Length-weight relationships, location and depth distributions for select Gulf of Mexico reef fish species

Jeffrey R Pulver and Andrew Whatley
2016

SEDAR58-RD20

30 January 2018

Length-Weight Relationships, Location, and Depth Distributions for Select Gulf of Mexico Reef Fish Species

By
Jeffrey R. Pulver and Andrew Whatley

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center Galveston Laboratory

4700 Avenue U
Galveston, TX 77551

August 2016

LENGTH-WEIGHT RELATIONSHIPS, LOCATION, AND DEPTH DISTRIBUTIONS FOR SELECT GULF OF MEXICO REEF FISH SPECIES

JEFFREY R. PULVER AND ANDREW WHATLEY
National Marine Fisheries Service
Southeast Fisheries Science Center
Galveston Laboratory
4700 Avenue U
Galveston, TX 77551

U. S. DEPARTMENT OF COMMERCE Penny Pritzker, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Kathryn Sullivan, Under Secretary for Oceans and Atmosphere
NATIONAL MARINE FISHERIES SERVICE
Eileen Sobeck, Assistant Administrator for Fisheries

August 2016

This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work.

NOTICE

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS or to this publication furnished by NMFS, in any advertising or sales promotion which would imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

This report should be cited as follows:
Pulver, J.R., and A. Whatley. 2016. Length-weight relationships, location, and depth distributions for select Gulf of Mexico reef fish species. NOAA Technical Memorandum NMFS-SEFSC-693, 100 p.

This report will be posted on the SEFSC Galveston Laboratory website at URL: http://www.galvestonlab.sefsc.noaa.gov/publications/index.html

Copies may be obtained from:
Jeffrey R. Pulver
National Marine Fisheries Service
Galveston Laboratory
4700 Avenue U
Galveston, TX 77551
Voice: 409-766-3527
FAX: 409-766-3489
Jeff.Pulver@noaa.gov
List of Figures. Page
Figure 1. NMFS statistical zones used by the observer program for the Gulf of 9
Mexico and South Atlantic.
Figure 2. Mean lengths (\pm S.D.) for 90 reef fish species compared to its 10
corresponding adjusted R^{2} given by the length-weight regression model.
Figure 3. Regression model, location, and depth information for grouper, black 11(Mycteroperca bonaci).
Figure 4. Regression model, location, and depth information for gag (Mycteroperca 12microlepis).
Figure 5. Regression model, location, and depth information for grouper, yellowfin 13(Mycteroperca venenosa).
Figure 6. Regression model, location, and depth information for grouper, 14yellowmouth (Mycteroperca interstitialis).
Figure 7. Regression model, location, and depth information for scamp 15(Mycteroperca phenax).
Figure 8. Regression model, location, and depth information for grouper, red 16
(Epinephelus morio).
Figure 9. Regression model, location, and depth information for grouper, snowy 17(Epinephelus niveatus).
Figure 10. Regression model, location, and depth information for grouper, 18
yellowedge (Epinephelus flavolimbatus).
Figure 11. Regression model, location, and depth information for grouper, marbled 19(Epinephelus inermis).
Figure 12. Regression model, location, and depth information for hind, speckled 20(Epinephelus drummondhayi).
Figure 13. Regression model, location, and depth information for graysby 21(Cephalopholis cruentata).
Figure 14. Regression model, location, and depth information for hind, red 22(strawberry grouper) (Epinephelus guttatus).
Figure 15. Regression model, location, and depth information for hind, rock 23
(Epinephelus adscensionis).
Figure 16. Regression model, location, and depth information for perch, sand 24
(Diplectrum formosum).
Figure 17. Regression model, location, and depth information for seabass, black 25
(Centropristis striata).
Figure 18. Regression model, location, and depth information for seabass, rock 26
(Centropristis philadelphica).
Figure 19. Regression model, location, and depth information for seabass, bank 27
(Centropristis ocyurus).
Figure 20. Regression model, location, and depth information for tattler (Serranus 28phoebe).Figure 21. Regression model, location, and depth information for bass, longtail29 (Hemanthias leptus).

Figure 22. Regression model, location, and depth information for flag, spanish
(Gonioplectrus hispanus).
Figure 23. Regression model, location, and depth information for creole-fish 31 (Paranthias furcifer).
Figure 24. Regression model, location, and depth information for snapper, red 32 (Lutjanus campechanus).
Figure 25. Regression model, location, and depth information for snapper, lane 33 (Lutjanus synagris).
Figure 26. Regression model, location, and depth information for snapper, mutton 34 (Lutjanus analis).
Figure 27. Regression model, location, and depth information for snapper, gray 35 (Lutjanus griseus).
Figure 28. Regression model, location, and depth information for snapper, cubera 36 (Lutjanus cyanopterus).
Figure 29. Regression model, location, and depth information for snapper, silk 37 (Lutjanus vivanus).
Figure 30. Regression model, location, and depth information for snapper, vermilion 38 (Rhomboplites aurorubens).
Figure 31. Regression model, location, and depth information for wenchman 39
(Pristipomoides aquilonaris).
Figure 32. Regression model, location, and depth information for snapper, queen 40 (Etelis Oculatus).
Figure 33. Regression model, location, and depth information for snapper, yellowtail 41
(Ocyurus chrysurus).
Figure 34. Regression model, location, and depth information for tilefish 42
(Lopholatilus chamaeleonticeps).
Figure 35. Regression model, location, and depth information for tilefish, blueline 43
(Caulolatilus microps).
Figure 36. Regression model, location, and depth information for tilefish, goldface 44
(Caulolatilus chrysops).
Figure 37. Regression model, location, and depth information for tilefish, sand 45
(Malacanthus plumieri).
Figure 38. Regression model, location, and depth information for grunt, white 46
(Haemulon plumieri).
Figure 39. Regression model, location, and depth information for tomtate
(Haemulon aurolineatum).
Figure 40. Regression model, location, and depth information for porgy, red (Pagrus 48
pagrus).
Figure 41. Regression model, location, and depth information for porgy, knobbed
(Calamus nodosus).
Figure 42. Regression model, location, and depth information for porgy, saucereye 50
(Calamus calamus).
Figure 43. Regression model, location, and depth information for porgy, jolthead
(Calamus bajonado).

Figure 44. Regression model, location, and depth information for porgy, littlehead
(Calamus proridens).
Figure 45. Regression model, location, and depth information for sheepshead 53 (Archosargus probatocephalus).
Figure 46. Regression model, location, and depth information for porgy, whitebone 54 (Calamus leucosteus).
Figure 47. Regression model, location, and depth information for rudderfish, banded 55 (Seriola zonata).
Figure 48. Regression model, location, and depth information for amberjack, lesser 56 (Seriola fasciata).
Figure 49. Regression model, location, and depth information for amberjack, greater 57 (Seriola dumerili).
Figure 50. Regression model, location, and depth information for jack, almaco 58
(Seriola rivoliana).
Figure 51. Regression model, location, and depth information for runner, blue 59
(Caranx crysos).
Figure 52. Regression model, location, and depth information for jack, common 60 crevalle (Caranx hippos).
Figure 53. Regression model, location, and depth information for rainbow runner 61
(Elagatis bipinnulata).
Figure 54. Regression model, location, and depth information for pompano, florida 62
(Trachinotus carolinus).
Figure 55. Regression model, location, and depth information for barrelfish 63
(Hyperoglyphe perciferomis).
Figure 56. Regression model, location, and depth information for dolphin 64
(Coryphaena hippurus).
Figure 57. Regression model, location, and depth information for bluefish 65
(Pomatomus saltatrix).
Figure 58. Regression model, location, and depth information for cobia, ling 66
(Rachycentron canadum).
Figure 59. Regression model, location, and depth information for tuna, blackfin 67 (Thunnus atlanticus).
Figure 60. Regression model, location, and depth information for bonito (Euthynnus 68 alletteratus).
Figure 61. Regression model, location, and depth information for mackerel, spanish 69
(Scomberomorus maculatus).
Figure 62. Regression model, location, and depth information for mackerel, king 70
(Scomberomorus cavalla).
Figure 63. Regression model, location, and depth information for mackerel, cero 71
(Scomberomorus regalis).
Figure 64. Regression model, location, and depth information for wahoo 72 (Acanthocybium solandri).
Figure 65. Regression model, location, and depth information for barracuda, great

Figure 66. Regression model, location, and depth information for triggerfish, gray
(Balistes capriscus).
Figure 67. Regression model, location, and depth information for sharksucker 75
(Echeneis naucrates).
Figure 68. Regression model, location, and depth information for drum, red 76 (Sciaenops ocellatus).
Figure 69. Regression model, location, and depth information for bigeye 77
(Priacanthus arenatus).
Figure 70. Regression model, location, and depth information for bigeye, short 78 (Pristigenys alta).
Figure 71. Regression model, location, and depth information for squirrelfish 79 (Holocentrus adscensionis).
Figure 72. Regression model, location, and depth information for scorpionfish, 80 spinycheek (Neomerinthe hemingwayi).
Figure 73. Regression model, location, and depth information for rosefish, 81 blackbelly (Helicolenus dactylopterus).
Figure 74. Regression model, location, and depth information for lionfish, red 82 (Pterois volitans).
Figure 75. Regression model, location, and depth information for hogfish 83 (Lachnolaimus maximus).
Figure 76. Regression model, location, and depth information for hogfish, red 84 (Decodon puellaris).
Figure 77. Regression model, location, and depth information for toadfish, leopard 85 (Opsanus pardus).
Figure 78. Regression model, location, and depth information for lizardfish, inshore 86 (Synodus foetens).
Figure 79. Regression model, location, and depth information for snakefish 87 (Trachinocephalus myops).
Figure 80. Regression model, location, and depth information for sand diver 88 (Synodus intermedius).
Figure 81. Regression model, location, and depth information for shark, bonnethead 89 (Sphyrna tiburo).
Figure 82. Regression model, location, and depth information for shark, bigeye 90 sixgill (Hexanchus vitulus).
Figure 83. Regression model, location, and depth information for shark, sevengill 91 (Heptranchias perlo).
Figure 84. Regression model, location, and depth information for dogfish, chain 92 (Scyliorhinus retifer).
Figure 85. Regression model, location, and depth information for dogfish, roughskin 93 (Cirrhigaleus asper).
Figure 86. Regression model, location, and depth information for dogfish, cuban 94 (Squalus cubensis).
Figure 87. Regression model, location, and depth information for dogfish, shortspine 95 (Squalus mitsukurii).

Figure 88. Regression model, location, and depth information for shark, smooth dogfish (Mustelus canis).
Figure 89. Regression model, location, and depth information for shark, atlantic97 sharpnose (Rhizoprionodon terraenovae).
Figure 90. Regression model, location, and depth information for shark, blacknose 98 (Carcharhinus acronotus).
Figure 91. Regression model, location, and depth information for shark, finetooth 99 (Carcharhinus isodon).
Figure 92. Regression model, location, and depth information for shark, silky 100 (Carcharhinus falciformis).

Introduction

The NMFS Galveston Reef Fish Observer Program began mandatory coverage of the Gulf of Mexico commercial reef fish fishery in July 2006. Since that time the program has recorded catch data from vessels using multiple gear types (vertical line, bottom longline, spearfishing, and buoy fishing) across broad spatial and temporal scales (Scott-Denton et al., 2011; ScottDenton and Williams, 2013). While at-sea, fishery observers record characteristics of individual captured fish such as length, weight, discard disposition, location, and other environmental factors (NMFS, 2016). Length and weight data obtained from at-sea fishery observer programs are often useful because they include information about species not landed, e.g. non-target species, or for size ranges of target species typically discarded at-sea. Length-weight regression models are used extensively to estimate weight from length because of the technical difficulties in obtaining accurate weights while in the field. The purpose of this document is to provide length-weight relationships, location, and depth distributions for target and non-target reef fish species using data collected by the Galveston Reef Fish Observer Program from July 2006 through December 2015.

Methods

The reef fish database contained catch information for $1,062,857$ individual captures of fish by all gear types representing 336 different taxonomic categories. Only taxonomic categories at the species level, e.g. not genus or family level, which had ≥ 5 paired length-weight observations were included in this study. Total, fork, or standard lengths were recorded to the nearest mm and weights were primarily obtained using $10-\mathrm{kg}$ model $235-6 \mathrm{~S}^{\text {Salter }}{ }^{1}$ scales (accuracy $\pm 0.05 \mathrm{~kg}$),

[^0]but throughout the history of the program various brands of digital scales (accuracy $\pm 0.01 \mathrm{~kg}$) have also been used to obtain weights. Length-weight regression models were fit to species using the most common pairing observed between length measurement type and weight type (whole or gutted), e.g. fork and whole. Log-transformed length and weight data were fit using ordinary least squares with the following equation where $\ln =$ natural $\log , W=$ weight (kg), $L=$ length (mm), $a=\mathrm{y}$-intercept, and $b=$ slope:
\[

$$
\begin{equation*}
\ln W=\ln a+b \ln L \tag{1}
\end{equation*}
$$

\]

For each species, the predicted fit from the resulting linear regression equations were plotted with 95% confidence intervals against a scatterplot of the observed data. Model fit information given in the results includes the number of observations used to fit the model, the adjusted R^{2} coefficient of determination, and residual standard error (RSE). To predict weight from length using the model, the following equation is given for each species as:

$$
\begin{equation*}
\text { Weight }=\exp (\operatorname{Ln} a) * \text { Length }^{b} \tag{2}
\end{equation*}
$$

Also included is the most common final disposition (kept, discarded alive, discarded dead, used for bait, or unknown) for each species recorded by the program. The number of all captures observed in each statistical zone (Figure 1) for each species category was tabulated and included as a bar chart. Finally, a histogram of capture depths was generated with an estimated kernel density probability estimate included for each species. All analyses in this study were performed using R statistical software (version 3.3.0; R Development Core Team, 2016)

Results/Discussion

Significant (p-value <0.05) length-weight regression models were fit using 641,251 captures for 90 unique species (Table 1). Three species, red grouper (Epinephelus morio), vermilion
snapper (Rhomboplites aurorubens), and red snapper (Lutjanus campechanus) represented the majority ($>75 \%$) of the paired length-weight observations available. The average number of paired observations used to fit each model was 7,125 and ranged from a minimum of five observations for red hogfish (Decodon puellaris) to a maximum of 254,416 for red grouper. The most common (65\%) paired measurements used to fit a model were fork lengths to predict whole weight. Lengths used to fit the models ranged from a minimum of 83 mm standard length for bank seabass (Centropristis ocyurus) to a maximum of 1683 mm total length for silky sharks (Carcharhinus falciformis). The mutton snapper (Lutjanus analis) regression model had the lowest RSE (<0.09) of any species in this study with only five models having a RSE >0.4.

The average adjusted R^{2} was 0.79 (0.22 S.D.) and ranged from a low of 0.05 to the highest value of 0.99 for dolphin (Coryphaena hippurus). The majority (60) of the species length-weight regression models had an adjusted $R^{2}>0.8$. The seven species that had $>10,000$ paired observations all had excellent fits with an adjusted $R^{2}>0.85$. Only 11 length-weight regression models had an adjusted $R^{2}<0.5$ with the lowest value (0.05) observed for tattler (Serranus phoebe); however, only 89 tattler paired measurements were available over a small length (123206 mm) and weight ($0.03-0.25 \mathrm{~kg}$) range. Generally, species with smaller mean lengths accounted for the smaller adjusted R^{2} observed (Figure 2). The smaller adjusted R^{2} observed were possibly due to increased variance at lighter weights caused by the resolution of the Salter scales (accuracy $\pm 0.05 \mathrm{~kg}$).

Despite the difficulties in obtaining accurate weights in the at-sea environment, the Galveston Reef Fish Observer Program has collected high quality length and weight data for a large number of commercially important fish species in the Gulf of Mexico. These length-weight and additional data should be useful to other researchers wishing to explore temporal or spatial
variations in the reef fish fishery to derive conclusions benefitting the long-term management of the fishery.

References

NMFS. 2016. Characterization of the U.S. Gulf of Mexico and southeastern Atlantic otter trawl and bottom reef fish fisheries. Observer Training Manual. NMFS, Southeast Fisheries Science Center, Galveston Laboratory, Galveston, Texas. Available at http://www.galvestonlab.sefsc.noaa.gov/forms/observer/obs training manual 12 2015.pdf

R Development Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Scott-Denton, E., Cryer, P.F., Gocke, J.P., Harrelson, M.R., Kinsella, D.J., Pulver, J.R., Smith, R.C., and Williams, J.A., 2011. Descriptions of the U.S. Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. Mar. Fish. Rev. 73(2): 1-26.

Scott-Denton, E., and Williams, J.A., 2013. Observer Coverage of the 2010-2011 Gulf of Mexico Reef Fish. NOAA Technical Memorandum. NMFS-SEFSC-646, 65 pp.

Table 1. Regression model information for the 90 reef fish species including the number of observations (N), minimum length in mm (Min) and maximum length in mm (Max), mean length in mm, length standard deviation (S.D.), y-intercept (Ln a), slope (b), standard error of the slope (SE b), residual standard error (RSE), adjusted R^{2}, R^{2}, and overall regression model significance (p-value).

Common Name	Scientific Name	N	$\begin{gathered} \text { Min } \\ (\mathbf{m m}) \end{gathered}$	$\begin{gathered} \text { Max } \\ (\mathbf{m m}) \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & (\mathrm{mm}) \end{aligned}$	S.D.	Ln ${ }^{\text {a }}$	b	SE b	RSE	$\begin{gathered} \text { Adjusted } \\ R^{2} \end{gathered}$	R^{2}	p-value
Grouper, Black	Mycteroperca bonaci	182	633	1,410	964.8	168.2	-18.3	3.04	0.06	0.14	0.93	0.93	<0.01
Gag	Mycteroperca microlepis	13,669	236	1,399	675.5	144.2	-17.9	2.96	0.01	0.13	0.96	0.96	<0.01
Grouper, Yellowfin	Mycteroperca venenosa	6	425	858	646.3	173.4	-18.1	3.01	0.21	0.13	0.98	0.98	<0.01
Grouper, Yellowmouth	Mycteroperca interstitialis	21	398	668	567.8	76.9	-16.5	2.74	0.26	0.17	0.85	0.86	<0.01
Scamp	Mycteroperca phenax	6,385	221	951	554.9	103.9	-17.1	2.80	0.01	0.18	0.90	0.90	<0.01
Grouper, Red	Epinephelus morio	254,416	199	924	475.2	95.5	-18.8	3.13	0.00	0.13	0.96	0.96	<0.01
Grouper, Snowy	Epinephelus niveatus	3,600	284	1,233	637.5	124.2	-18.2	3.01	0.01	0.13	0.95	0.95	<0.01
Grouper, Yellowedge	Epinephelus flavolimbatus	18,986	284	1,153	652.7	115.9	-18.1	2.99	0.00	0.12	0.95	0.95	<0.01
Grouper, Marbled	Epinephelus inermis	16	519	877	677.6	111.6	-19.7	3.27	0.24	0.15	0.92	0.93	<0.01
Hind, Speckled	Epinephelus drummondhayi	1,077	241	1,092	528.9	148.0	-18.5	3.11	0.02	0.16	0.97	0.97	<0.01
Graysby	Cephalopholis cruentata	53	178	518	273.4	52.7	-13.4	2.21	0.24	0.31	0.62	0.62	<0.01
Hind, Red	Epinephelus guttatus	17	231	546	384.6	83.0	-16.7	2.78	0.29	0.26	0.85	0.86	<0.01
Hind, Rock	Epinephelus adscensionis	88	229	426	355.3	42.4	-19.1	3.20	0.16	0.19	0.82	0.82	<0.01
Perch, Sand	Diplectrum formosum	364	126	320	212.3	28.4	-10.1	1.56	0.13	0.34	0.27	0.27	<0.01
Seabass, Black	Centropristis striata	642	134	457	266.2	51.1	-14.4	2.42	0.07	0.34	0.66	0.66	<0.01
Seabass, Rock	Centropristis philadelphica	247	106	318	201.1	38.2	-15.2	2.53	0.18	0.56	0.44	0.44	<0.01
Seabass, Bank	Centropristis ocyurus	175	83	470	205.7	46.8	-9.2	1.45	0.11	0.32	0.48	0.48	<0.01
Tattler	Serranus phoebe	89	123	206	174.6	14.1	-10.0	1.47	0.60	0.47	0.05	0.06	0.02
Bass, Longtail	Hemanthias leptus	84	248	555	411.0	65.3	-15.5	2.55	0.10	0.16	0.88	0.88	<0.01
Flag, Spanish	Gonioplectrus hispanus	18	216	278	246.1	21.4	-13.0	2.14	0.66	0.24	0.36	0.40	<0.01
Creole-Fish	Paranthias furcifer	639	215	403	296.2	35.3	-11.9	1.93	0.09	0.27	0.41	0.41	<0.01
Snapper, Red	Lutjanus campechanus	110,897	172	990	460.4	112.4	-17.7	2.96	0.00	0.14	0.96	0.96	<0.01

(Table 1, continued)

Common Name	Scientific Name	N	$\begin{gathered} \operatorname{Min} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (mm) } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & (\mathrm{mm}) \end{aligned}$	S.D.	Ln a	b	SE b	RSE	$\begin{gathered} \text { Adjusted } \\ R^{2} \end{gathered}$	R^{2}	p-value
Snapper, Lane	Lutjanus synagris	2,330	162	513	322.0	47.7	-16.8	2.80	0.03	0.25	0.74	0.74	<0.01
Snapper, Mutton	Lutjanus analis	2,502	378	864	598.0	88.7	-17.7	2.96	0.01	0.09	0.96	0.96	<0.01
Snapper, Gray	Lutjanus griseus	4,001	219	714	426.2	76.1	-17.5	2.92	0.01	0.16	0.92	0.92	<0.01
Snapper, Cubera	Lutjanus cyanopterus	7	597	1,037	805.3	160.0	-16.5	2.78	0.17	0.09	0.98	0.98	<0.01
Snapper, Silk	Lutjanus vivanus	785	220	810	440.4	72.3	-18.6	3.11	0.02	0.11	0.95	0.95	<0.01
Snapper, Vermilion	Rhomboplites aurorubens	117,080	106	624	291.0	51.0	-17.8	2.98	0.00	0.21	0.85	0.85	<0.01
Wenchman	Pristipomoides aquilonaris	146	155	365	218.1	24.5	-15.2	2.51	0.30	0.39	0.32	0.33	<0.01
Snapper, Queen	Etelis Oculatus	328	200	912	549.9	119.2	-16.1	2.69	0.04	0.17	0.94	0.93	<0.01
Snapper, Yellowtail	Ocyurus chrysurus	7,740	168	512	300.0	42.7	-17.6	2.95	0.01	0.18	0.84	0.84	<0.01
Tilefish	Lopholatilus chamaeleonticeps	11,304	316	1,023	631.8	123.0	-20.2	3.29	0.01	0.15	0.95	0.94	<0.01
Tilefish, Blueline	Caulolatilus microps	6,558	319	810	553.6	63.2	-18.8	3.09	0.01	0.10	0.92	0.92	<0.01
Tilefish, Goldface	Caulolatilus chrysops	70	243	602	448.8	75.6	-19.8	3.27	0.15	0.23	0.87	0.88	<0.01
Tilefish, Sand	Malacanthus plumieri	144	313	632	504.4	61.2	-19.6	3.15	0.10	0.16	0.87	0.87	<0.01
Grunt, White	Haemulon plumieri	2,463	162	743	283.6	41.9	-18.3	3.09	0.03	0.22	0.78	0.78	<0.01
Tomtate	Haemulon aurolineatum	1,306	121	427	205.2	25.0	-17.2	2.86	0.10	0.43	0.38	0.38	<0.01
Porgy, Red	Pagrus pagrus	35,784	114	651	287.3	47.7	-17.0	2.88	0.01	0.19	0.86	0.86	<0.01
Porgy, Knobbed	Calamus nodosus	1,135	205	548	307.6	35.4	-16.4	2.79	0.04	0.15	0.81	0.81	<0.01
Porgy, Saucereye	Calamus calamus	414	189	549	300.0	36.6	-16.2	2.75	0.06	0.14	0.86	0.86	<0.01
Porgy, Jolthead	Calamus bajonado	1,097	192	700	422.9	111.2	-17.2	2.93	0.02	0.15	0.97	0.97	<0.01
Porgy, Littlehead	Calamus proridens	490	191	410	290.6	38.9	-17.2	2.92	0.07	0.22	0.76	0.76	<0.01
Sheepshead	Archosargus probatocephalus	238	277	562	399.8	57.4	-19.7	3.36	0.08	0.17	0.89	0.89	<0.01
Porgy, Whitebone	Calamus leucosteus	123	200	578	311.0	58.2	-17.6	2.97	0.16	0.31	0.73	0.74	<0.01
Rudderfish, Banded	Seriola zonata	1,657	241	752	427.4	70.8	-16.3	2.72	0.02	0.15	0.91	0.91	<0.01
Amberjack, Lesser	Seriola fasciata	286	186	950	409.9	105.6	-15.7	2.63	0.04	0.17	0.93	0.93	<0.01
Amberjack, Greater	Seriola dumerili	2,323	222	1,600	787.4	287.4	-16.0	2.69	0.01	0.16	0.98	0.98	<0.01

(Table 1, continued)

Common Name	Scientific Name	N	$\begin{gathered} \operatorname{Min} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (mm) } \end{gathered}$	Mean (mm)	S.D.	Ln a	b	SE b	RSE	$\begin{gathered} \text { Adjusted } \\ R^{2} \end{gathered}$	R^{2}	p-value
Jack, Almaco	Seriola rivoliana	2,058	165	1,302	516.9	170.5	-16.2	2.73	0.01	0.16	0.97	0.97	<0.01
Runner, Blue	Caranx crysos	1,165	157	532	329.6	53.0	-17.3	2.90	0.03	0.19	0.87	0.87	<0.01
Jack, Common Crevalle	Caranx hippos	81	242	957	594.7	226.0	-15.2	2.59	0.04	0.15	0.98	0.98	<0.01
Rainbow Runner	Elagatis bipinnulata	26	272	663	465.2	108.6	-16.2	2.69	0.16	0.20	0.91	0.92	<0.01
Pompano, Florida	Trachinotus carolinus	111	300	426	357.8	30.4	-20.3	3.45	0.15	0.13	0.84	0.84	<0.01
Barrelfish	Hyperoglyphe perciferomis	256	277	815	630.0	99.1	-17.0	2.87	0.03	0.09	0.97	0.97	<0.01
Dolphin	Coryphaena hippurus	329	292	1,227	573.5	289.2	-17.0	2.74	0.02	0.13	0.99	0.99	<0.01
Bluefish	Pomatomus saltatrix	224	266	803	418.6	64.4	-18.1	2.99	0.06	0.13	0.92	0.92	<0.01
Cobia, Ling	Rachycentron canadum	165	400	1,330	824.1	173.3	-20.1	3.26	0.06	0.15	0.96	0.96	<0.01
Tuna, Blackfin	Thunnus atlanticus	255	499	890	724.5	71.9	-16.6	2.83	0.06	0.09	0.91	0.91	<0.01
Bonito	Euthynnus alletteratus	821	277	837	643.3	91.2	-17.0	2.84	0.03	0.12	0.94	0.94	<0.01
Mackerel, Spanish	Scomberomorus maculatus	62	337	678	512.3	80.0	-18.9	3.04	0.13	0.16	0.90	0.91	<0.01
Mackerel, King	Scomberomorus cavalla	2,585	476	1,309	813.8	114.0	-18.6	2.98	0.02	0.11	0.93	0.93	<0.01
Mackerel, Cero	Scomberomorus regalis	24	337	710	463.1	85.9	-20.1	3.25	0.31	0.26	0.83	0.83	<0.01
Wahoo	Acanthocybium solandri	24	925	1,591	1278.4	188.2	-21.2	3.32	0.33	0.24	0.82	0.83	<0.01
Barracuda, Great	Sphyraena barracuda	350	346	1,478	907.2	164.9	-18.4	2.94	0.05	0.20	0.90	0.90	<0.01
Triggerfish, Gray	Balistes capriscus	3,211	178	694	379.0	64.3	-16.8	2.85	0.02	0.17	0.88	0.88	<0.01
Sharksucker	Echeneis naucrates	896	257	984	704.6	95.2	-16.3	2.53	0.04	0.21	0.80	0.80	<0.01
Drum, Red	Sciaenops ocellatus	100	538	1,143	795.6	133.2	-19.2	3.14	0.09	0.15	0.93	0.93	<0.01
Bigeye	Priacanthus arenatus	90	191	572	336.2	60.0	-16.2	2.68	0.12	0.19	0.85	0.86	<0.01
Bigeye, Short	Pristigenys alta	124	181	326	259.7	24.4	-16.2	2.75	0.22	0.25	0.55	0.55	<0.01
Squirrelfish	Holocentrus adscensionis	237	178	386	281.4	28.5	-11.3	1.86	0.18	0.30	0.30	0.30	<0.01
Scorpionfish, Spinycheek	Neomerinthe hemingwayi	346	216	602	426.8	47.6	-18.0	2.97	0.10	0.21	0.74	0.74	<0.01
Rosefish, Blackbelly	Helicolenus dactylopterus	34	261	492	374.9	57.8	-14.8	2.46	0.20	0.18	0.82	0.82	<0.01
Lionfish, Red	Pterois volitans	71	169	407	295.0	59.3	-16.5	2.71	0.16	0.29	0.81	0.81	<0.01

(Table 1, continued)

Common Name	Scientific Name	N	$\underset{(\mathrm{mm})}{(\mathrm{Min}}$	$\begin{aligned} & \text { Max } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & (\mathrm{mm}) \end{aligned}$	S.D.	Ln a	b	SE b	RSE	$\begin{gathered} \text { Adjusted } \\ R^{2} \end{gathered}$	R^{2}	p-value
Hogfish	Lachnolaimus maximus	723	234	733	392.0	65.6	-14.5	2.44	0.05	0.20	0.78	0.78	<0.01
Hogfish, Red	Decodon puellaris	5	219	406	277.2	73.9	-18.3	3.06	0.36	0.17	0.95	0.96	<0.01
Toadfish, Leopard	Opsanus pardus	564	193	583	340.6	51.3	-14.5	2.45	0.09	0.32	0.57	0.57	<0.01
Lizardfish, Inshore	Synodus foetens	256	235	475	348.5	42.5	-17.1	2.72	0.15	0.30	0.55	0.55	<0.01
Snakefish	Trachinocephalus myops	230	184	403	249.0	41.2	-8.5	1.21	0.20	0.47	0.14	0.14	<0.01
Sand Diver	Synodus intermedius	650	210	471	328.2	50.6	-15.7	2.51	0.09	0.34	0.57	0.57	<0.01
Shark, Bonnethead	Sphyrna tiburo	12	621	1,010	850.0	100.7	-12.9	2.06	0.47	0.20	0.62	0.66	<0.01
Shark, Bigeye Sixgill	Hexanchus vitulus	134	474	1,251	796.4	156.8	-15.8	2.48	0.13	0.31	0.73	0.73	<0.01
Shark, Sevengill	Heptranchias perlo	62	701	1,074	887.6	98.5	-18.8	2.89	0.21	0.18	0.76	0.76	<0.01
Dogfish, Chain	Scyliorhinus retifer	46	345	557	476.0	53.1	-9.4	1.45	0.56	0.44	0.11	0.13	0.01
Dogfish, Roughskin	Cirrhigaleus asper	20	421	1,113	834.7	185.6	-19.1	3.02	0.15	0.17	0.96	0.96	<0.01
Dogfish, Cuban	Squalus cubensis	2,981	269	1,136	538.3	82.7	-17.6	2.77	0.03	0.23	0.74	0.74	<0.01
Dogfish, Shortspine	Squalus mitsukurii	106	433	814	707.1	57.5	-18.9	2.98	0.11	0.10	0.89	0.89	<0.01
Shark, Smooth Dogfish	Mustelus canis	1,929	460	1,460	1023.2	183.4	-21.6	3.33	0.02	0.21	0.90	0.90	<0.01
Shark, Atlantic Sharpnose	Rhizoprionodon terraenovae	6,540	269	1,300	814.5	99.9	-18.7	2.91	0.02	0.19	0.79	0.79	<0.01
Shark, Blacknose	Carcharhinus acronotus	1,045	552	1,294	864.9	149.2	-19.0	3.00	0.03	0.19	0.88	0.88	<0.01
Shark, Finetooth	Carcharhinus isodon	10	661	1,167	902.5	155.2	-14.5	2.33	0.64	0.34	0.57	0.62	0.01
Shark, Silky	Carcharhinus falciformis	311	652	1,683	934.2	147.3	-19.0	2.98	0.07	0.18	0.86	0.86	<0.01

NMFS Statistical Zones of the Southeast Region

Figure 1. NMFS statistical zones used by the observer program for the Gulf of Mexico and South Atlantic.

Figure 2. Mean lengths (\pm S.D.) for 90 reef fish species compared to its corresponding adjusted R^{2} given by the length-weight regression model.

Grouper, Black

More common in the Eastern Gulf

Figure 3 . Regression model, location, and depth information for grouper, black (Mycteroperca bonaci).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=19,696$

Depth (Feet)

Figure 4 . Regression model, location, and depth information for gag (Mycteroperca microlepis).

Grouper, Yellowfin

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=9$
Depth (Feet)

Figure 5 . Regression model, location, and depth information for grouper, yellowfin (Mycteroperca venenosa).

Grouper, Yellowmouth

More common in the Eastern Gulf

Figure 6 . Regression model, location, and depth information for grouper, yellowmouth (Mycteroperca interstitialis).

More common in the Eastern Gulf

Figure 7 . Regression model, location, and depth information for scamp (Mycteroperca phenax).

Grouper, Red

More common in the Eastern Gulf

Figure 8 . Regression model, location, and depth information for grouper, red (Epinephelus morio).

More common in the Eastern Gulf

Statistical Zones, $N=5,510$

Depth (Feet)

Figure 9 . Regression model, location, and depth information for grouper, snowy (Epinephelus niveatus).

Grouper, Yellowedge

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=30,451$

Depth (Feet)

Figure 10 . Regression model, location, and depth information for grouper, yellowedge (Epinephelus flavolimbatus).

More common in the Western Gulf

Figure 11 . Regression model, location, and depth information for grouper, marbled (Epinephelus inermis).

More common in the Eastern Gulf

Figure 12 . Regression model, location, and depth information for hind, speckled (Epinephelus drummondhayi).

Graysby

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=111$
Figure 13 . Regression model, location, and depth information for graysby (Cephalopholis cruentata).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=22$

Figure 14 . Regression model, location, and depth information for hind, red (strawberry grouper) (Epinephelus guttatus).

Hind, Rock

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=121$

Depth (Feet)

Figure 15 . Regression model, location, and depth information for hind, rock (Epinephelus adscensionis).

More common in the Eastern Gulf

Figure 16 . Regression model, location, and depth information for perch, sand (Diplectrum formosum).

More common in the Eastern Gulf

Figure 17 . Regression model, location, and depth information for seabass, black (Centropristis striata).

More common in the Eastern Gulf

Figure 18 . Regression model, location, and depth information for seabass, rock (Centropristis philadelphica).

More common in the Eastern Gulf

Figure 19 . Regression model, location, and depth information for seabass, bank (Centropristis ocyurus).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=147$

Depth (Feet)

Figure 20 . Regression model, location, and depth information for tattler (Serranus phoebe).

Bass, Longtail

More common in the Western Gulf

Figure 21 . Regression model, location, and depth information for bass, longtail (Hemanthias leptus).

More common in the Eastern Gulf

Figure 22 . Regression model, location, and depth information for flag, spanish (Gonioplectrus hispanus).

Creole-Fish

More common in the Western Gulf

Figure 23 . Regression model, location, and depth information for creole-fish (Paranthias furcifer).

Snapper, Red

$$
\mathrm{W}=\exp (-17.7) \mathrm{L}^{2.96}
$$

Fork Length (mm)
Mean Length $=460 \mathrm{~mm}$
Mean Weight $=1.96 \mathrm{~kg}$
More common in the Western Gulf

Statistical Zones, $N=163,606$

Depth (Feet)

Figure 24 . Regression model, location, and depth information for snapper, red (Lutjanus campechanus).

More common in the Eastern Gulf

$\begin{array}{llllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21\end{array}$

Statistical Zones, $N=3,465$

Depth (Feet)

Figure 25 . Regression model, location, and depth information for snapper, lane (Lutjanus synagris).

More common in the Eastern Gulf

Figure 26 . Regression model, location, and depth information for snapper, mutton (Lutjanus analis).

More common in the Eastern Gulf

Statistical Zones, $N=5,642$

Depth (Feet)

Figure 27 . Regression model, location, and depth information for snapper, gray (Lutjanus griseus).

Snapper, Cubera

More common in the Eastern Gulf

Figure 28 . Regression model, location, and depth information for snapper, cubera (Lutjanus cyanopterus).

More common in the Eastern Gulf

Statistical Zones, N = 950

Depth (Feet)

Figure 29 . Regression model, location, and depth information for snapper, silk (Lutjanus vivanus).

Snapper, Vermilion

More common in the Eastern Gulf

Figure 30 . Regression model, location, and depth information for snapper, vermilion (Rhomboplites aurorubens).

Wenchman

More common in the Western Gulf

Statistical Zones, $\mathrm{N}=191$

Depth (Feet)

Figure 31 . Regression model, location, and depth information for wenchman (Pristipomoides aquilonaris).

More common in the Western Gulf

Figure 32 . Regression model, location, and depth information for snapper, queen (Etelis Oculatus).

More common in the Eastern Gulf

Figure 33 . Regression model, location, and depth information for snapper, yellowtail (Ocyurus chrysurus).

Tilefish

More common in the Eastern Gulf

Figure 34 . Regression model, location, and depth information for tilefish (Lopholatilus chamaeleonticeps).

Tilefish, Blueline

More common in the Eastern Gulf

Figure 35 . Regression model, location, and depth information for tilefish, blueline (Caulolatilus microps).

Tilefish, Goldface

More common in the Western Gulf

Statistical Zones, $N=97$

Depth (Feet)

Figure 36 . Regression model, location, and depth information for tilefish, goldface (Caulolatilus chrysops).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=211$
Depth (Feet)

Figure 37 . Regression model, location, and depth information for tilefish, sand (Malacanthus plumieri).

Grunt, White

More common in the Eastern Gulf

Figure 38 . Regression model, location, and depth information for grunt, white (Haemulon plumieri).

Tomtate

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=3,539$

Depth (Feet)

Figure 39 . Regression model, location, and depth information for tomtate (Haemulon aurolineatum).

More common in the Eastern Gulf

$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 17 & 18 & 20\end{array}$

Statistical Zones, $N=44,644$

Depth (Feet)

Figure 40 . Regression model, location, and depth information for porgy, red (Pagrus pagrus).

More common in the Eastern Gulf

Figure 41 . Regression model, location, and depth information for porgy, knobbed (Calamus nodosus).

More common in the Eastern Gulf

Figure 42 . Regression model, location, and depth information for porgy, saucereye (Calamus calamus).

Porgy, Jolthead

More common in the Eastern Gulf

Figure 43 . Regression model, location, and depth information for porgy, jolthead (Calamus bajonado).

More common in the Eastern Gulf

Figure 44 . Regression model, location, and depth information for porgy, littlehead (Calamus proridens).

Sheepshead

More common in the Western Gulf

Statistical Zones, $\mathrm{N}=270$
Depth (Feet)
Figure 45 . Regression model, location, and depth information for sheepshead (Archosargus probatocephalus).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=170$

Depth (Feet)

Figure 46 . Regression model, location, and depth information for porgy, whitebone (Calamus leucosteus).

More common in the Eastern Gulf

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 15 & 16 & 17 & 18\end{array}$
Statistical Zones, $\mathrm{N}=2,603$

Depth (Feet)

Figure 47 . Regression model, location, and depth information for rudderfish, banded (Seriola zonata).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=395$
Depth (Feet)
Figure 48 . Regression model, location, and depth information for amberjack, lesser (Seriola fasciata).

$$
R^{2}=0.981
$$

More common in the Eastern Gulf

234567891011131415161718192021
Statistical Zones, $\mathrm{N}=5,366$

Depth (Feet)

Figure 49 . Regression model, location, and depth information for amberjack, greater (Seriola dumerili).

More common in the Eastern Gulf

Statistical Zones, N = 2,962

Depth (Feet)

Figure 50 . Regression model, location, and depth information for jack, almaco (Seriola rivoliana).

More common in the Western Gulf

Figure 51 . Regression model, location, and depth information for runner, blue (Caranx crysos).

More common in the Western Gulf

Statistical Zones, $\mathrm{N}=208$

Depth (Feet)

Figure 52 . Regression model, location, and depth information for jack, common crevalle (Caranx hippos).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=50$
Depth (Feet)
Figure 53 . Regression model, location, and depth information for rainbow runner (Elagatis bipinnulata).

More common in the Western Gulf

Figure 54 . Regression model, location, and depth information for pompano, florida (Trachinotus carolinus).

More common in the Western Gulf

Figure 55 . Regression model, location, and depth information for barrelfish (Hyperoglyphe perciferomis).

Dolphin

More common in the Eastern Gulf

Figure 56 . Regression model, location, and depth information for dolphin (Coryphaena hippurus).

More common in the Western Gulf

$\begin{array}{llllllllllllll}4 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 17 & 18 & 20\end{array}$

Statistical Zones, $\mathrm{N}=310$
Depth (Feet)

Figure 57 . Regression model, location, and depth information for bluefish (Pomatomus saltatrix).

Cobia, Ling

More common in the Eastern Gulf

Figure 58 . Regression model, location, and depth information for cobia, ling (Rachycentron canadum).

Tuna, Blackfin

$$
\mathrm{W}=\exp (-16.6) \mathrm{L}^{2.83}
$$

Fork Length (mm)
Mean Length $=724 \mathrm{~mm}$
Mean Weight $=7.81 \mathrm{~kg}$
More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=453$

Figure 59 . Regression model, location, and depth information for tuna, blackfin (Thunnus atlanticus).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=1,271$

Depth (Feet)

Figure 60 . Regression model, location, and depth information for bonito (Euthynnus alletteratus).

More common in the Western Gulf

Figure 61 . Regression model, location, and depth information for mackerel, spanish (Scomberomorus maculatus).

More common in the Eastern Gulf

Statistical Zones, $N=4,507$
Depth (Feet)
Figure 62 . Regression model, location, and depth information for mackerel, king (Scomberomorus cavalla).

More common in the Eastern Gulf

Depth (Feet)

Figure 63 . Regression model, location, and depth information for mackerel, cero (Scomberomorus regalis).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=60$

Depth (Feet)

Figure 64 . Regression model, location, and depth information for wahoo (Acanthocybium solandri).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=745$

Depth (Feet)

Figure 65 . Regression model, location, and depth information for barracuda, great (Sphyraena barracuda).

More common in the Eastern Gulf

Statistical Zones, $N=5,159$

Depth (Feet)

Figure 66 . Regression model, location, and depth information for triggerfish, gray (Balistes capriscus).

Sharksucker

More common in the Eastern Gulf

$$
\begin{array}{llllllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

Statistical Zones, $N=2,157$

Depth (Feet)

Figure 67 . Regression model, location, and depth information for sharksucker (Echeneis naucrates).

More common in the Western Gulf

Statistical Zones, $\mathrm{N}=285$

Depth (Feet)

Figure 68 . Regression model, location, and depth information for drum, red (Sciaenops ocellatus).

Bigeye

More common in the Western Gulf

Statistical Zones, $\mathrm{N}=124$

Depth (Feet)

Figure 69 . Regression model, location, and depth information for bigeye (Priacanthus arenatus).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=157$
Depth (Feet)

Figure 70 . Regression model, location, and depth information for bigeye, short (Pristigenys alta).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=393$

Depth (Feet)

Figure 71 . Regression model, location, and depth information for squirrelfish (Holocentrus adscensionis).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=888$

Depth (Feet)

Figure 72 . Regression model, location, and depth information for scorpionfish, spinycheek (Neomerinthe hemingwayi).

Rosefish, Blackbelly

More common in the Eastern Gulf

Figure 73 . Regression model, location, and depth information for rosefish, blackbelly (Helicolenus dactylopterus).

More common in the Eastern Gulf

Figure 74 . Regression model, location, and depth information for lionfish, red (Pterois volitans).

More common in the Eastern Gulf

Figure 75 . Regression model, location, and depth information for hogfish (Lachnolaimus maximus).

Hogfish, Red

More common in the Eastern Gulf

Figure 76 . Regression model, location, and depth information for hogfish, red (Decodon puellaris).

More common in the Eastern Gulf

Statistical Zones, $N=867$

Depth (Feet)

Figure 77 . Regression model, location, and depth information for toadfish, leopard (Opsanus pardus).

Lizardfish, Inshore

More common in the Eastern Gulf

Figure 78 . Regression model, location, and depth information for lizardfish, inshore (Synodus foetens).

More common in the Eastern Gulf

Figure 79 . Regression model, location, and depth information for snakefish (Trachinocephalus myops).

Sand Diver

More common in the Eastern Gulf

Figure 80 . Regression model, location, and depth information for sand diver (Synodus intermedius).

More common in the Eastern Gulf

Figure 81 . Regression model, location, and depth information for shark, bonnethead (Sphyrna tiburo).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=208$

Depth (Feet)

Figure 82 . Regression model, location, and depth information for shark, bigeye sixgill (Hexanchus vitulus).

More common in the Western Gulf

Figure 83 . Regression model, location, and depth information for shark, sevengill (Heptranchias perlo).

More common in the Eastern Gulf

Figure 84 . Regression model, location, and depth information for dogfish, chain (Scyliorhinus retifer).

Dogfish, Roughskin

More common in the Eastern Gulf

Figure 85 . Regression model, location, and depth information for dogfish, roughskin (Cirrhigaleus asper).

More common in the Eastern Gulf

Figure 86 . Regression model, location, and depth information for dogfish, cuban (Squalus cubensis).

More common in the Eastern Gulf

Figure 87 . Regression model, location, and depth information for dogfish, shortspine (Squalus mitsukurii).

Shark, Smooth Dogfish

More common in the Western Gulf

Figure 88 . Regression model, location, and depth information for shark, smooth dogfish (Mustelus canis).

More common in the Eastern Gulf

Figure 89 . Regression model, location, and depth information for shark, atlantic sharpnose (Rhizoprionodon terraenovae).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=2,885$

Depth (Feet)

Figure 90 . Regression model, location, and depth information for shark, blacknose (Carcharhinus acronotus).

More common in the Eastern Gulf

Figure 91 . Regression model, location, and depth information for shark, finetooth (Carcharhinus isodon).

More common in the Eastern Gulf

Statistical Zones, $\mathrm{N}=890$

Depth (Feet)

Figure 92 . Regression model, location, and depth information for shark, silky (Carcharhinus falciformis).

[^0]: ${ }^{1}$ Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA.

