agree-
ment, allowing the use of BRAN nowcasts as observations
for validation of POAMA forecasts. When POAMA habitat
predictions were compared with BRAN nowcasts for differ-
ent lead-times, POAMA was able to correctly predict boun-
dary locations that were north or south of the average
climatological positions for up to 70% of the months, out to
lead-times of 4 months. The predictive agreement was even
greater when forecasts in the upper and lower quartiles only
were considered, with agreement above 80% for most lead-
times (not shown). Although the forecast skill of the model
declined regionally with lead-time, it was consistently higher
or similar to that of persistence forecasts for all leads.

Fig. 6. Monthly predictive ocean atmosphere model for Australia (POAMA) habitat predictions for all years (1994–2006) for lead-times of (a)
0, (b) 1, (c) 2, (d) 3, and (e) 4 months. Here the deviance is the difference between the location of the POAMA forecast core boundary and
the BLUElink Ocean Reanalysis (BRAN) nowcast core boundary. Box and whisker plots show the median, upper and lower quartile, with
whiskers at the each end of the box to show the extent of the rest of the data. Outliers (+) are data with values beyond the ends of the
whiskers.
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Although the spatial resolution of the POAMA model is
coarse compared with ocean reanalysis products, the model
was effective in predicting the distribution of the SBT habi-
tat. Even at a lead-time of 4 months, the percentage agree-
ment between the POAMA forecast of core boundary
locations and operational nowcast was still well above 50%
(i.e., >68%), with higher skill for core zone predictions, a
seasonal forecast could be useful to fishers and managers.
POAMA both forecasts and skillfully predicts the variability
about the climatological mean position of SBT habitat boun-
daries, i.e., how current conditions differ from those in other
years, which is key for adaptive fishery management.
The metric we used to compare models was a simple sum-

mary of mean latitude of a habitat boundary. When the habi-
tat boundary slopes from southwest to northeast, this
summary value reflects the average latitude of the boundary,
yet can conceal information on coastal features such as the
southward penetration of the EAC. While this is the approach
used for ongoing operational management, a more sensitive
measure based on the total spatial agreement, could be devel-
oped in future to compare habitat predictions.
The study region is an oceanographically complex area,

with much mesoscale structure. The location of SBT habitat
along the east coast of Australia is dominated by the EAC,
which has both a strong seasonal cycle and interannual varia-
bility in the cycle (Ridgway and Godfrey 1997), rendering
habitat predictions both valuable and challenging. This chal-
lenge was illustrated in the differing forecast skill by month
in this region. Improved forecast capability even in this com-
plex region may be achieved by calibration, where POAMA
predictions of large scale drivers such as ENSO, which gen-
erally have high skill, and statistical relationships between
those and the region may be used (Wang et al. 2008; Spill-
man et al. 2010b). Downscaling may also be a useful techni-
que to enhance forecasts at regional and local scales.
Forecast calibration and downscaling may be useful for a

range of other fish species in eastern Australia if data on hab-
itat preference is available, such that a habitat model could be
constructed (e.g., yellowfin tuna; Hartog et al. 2011). Tuna
habitat models exist for the Mediterranean Sea (Druon 2010)
and the Gulf of Mexico (Teo et al. 2007), and could be used
with suitable ocean models to generate useful forecasts for
fisheries management. In other regions of higher POAMA
skill, more accurate seasonal forecasts may also be available
at longer lead-times, an exciting possibility for marine man-
agers. Coupling the physical model to the biological habitat
model to allow forecasting opens up a range of options for
managers and fishers, which could enhance fishery sustain-
ability. In eastern Australia, these fisher options include for-
ward planning of relocation of boats and crew to ports along
the coast, while for managers, information on the future
placement of spatial restrictions can assist with planning de-
ployments of fishery observers and ease ongoing tensions be-
tween management and industry.
Currently the predictions of habitat location using the op-

erational SBT habitat model are delivered to management
every 2 weeks via email. Managers are interested in using
the POAMA seasonal forecast (T. Timmis, Australian Fish-
eries Management Authority, Canberra, Australia, personal
communication 2010), but there are likely to be implementa-
tion challenges in delivery of real-time seasonal forecasts.

Currently other operational POAMA products such as coral
bleaching forecasts are updated online daily (e.g., Australian
Government Bureau of Meteorology 2011). This has been a

Fig. 7. Comparison of the predictive ocean atmosphere model for
Australia (POAMA) habitat latitude anomalies with the BLUElink
Ocean Reanalysis (BRAN) habitat latitude anomalies for the core
zone (first column) and buffer zone (second column) for lead-times
of (a, b) 0, (c, d) 1, (e, f) 2, (g, h) 3, and (i, j) 4 months for May–
November 1994–2006. The percent sign agreement (upper left in
each panel) is the percentage of POAMA forecasts that were north
or south of POAMA climatology when BRAN nowcasts were also
north or south of the BRAN climatology. The 1:1 line is shown on
each panel. Broken lines represent the zero lines and upper and
lower quartile lines for the POAMA forecasts at each lead.
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useful and convenient approach, allowing for regular updates
of forecasts and proactive monitoring of the upcoming sea-
son. A similar approach is planned for SBT habitat forecasts,
coupled with some initial training for managers on how best
to interpret the forecasts. An example that might be provided
to managers is shown in Fig. 1c, with the forecasts plotted on
the operational climatology.
It is important to note that underlying all predictions and

forecasts are the SBT habitat preferences derived from PSAT
data. These may have potential shortcomings in terms of pre-
dicting fish presence and hence catchability. For example,
habitat models based only on electronic tag data reflect both
feeding and nonfeeding behavior. Feeding is clearly a critical
element if the fish is to take a bait and be captured by a fish-
ery. Ward and Myers (2005) show that depth of capture did
not match the depth distribution obtained from archival tags
for four species (but not including SBT), thus habitat prefer-
ences weighted by time at depth as in our habitat model
(Hobday and Hartmann 2006) may not accurately reflect
feeding opportunities. However, previous work has shown
our operational model does generate predictions that match
the SBT catch distribution (Hobday et al. 2010).
Given that ocean conditions and the distribution of fishes

are changing on the east coast of Australia (Poloczanska et
al. 2007; Last et al. 2011) and are predicted to change further
in future (Hobday 2010), flexibility in management will be
important to ensure the sustainability of the ETBF fishery.
While long-term climate forecasts have considerable varia-
tion, and may not yet be useful in guiding operational fisher
and management decisions (Hobday and Poloczanska 2010),
using seasonal forecasting represents a valuable adaptation

step. Marshall (2010) showed that fishers that used seasonal
forecasting had greater climate resilience. Greater confidence
in future conditions through the use of seasonal and longer
term forecasting can lead to improved management, greater
flexibility, and increased confidence in business decision
making by a range of stakeholders (Marshall 2010), leading
to more sustainable fishing practices.
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