Chapter 22: Interdisciplinary Evaluation of Spatial Population Structure for Definition of Fishery Management Units (excerpt from Stock Identification Methods – Second Edition)

Stephen X. Cadrin, Lisa A. Kerr, and Stefano Mariani 2014

SEDAR58-RD05

30 January 2018

Chapter | twenty two

Interdisciplinary Evaluation of Spatial Population Structure for Definition of Fishery Management Units

Steven X. Cadrin, Lisa A. Kerr, Stefano Mariani 3

¹School for Marine Science and Technology, University of Massachusetts, New Bedford, MA, USA

²University of Massachusetts, School for Marine Science and Technology, New Bedford, MA, USA; Gulf of Maine Research Institute, Portland, ME, USA ³School of Environment & Life Sciences, University of Salford, Manchester, UK

CHAPTER OUTLINE

22.1	Introdu	uction	. 536
22.2	A Prod	cess for Interdisciplinary Stock Identification	537
22.3	Case S	5tudies	. 539
	22.3.1	Winter Flounder (Pseudopleuronectes americanus)	540
	22.3.2	Atlantic Herring (Clupea harengus) off New England	542
	22.3.3	Yellowtail Flounder (Limanda ferruginea) off New England	543
	22.3.4	Atlantic Cod (Gadus morhua) in New England	544
	22.3.5	Atlantic Bluefin Tuna (Thunnus thynnus)	545
	22.3.6	Beaked Redfish (Sebastes mentella) in the Irminger Sea	546
	22.3.7	Striped Sea Bream (Lithognathus mormyrus) in the Mediterranean	
		and Adjacent Atlantic Waters	548
22.4	Conclu	sions	.549
Ackno	owledgr	ments	.549
Dofor	oncoc		5/10

22.1 INTRODUCTION

As we described in the overview of this volume, stock identification is an important prerequisite for stock assessment and fishery management. The closer management units reflect biological population structure, the better for achieving management objectives such as optimum yield. The challenge we face is that investigation of population structure is a never-ending scientific endeavor that is supported by rapidly advancing technologies and methods; yet, resource conservation and fishery management require the practical definition of spatial management units that are based on the best available science and over time scales that are germane to policy and trade.

Revising spatial definition of management units can pose transition costs for the scientific process (e.g., revised stock assessments), fishery management (e.g., new management plans), and stakeholders (e.g., implications for total allowable catch and individual allocations; see Aps et al., 2004; Hammer and Zimmermann, 2005). Therefore, a process is needed to consider how new information can be used to reevaluate stock identity and possibly evaluate the implications of existing management boundaries that do not reflect revised perceptions of stock structure.

Information on geographic variation and movement patterns from newly developed and recently applied methods can be reconciled with previous information from more traditional methods for practical definitions. The process for developing inferences of the most likely population structure and recommendations for the most appropriate management units involves: (1) a comprehensive multidisciplinary review of available information, (2) interdisciplinary analysis for synthetic conclusions, and (3) practical considerations of monitoring, assessment, and management.

Like all scientific endeavors, the practice of stock identification has changed over time, taking advantage of new perspectives offered from technological advances and improving our ability to manage fisheries and conserve fishery resources. The earliest definitions of spatial management units reflected fishing grounds (e.g., Rounsefell, 1948; Royce et al., 1959; Halliday and Pinhorn, 1990). The early stages of fisheries science emphasized demography, and the study of vital rates (e.g., growth maturity, recruitment) led to stock definitions that were based on phenotypic variation (e.g., Gilbert, 1914; Hjort, 1914; Cadrin and Secor, 2009). A subsequent focus on recruitment dynamics led to investigations of life cycle closure and fish movement patterns, and inferences of movement from conventional tagging studies complemented phenotypic information (e.g., Jakobsson, 1970; Thorsteinsson, 2002; Hall, 2013). The most profound methodological revolution was the application of genetic techniques to fishery resources, leading to a "stock concept" that was largely based on reproductive isolation (e.g., Larkin, 1972; Fetterolf, 1981).

Since the early investigations of allozymes for salmonid stocks in the 1970s, the technological revolution promoted advancements in every stock identification approach. Genetic methods advanced from allozymes to a progressively broadening set of DNA markers (e.g., Chapter 13; Mariani and

Bekkevold, 2013), the development of electronic tags led to much greater understanding of fish movement patterns (e.g., DeCelles and Zemeckis, 2013; Galuardi and Lam, 2013), advances in microchemistry allowed detailed analysis of otoliths (e.g., Kerr and Campana, 2013), imaging improved morphological and a parasitological methods as well as geographic information systems, and computer technology facilitated developments in statistical analysis and population modeling (Galuardi and Lam, 2013; Kerr and Goethel, 2013; Schwarz, 2013). As each chapter in this volume demonstrates, stock identification continues to be a rapidly developing field, and the incorporation of new information into fishery management is a challenge.

Although we are compelled to consider new information, it should be interpreted in the context of all available information. Therefore a synthesis of information from multiple stock identification approaches is needed for a comprehensive conclusion. The historical development of information should be recognized as well as the practical limitations for fishery assessment and management.

22.2 A PROCESS FOR INTERDISCIPLINARY STOCK **IDENTIFICATION**

Conclusions about biological population structure and recommendations for appropriate fishery management units should adhere to principles of best scientific information available (NRC, 2004):

- Relevance—The information considered is relevant to the stock being evaluated.
- Inclusiveness—All interested scientific parties are included in the review.
- Objectivity—Inferences are based on the most likely interpretation of information without bias for a particular outcome.
- Transparency—The basis for conclusions should be clearly documented.
- Timeliness—Stock identity should be reconsidered when new information becomes available.
- Verification—The basis for all previously stated and newly developed inferences should be reviewed in the context of current best practices.
- Validation—The data used for all previously stated and newly developed inferences should be reviewed for quality and assurance.
- Peer review—Ideally, each component study is published in peer-reviewed literature, and the interdisciplinary synthesis is externally reviewed.

The process we advocate has several sequential stages. At each stage, a consensus summary statement should be developed among all participants. The first step in the process is to clearly define the current spatial management units and their scientific or practical justification. The scientific information that was used to form the current management units should be reviewed in the context of current knowledge and their distinct perspective on stock structure, including explicit objectives, sampling designs, analytical methods, and conclusions from each study.

The next step in the process is to identify all a priori hypotheses about population structure, including the paradigm used to justify current management units. All information available should be evaluated with respect to each hypothesis. Some information may not have been sampled to rigorously test hypotheses, but consistency or inconsistency with hypotheses should be considered for each source of information.

The third step in the process is a comprehensive search for information related to the specific fishery resource being evaluated, ideally considering information from throughout the species' geographic range. Information should prioritize research that was explicitly intended and designed to support inferences about stock structure. Secondarily, relevant information may be found in other studies that were not intended to be used for stock identification (e.g., fishery descriptions, resource surveys, life history studies). Information from peer-reviewed literature should have more influence on conclusions than that from gray literature, because it has had some peer review from experts in that discipline. Information can be grouped into broad disciplines (e.g., geographic distribution; geographic variation in genetic composition, phenotypic traits, environmental traits; movement patterns), and consensus conclusions within each discipline should be formed.

Cadrin et al. (2010) developed five criteria for consensus interpretation of the results from each case study:

- 1. Was stock identification an explicit objective of the study?
- **2.** Did the samples represent hypothetical stocks (e.g., from a rigorous sampling design)?
- **3.** Was sample size adequate to detect a meaningful difference between groups?
- **4.** Were differences between hypothetical stocks tested statistically?
- **5.** Was the analytical methodology sound (i.e., adequate for the task of determining population structure)? The critiques and protocols described in the first edition of this volume (Cadrin et al., 2005) served as a guide.

Information available within each discipline should be reviewed and interpreted with respect to population structure and the stated hypotheses. Some sources of information may be interpreted in alternative ways, and all viable alternatives should be considered. Final conclusions should be based on information that is objective, parsimonious, and the least equivocal. In summary of all information within a discipline, a general conclusion about stock structure from the perspective of that discipline should be formed.

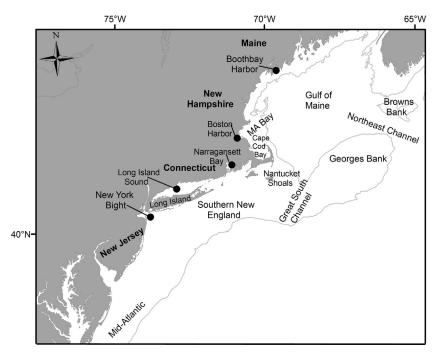
After the multidisciplinary review is complete, each perception of stock structure should be considered in an interdisciplinary evaluation. Previous syntheses of information should be reviewed at this stage, including the objective and spatial extent of the previous synthesis, and a determination of strengths and weaknesses of the previous conclusions, upon which to contrast the new synthesis. Integrations based on multidisciplinary sampling have distinct advantages for forming interdisciplinary conclusions (see Abaunza et al., 2013). All newly developed conclusions on geographic distribution, geographic

variation, and connectivity should be integrated to obtain a holistic perspective on biological stocks. The unique perspective offered from each discipline along with the sensitivity of specific characters for detecting population structure should be considered to identify congruent results and to reconcile apparent differences.

The final stage of evaluating biological stock structure should involve consideration of each a priori hypothesis, identification of information that rigorously tested the hypotheses, and evaluation of whether the information could be used to either reject or support hypotheses. The testing of hypotheses should be based on the most objective information available (i.e., information not subject to alternative or equivocal interpretation). Conclusions on biological stocks should be based on the most robust and parsimonious view of stock structure that is consistent with the best scientific information available.

In recent years there has been an increased recognition of the advantages of conducting stock structure investigations with an interdisciplinary approach from the onset (Abaunza et al., 2008; Higgins et al., 2010). This methodology allows collection of multiple stock descriptors on the same individuals, hence providing the opportunity for a comprehensive quantification of population structure in a common statistical framework, and without the limitations associated with comparisons among different sets of data collected at different times. Presently, uncertainties remain as to the most appropriate way to standardize rather different types of data (e.g., microsatellite genotypes, morphological traits, chemical signatures, parasitic fauna, etc.) and analyze such multivariate matrices. Yet, research is moving toward the optimization of suitable approaches, such as multi-criteria evaluation analysis (MCEA), which has been successfully applied to environmental impact assessment (Janssen, 2001) and which can be integrated in geographic information systems (Carver, 1991) to use spatial features as predictor variables of spatial structure.

Recommendations for practical management units should consider geographic delineations that most accurately reflect the consensus on biological stock structure, as well as practical aspects and the limitations of monitoring fisheries and the resource and managing fisheries (i.e., jurisdictions). Ideally, the implications of new perspectives on stock identity and existing management unit definitions can be evaluated by simulation (see Kerr and Goethel, 2013).


In addition to recommendations for definition of management units, the interdisciplinary analysis can also identify research recommendations, including refinement of fishery and resource monitoring approaches and the optimal sampling design for confirmatory analysis and possibly stock composition analysis for mixed-stock situations.

22.3 CASE STUDIES

The most effective approach to interdisciplinary conclusions about stock structure is a multidisciplinary sampling design (e.g., Abaunza et al., 2013). However, information from disparate studies can also be integrated to form interdisciplinary conclusions. Examples of interdisciplinary analyses are described from two approaches. Several examples are provided from the Northeast U.S. Stock Assessment Workshop, in which stock structure was reviewed within a stock assessment peer-review process. Other examples are from independent workshops from the stock assessment peer-review process from New England, the International Commission on the Conservation of Atlantic Tuna (ICCAT), and the International Council for the Exploration of the Seas (ICES). Case studies from both approaches demonstrate how information from historical and recent studies can be considered to develop recommendations for fishery management or for further research.

22.3.1 Winter Flounder (*Pseudopleuronectes* americanus)

Stock structure and management units of winter flounder off the United States have been evaluated through the Northeast Regional Stock Assessment Workshop process. Prior to 1996, winter flounder were managed as four stock units in the U.S. waters of the northwest Atlantic: (1) Mid-Atlantic, (2) southern New England, (3) Georges Bank, and (4) Gulf of Maine (Figure 22.1). In 1996 (at the 21st Stock Assessment Workshop), the southern New England and Mid-Atlantic groups were combined to form a single unit for assessment

FIGURE 22.1 The northeast United States and continental shelf. Modified from DeCelles and Cadrin (2010).

purposes (Shepherd et al. 1996). The Workshop concluded that there was evidence of localized estuarine populations present in the two areas, but the fisheries in these regions are typically conducted when winter flounder populations are intermixed in coastal offshore waters. These management units were confirmed through a more extensive synthesis that included the species' entire geographic range (DeCelles and Cadrin, 2010), which was peer reviewed through the 52nd Stock Assessment Workshop (NEFSC, 2011).

DeCelles and Cadrin (2010) reviewed information on winter flounder genetics, morphology, meristics, larval dispersal, life history traits, tagging, parasites, and contaminants. Estuarine spawning, which plays an important role in reproductive isolation and population structure, appears to be obligate in southern New England, nonexistent on Georges Bank, and variable in the Gulf of Maine. Behavioral groups (i.e., contingents) are likely present in both the Gulf of Maine and southern New England/Mid-Atlantic stocks. Despite evidence for reproductively isolated estuarine groups, information from tagging, meristic analysis, and life history studies suggest extensive mixing, thereby supporting the current U.S. management units. In Canadian waters, winter flounder are managed as three units: western Scotian Shelf, eastern Scotian Shelf, and the southern Gulf of St. Lawrence (Figure 22.2). Genetic analysis and parasite markers indicate that these Canadian management units are distinct. However, examination of inshore and offshore winter flounder on the western Scotian Shelf suggests that little interchange occurs between these groups. Several separate stocks probably

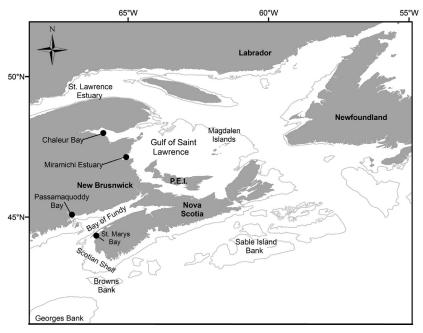
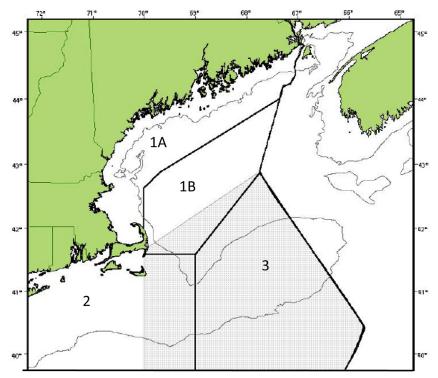


FIGURE 22.2 Atlantic Canada and the northwest Atlantic continental shelf. Modified from DeCelles and Cadrin (2010).

exist within the Gulf of St. Lawrence as well. Stock assessment and fishery management would likely benefit from stock composition analysis of mixed-stock fisheries of both U.S. and Canadian fishery resources.

The three—U.S.—stocks hypothesis was recently tested using analysis of microsatellite DNA from young-of-the-year winter flounder sampled in 27 estuaries from Newfoundland to Delaware and Georges Bank (Wirgin et al., in press). They found significant regional genetic stock structure (e.g., Gulf of Maine, southern New England, Georges Bank, Gulf of St. Lawrence, Newfoundland) but little evidence of structure among estuaries within U.S. regions. Research continues on stock composition analysis of mixed-stock fisheries using meristic analysis (DeCelles et al., 2012) and larval dispersal from coastal spawning sites (DeCelles et al., 2010).


22.3.2 Atlantic Herring (*Clupea harengus*) off New England

Stock structure and management units of Atlantic herring off the United States have also been evaluated through the Northeast Regional Stock Assessment Workshop process. The Atlantic herring resource along the East Coast of the United States was originally divided into separate Gulf of Maine and Georges Bank stocks (Figure 22.1), but herring from the Gulf of Maine and Georges Bank components are now combined into a single coastal stock complex, because fisheries and surveys include fish originating from all spawning areas off New England (NEFSC, 2012).

Information available on herring stock structure off New England was reviewed in the context of the current management unit definition. The review included information on the geographic distribution of survey catches and ichthyoplankton collections, geographic variation in genetics, size-at-age and morphology, and movement of early life stages as well as tagged juveniles and adults. The synthesis indicated that three major spawning components from Georges Bank, Nantucket Shoals (Great South Channel area), and the coast of Gulf of Maine are distinct but seasonally mix.

As a result of mixing outside of the spawning season, much of the fishery takes place on mixed aggregations, a situation also typical of some herring stocks in Europe (Ruzzante et al., 2006). Mixing of spawning components in the fishery and during resource surveys precludes separate assessment and management of the components. It is therefore necessary to continue to assess the entire complex, with subsequent consideration of the individual components. Conservation of spawning groups requires more extensive sampling of stock composition from the fishery and surveys as well as monitoring relative abundance of spawning components.

The assessment and management approach for New England herring poses a challenge for the conservation of individual spawning components. Catch limits for the stock complex are allocated to spatial management areas, with the intent of separating spawning areas (inshore Gulf of Maine, area 1A;

FIGURE 22.3 Management boundaries for Atlantic herring in the Gulf of Maine and on Georges Bank. Lines indicate original boundaries, shaded area indicates 2006 revision to area 3 boundaries. (For color version of this figure, the reader is referred to the online version of this book.) Adapted from NEFSC (2012).

Georges Bank, area 3) from mixing areas (offshore Gulf of Maine, area 1B; southern New England—Mid-Atlantic, area 2; Figure 22.3), and allocations are based on estimates of stock composition (e.g., from morphometric patterns) and relative biomass among areas. Research continues on acoustic surveys of discrete spawning groups and stock composition of mixed-stock fisheries.

22.3.3 Yellowtail Flounder (*Limanda ferruginea*) off New England

The 36th Stock Assessment Workshop (2003) investigated stock structure of yellowtail flounder resources off the northeastern United States and recommended that the resource should be assessed and managed as three stocks: (1) Georges Bank, (2) Southern New England—Mid-Atlantic, and (3) Cape Cod—Gulf of Maine (NEFSC, 2003, Figure 22.1). A subsequent and more comprehensive study conducted in 2010 considered geographic patterns of abundance, geographic variation, and movement of yellowtail and came to the same conclusion: yellowtail flounder on the principal U.S. fishing grounds should be managed as three separate stocks despite apparent

homogeneity of genetic variation (Cadrin, 2010). Divergent patterns of abundance and biomass over time suggested two harvest stocks (Georges Bank and Southern New England) of yellowtail flounder with a boundary on southwest Georges Bank. Geographic patterns of growth and maturity indicate two phenotypic stocks of yellowtail flounder, with a boundary on northern Georges Bank (Gulf of Maine and Georges Bank/southern New England). Yellowtail flounder resources off the United States may be a single genetic stock, but significant variation in life history attributes and different patterns of abundance over time suggest that yellowtail flounder off the northeastern United States should be managed as three stocks. Research continues on estimating movement rates among stock areas (Goethel et al., 2009; Wood and Cadrin, 2013).

22.3.4 Atlantic Cod (Gadus morhua) in New England

The scientific basis for current management units of cod in New England is described by Serchuk and Wigley (1992), but recent information from genetics and tagging suggests that the current management units should be reconsidered. Unlike the previous three case studies, stock structure of Atlantic cod in the Gulf of Maine region was considered at a workshop that was organized outside of the regional Stock Assessment Workshop process (Annala, 2012). The workshop reviewed existing data, information, and results of analyses relevant to the stock structure of cod in the Scotian Shelf, Georges Bank, Gulf of Maine, and southern New England regions and made recommendations on the most likely biological stock boundaries in these regions (including substock structure). The current management units were considered to be the null hypothesis and other stock structure scenarios as alternative hypotheses. Recommendations were also made for future research required to evaluate these stocks more robustly.

On the issue of fine-scale spatial structure, the workshop concluded that larval retention and multiyear fidelity to local spawning sites suggest fine-scale metapopulation structure. Some traditional spawning groups were depleted (e.g., Ames, 2004) and have not been recolonized by more productive groups. Depletion of historical spawning groups is most apparent in the eastern Gulf of Maine, the Mid-Atlantic, the "Plymouth Grounds," and recently in Nantucket Shoals.

With respect to broadscale population structure, the workshop concluded that conceptualizing the most likely biological stock structure is essential for the next steps of evaluating alternative management units and their potential to achieve fishery objectives (Annala, 2012). All information from the New England region suggests that there are three genetic stocks: (1) Offshore: eastern Georges Bank (with some connectivity with the Scotian Shelf; see Figure 22.1); (2) Inshore: northern, spring-spawning complex; and (3) Inshore: southern, winter-spawning complex (see Kovach et al., 2010 and references therein). Information from more traditional stock identification

approaches (e.g., tagging, growth, larval dispersal) and larval dispersal studies generally supports the genetic perspective (e.g., Runge et al., 2010). However, cod in the eastern Gulf of Maine appear to be distinct from other groups. All genetic information available is not entirely congruent with current U.S. management unit boundaries.

The workshop provided compelling evidence that the current management units need to be reconsidered (Annala, 2012). However, the precise location of boundaries and stock composition of mixed-stock areas remain poorly understood. The workshop identified the need for more detailed review of information from the Scotian Shelf and further consideration of larval dispersal from important spawning grounds. The workshop recommended an evaluation of the advantages and disadvantages of alternative management unit scenarios on stock status and yields from the cod stocks in the region to justify the most appropriate management units. Longer-term research recommendations pointed at stock composition analysis, sampling, and analysis of further genetic data from key areas (e.g., Georges Bank, eastern Gulf of Maine, including archaeological data, and Canadian waters).

22.3.5 Atlantic Bluefin Tuna (Thunnus thynnus)

Bluefin tuna is a highly migratory species, with at least two known distinct spawning locations adjacent to the Atlantic Ocean (one in the Mediterranean Sea and one in the Gulf of Mexico) and extensive mixing of spawning groups. In 2001, ICCAT formed a workshop to examine the effects of mixedstock fisheries for stock assessments and possible management boundaries (ICCAT, 2001). The goals of the workshop were to evaluate the available information on mixing and movement, examine alternative assessment models that might be used to characterize the biological hypotheses, suggest alternatives for management structures that might be used given the biological and assessment characteristics, and evaluate the information and institutional requirements needed to assess and manage the stocks under alternative management structures.

Based on the available information, the workshop categorized conclusions into what is known, what is likely, and what is unknown (ICCAT, 2001). In the first category, there is compelling evidence that there are at least two spawning areas, and more fish spend time on the side of the Atlantic where they were tagged than migrate far away. The more likely conclusions were that there is a substantial degree of spawning-site fidelity, the distribution of fish from the two known spawning areas overlaps in some seasons, and some fish of eastern origin are caught in the west Atlantic management area and vice versa. A research program was proposed based on the unknown aspects of bluefin stock structure and mixing. Research continues on Atlantic bluefin tuna tagging, genetics, otolith chemistry, life history, and mixed-stock population modeling to support stock assessment and fishery management (e.g., Rooker et al., 2007; Taylor et al., 2011; ICCAT, 2012).

In 2013, a workshop was convened to review advances in biological data and parameters used in Atlantic bluefin tuna stock assessment (ICCAT, 2013). More specifically, traditional and recent information on population structure and stock mixing from otolith microchemistry, genetics, tagging, and life history parameters was reviewed. The workshop recommended that the effects of complex population structure on the scientific advice should be tested.

22.3.6 Beaked Redfish (*Sebastes mentella*) in the Irminger Sea

As a pelagic fishery developed for *S. mentella* off Iceland, ICES provided fishery management advice for two distinct management units: (1) a demersal unit on the continental shelf and (2) a pelagic unit in the Irminger Sea and adjacent areas (Hammer and Zimmermann, 2005). However, stock identity was uncertain, and a multinational research initiative (the EU Redfish Project) was designed to investigate population structure. ICES hosted two workshops to determine the most parsimonious view of stock structure that is consistent with all information available on *S. mentella* in the Irminger Sea and adjacent areas (ICES, 2005, 2009).

As the EU Redfish Project was in the final stages of documenting results, the ICES Study Group on Stock Identity and Management Units of Redfishes met to review all stock identification material, identify most likely biological stocks, and suggest practical management units (ICES, 2005). Information from the EU and Faroese Redfish projects as well as spatial analyses of fishery and survey data were reviewed. The Study Group concluded that *S. mentella* exhibit population structure, but the nature of the structure (i.e., reproductively isolated groups or demographic groups) was not clear. Research recommendations were that microsatellite analyses were the most reliable approach to stock identification, and temporal stability of all geographic differences should be evaluated.

In 2009, ICES organized a second workshop to reconcile the new genetic results with all previous information on stock structure with the aim of identifying the most likely definition of biological stocks and to recommend practical management units in the Irminger Sea and adjacent waters (ICES, 2009). The process for interdisciplinary stock identification described in Section 22.2 (above) was developed and implemented to meet the objectives of the 2009 workshop. Specific studies were reviewed on geographic distribution (e.g., fishing grounds, survey data of early life stage, juveniles, and adults), genetic variation (e.g., allozymes, mitochondrial DNA, nuclear DNA), phenotypic variation (e.g., life history traits, morphology, fatty acid composition), and connectivity (e.g., larval dispersal, natural tags, and artificial tags) of redfish to form a general conclusion about stock structure from the perspective of that discipline. An interdisciplinary evaluation was formed by synthesizing information from each discipline to develop a holistic perspective on biological stocks. Each of

the a priori hypotheses was tested using the most objective information available. Recommendations for practical management units considered geographic delineations that most accurately reflect the consensus on biological stock structure.

Based primarily on genetic information (i.e., microsatellites), and supported by other information on stock structure, the 2009 workshop concluded that there are three biological stocks of S. mentella in the Irminger Sea and adjacent waters (Figure 22.4): (1) a "Deep Pelagic" stock, (2) a "Shallow Pelagic" stock, and (3) an "Icelandic Slope" stock (ICES statistical areas Va and XIV). Although biological stocks of S. mentella were partially defined by depth, the workshop recognized that definition of management units by depth and the associated fishery monitoring by depth would be impractical. Therefore, management units were based on geographic proxies for biological stocks that minimize mixed-stock catches (Figure 22.4, Cadrin et al., 2010). Although both ICES workshops included all interested parties, debate continues on the topic of stock identity (e.g., Cadrin et al., 2011; Makhrov et al., 2011), and research continues to resolve stock composition of nursery grounds on the Greenland shelf, as well as to further clarify the role of depth as a driver of population structure.

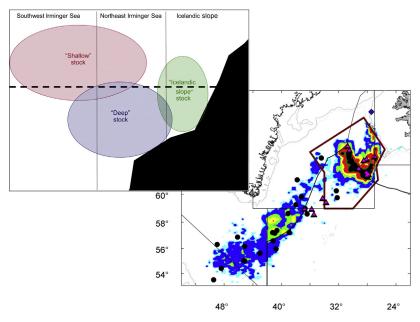


FIGURE 22.4 Vertical schematic of Sebastes mentella biological stocks (upper left) and spatial management unit boundary of the deep pelagic stock (map polygon), with distribution of the pelagic fisheries (isopleths) and genetic sample locations (circles and triangles). (For color version of this figure, the reader is referred to the online version of this book.) Adapted from ICES (2009) and Cadrin et al. (2010).

22.3.7 Striped Sea Bream (Lithognathus mormyrus) in the Mediterranean and Adjacent Atlantic Waters

Striped sea bream (or sand steenbras) is a coastal marine species whose adults reside in shallow coastal waters but release eggs offshore. Juveniles recruit to lagoons and sheltered bays and settle along the coast as they grow. Striped sea bream are not subjected to rigorous management strategies and are targeted by small-scale, artisanal fisheries throughout the Mediterranean, often in mixed-species local fisheries (the photograph chosen for the cover of this book is taken from the crate of one such catch in Italy).

An independent population biology study characterized genetic differences in this species, showing the different signals yielded using microsatellites and mitochondrial DNA and revealing that parasitic fauna approximated more closely the structure identified using microsatellites (Sala-Bozano et al., 2009). The analysis of life history data (growth, maturation, sex change) offered additional information, detecting differences between groups that were otherwise indistinguishable (Sala-Bozano and Mariani, 2011). When all available data for each individual are analyzed in a multivariate framework (Figure 22.5), it is possible to obtain an overall picture of the relationships among population inhabiting the studied areas, which is more exhaustive than that obtained with any one method employed separately.

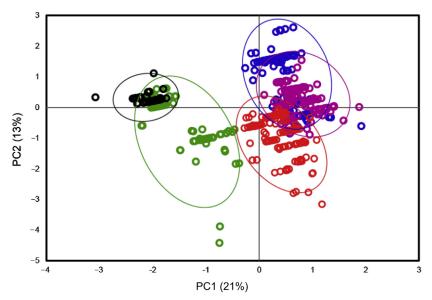


FIGURE 22.5 Individual striped sea bream data points plotted in the space identified by the first two principal components, based on 20 different variables (i.e., 14 parasites, microsatellite assignment, mtDNA lineage, weight-length condition factor, and coefficients for growth, maturation, and sex change). Colors refer to the marine basins sampled (see Sala-Bozano and Mariani, 2011): blue: Atlantic; purple: Alboran; red: Balearic; green: Tyrrhenian; black: Adriatic. Ellipses show 95% distribution limits for each data series. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this book.)

22.4 CONCLUSIONS

The many approaches to stock identification described in this book offer many perspectives on stock structure that can be considered for fishery science and management. Although the first edition of the book (Cadrin et al., 2005) encouraged a multidisciplinary approach, it fell somewhat short of providing guidance and examples on reconciling information from various methods and studies. The chapter on interdisciplinary sampling and analysis by Abaunza et al. (2013) in this second edition offers a method for integrating information from different methods within a single study, but we often need to integrate information from across many disparate studies. The process for interdisciplinary stock identification described here was developed through the practice of inclusive workshops, peer review, and application to fishery management decisions. Despite the complexity of studying population structure, the case studies demonstrate that information from different stock identification approaches can be reconciled to form consensus conclusions and practical recommendations. One emergent theme from the case studies was the presence of uncertainty in stock identification and the search for the most likely scenario that is supported by all available information. The steps taken thus far provide the platform for more decisive interdisciplinary stock identification studies in the coming years. It is envisaged that through increasingly integrated collaborative efforts, and the sophistication of statistical approaches, it will become more achievable to address pressing issues of resource management and conservation by delivering more robust stock structure information to policy makers that will not be over reliant on any one specific methodology.

ACKNOWLEDGMENTS

Many colleagues contributed to the case studies we reviewed. Greg DeCelles led the review of winter flounder, with contributions from Wendy Gabriel, Gary Shepherd, Arnold Howe, Steve Correia, and others in the 54th SAW. Mike Armstrong, Kevin Friedland, Karen Bolles, Bill Overholtz, Dave Richardson, Jon Deroba, Steve Correia, and others in the 54th SAW contributed to the Atlantic herring review. Dan Goethel, Vaughan Silva, Larry Alade, Azure Westwood, Dave Martins, and others in the 36th SAW contributed to the yellowtail flounder review. Matthias Bernreuther, Anna Kristin Danielsdottir, Einar Hjorleifsson, Torild Johansen, Kristjan Kristinsson, Kjell Nedreaas, Christophe Pampoulie, Benjamin Planque, Jakup Reinert, Fran Saborido-Rey, Thorsteinn Sigurðsson, Christoph Stransky, and others in WKREDS contributed to the redfish review. John Annala chaired the cod workshop with contributions from Doug Zemeckis, Jon Loehrke, Dave Martins, Adrienne Kovach, Shelly Tallack, Hunt Howell, Tim Miller, Graham Sherwood, Kevin Friedland, Jake Kritzer, Tom Nies, David Goethel, Ted Ames, and other workshop participants. Dave Secor, Ben Galuardi, Molly Lutcavage, Tim Lam, Walt Golet, Clay Porch, Shannon Cass-Calay, Doug Butterworth, Mike Sissenwine, and others in the ICCAT workshops contributed to the Atlantic bluefin tuna review. Maria Sala-Bozano led the striped sea bream review.

REFERENCES

Abaunza, P., Murta, A.G., Campbell, N., Cimmaruta, R., Comesaña, S., Dahle, G., Gallo, E., García Santamaría, M.T., Gordo, L., Iversen, S., MacKenzie, K., Magoulas, A., Mattiucci, S., Molloy, J., Nascetti, G., Pinto, A.L., Quinta, R., Ramos, P., Ruggi, A.,

- Sanjuan, A., Santos, A.T., Stransky, C., Zimmermann, C., 2008. Considerations on sampling strategies for an holistic approach to stock identification: the example of the HOMSIR project. Fish. Res. 89, 104–113.
- Abaunza, P., Murta, A.G., Stransky, C., 2013. Sampling for interdisciplinary analysis. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Ames, E.P., 2004. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10-28.
- Annala, J. (Ed.), 2012. Stock Structure of Atlantic Cod in the Gulf of Maine Region. Gulf of Maine Research Institute. Workshop Report www.gmri.org/mini/index.asp?ID=52.
- Aps, R., Lassen, H., Rice, J., Andrejeva, K., Aps, J., 2004. Application of Baltic Herring and Cod Stock Identification Results to Fishery Management. ICES C.M. 2004/EE:23.
- Cadrin, S.X., 2010. Interdisciplinary analysis of yellowtail flounder stock structure off New England. Rev. Fish. Sci. 18, 281–299.
- Cadrin, S.X., Secor, D.H., 2009. Accounting for spatial population structure in stock assessment: past, present and future. In: Rothschild, B.J., Beamish, R. (Eds.), The Future of Fishery Science in North America. Springer Verlag, pp. 405–426.
- Cadrin, S.X., Friedland, K.D., Waldman, J. (Eds.), 2005. Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press.
- Cadrin, S.X., Bernreuther, M., Dam'elsdo'ttir, A., Hjorleifsson, E., Johansen, T., Kerr, L., Kristinsson, K., et al., 2010. Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630.
- Cadrin, S.X., Mariani, S., Pampoulie, C., Bernreuther, M., Danélsdóttir, A.K., Johansen, T., Kerr, L., Nedreaas, K., Reinert, J., Sigurðsson, þ., Stransky, C., 2011. Counter-comment on: Cadrin et al. (2010) "Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630". ICES J. Mar. Sci. 68, 2016–2018.
- Carver, S.J., 1991. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 5, 321–339.
- DeCelles, G.R., Cadrin, S.X., 2010. Movement patterns of winter flounder in the southern Gulf of Maine: observations using passive acoustic telemetry. Fish. Bull. 108, 408–419.
- DeCelles, G., Zemeckis, D., 2013. Acoustic and radio telemetry. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- DeCelles, G., Cadrin, S.X., Cowles, G., 2010. The Fate of Winter Flounder Larvae Spawned in Coastal Waters of the Gulf of Maine. ICES CM 2010/A:01.
- DeCelles, G., Roman, S., Cadrin, S., 2012. Winter flounder distribution in southern New England-insights from industry-based trawl surveys. In: Mercaldo-Allen, R., Calabrese, A., Danila, D., Dixon, M., Fairchild, E., Jearld, A., Munroe, T., Pacileo, D., Powell, C., Sutherland, S. (Eds.), 13th Flatfish Biology Conference 2012, pp. 12–28. Northeast Fish Sci Cent Ref Doc.
- Fetterolf Jr, C.M., 1981. Foreword to the stock concept symposium. Can. J. Fish. Aquat. Sci. 38, iv-v.
- Galuardi, B., Lam, C.H., 2013. Telemetry analysis of highly migratory species. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Gilbert, C.H., 1914. Contributions to the Life History of the Sockeye Salmon. Report to British Columbia Fisheries Department, Vancouver, BC.
- Goethel, D.R., Legault, C.M., Cadrin, S.X., 2009. A Spatially Explicit Stock Assessment Model Incorporating Tagging Data. ICES CM 2009/J:02.
- Hall, D.A., 2013. Conventional and radio frequency identification (RFID) tags. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Halliday, R.G., Pinhorn, A.T., 1990. The delimitation of fishing areas in the northwest Atlantic. J. Northw. Atl. Fish. Sci. 10, 1–51.

- Hammer, C., Zimmermann, C., 2005. The role of stock identification in formulating fishery management advice. In: Cadrin, S.X., Friedland, K.D., Waldman, J.R. (Eds.), Stock Identification Methods. Applications in Fishery Science. Elsevier Academic Press, pp. 631-658.
- Higgins, R.M., Danilowicz, B.S., Balbuena, J.A., Danélsdóttir, A.K., Geffen, A.J., Meijer, W.G., Modin, J., Montero, F.E., Pampoulie, C., Perdiguero-Alonso, D., Schreiber, A., Stefánsson, M.Ö., Wilson, B., 2010. Multi-disciplinary fingerprints reveal the harvest location of cod Gadus morhua in the northeast Atlantic. Mar. Ecol. Prog. Ser. 404, 197-206.
- Hjort, J., 1914. Fluctuations in the great fisheries of northern Europe. Rapp. P.-v Réun. Cons. Int. Explor. Mer. 20, 1-228.
- ICCAT (International Commission for the Conservation of Atlantic Tunas), 2001. Workshop on bluefin mixing (Madrid, Spain, September 3-7, 2001). SCRS/01/020.
- ICCAT (International Commission for the Conservation of Atlantic Tunas), 2012. Report of the 2012 Atlantic bluefin tuna stock assessment session. Doc. No. SCI-033/2012.
- ICCAT (International Commission for the Conservation of Atlantic Tunas), 2013. Report of the 2013 bluefin meeting on biological parameters review (Tenerife, Spain - May 7 to
- ICES (International Council for the Exploration of the Sea), 2005. Report of the study group on stock identity and management units of redfishes (SGSIMUR). ICES CM 2005/ACFM:10.
- ICES (International Council for the Exploration of the Sea), 2009. Report of the workshop on redfish stock structure. ICES CM 2009/ACOM:37.
- Jakobsson, J., 1970. On fish tags and tagging. In: Oceanogr. Mar. Biol. Ann. Rev., vol. 8,
- Janssen, R., 2001. On the use of multi-criteria analysis in environmental impact assessment in the Netherlands. J. Multi-Crit. Decis. Anal. 10, 101-109.
- Kerr, L., Campana, S., 2013. Otolith elemental composition. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Kerr, L.A., Goethel, D.R., 2013. Simulation modeling as a tool for synthesis of stock identification information. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Kovach, A.I., Breton, T.S., Berlinsky, D.L., Maceda, L., Wirgin, I., 2010. Fine-scale spatial and temporal genetic structure of Atlantic cod off the Atlantic coast of the USA. Mar. Ecol. Progr. Ser. 410, 177-195.
- Larkin, P.A., 1972. The stock concept and management of Pacific salmon. In: Simon, R.C., Larkin, P.A. (Eds.), The Stock Concept in Pacific Salmon. H.R. MacMillan Lectures in Fisheries. Univ. British Columbia, Vancouver.
- Makhrov, A.A., Artamonova, V.S., Popov, V.I., Rolskiy, A. Yu, Bakay, Y.I., 2011. Comment on: Cadrin et al. (2010) "Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617-1630". ICES J. Mar. Sci. 68, 2013-2015.
- Mariani, S., Bekkevold, D., 2013. Nuclear DNA and proteomics. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- National Research Council (NRC), 2004. Improving the Use of the "Best Scientific Information Available" Standard in Fisheries Management. The National Academies Press, Washington DC.
- Northeast Fisheries Science Center, 2003. 36th Northeast Regional Stock Assessment Workshop (36th SAW) Assess. Summ. Report. NEFSC Ref Doc 03-06.
- Northeast Fisheries Science Center, 2011. 52nd Northeast Regional Stock Assessment Workshop (52nd SAW) Assess. Summ. Report. NEFSC Ref Doc 11-11.
- Northeast Fisheries Science Center, 2012. 54th Northeast Regional Stock Assessment Workshop (54th SAW) Assess. Summ. Report. NEFSC Ref Doc 12–14.

- Rooker, J.R., Bremer, J., Block, B.A., Dewar, H., de Metrio, G., Corriero, A., et al., 2007. Life history and stock structure of Atlantic bluefin tuna (*Thunnus thynnus*). Rev. Fish. Sci. 15 (4), 265–310.
- Rounsefell, G.A., 1948. Development of fishery statistics in the North Atlantic. U.S. Fish Wildl. Serv. Spec. Sci. Rep. 47.
- Royce, W.F., Buller, R.F., Premetz, E.D., 1959. Decline of the yellowtail flounder (*Limanda ferruginea*) off New England. Fish. Bull. 146, 1–267.
- Runge, J.A., Kovach, A., Churchill, J., Kerr, L., Morrison, J.R., Beardsley, R., Berlinsky, D., Chen, C., Cadrin, S., Davis, C., Ford, K., Grabowski, J.H., Howell, W.H., Ji, R., Jones, R., Pershing, A., Record, N., Thomas, A., Sherwood, G., Tallack, S., Townsend, D., 2010. Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: integration of observations and modeling. Prog. Oceanogr. 87, 251–263.
- Ruzzante, D.E., Mariani, S., Bekkevold, D., Andre, C., Mosegaard, H., Clausen, L.A.W., Dahlgren, T.G., Hutchinson, W.F., Hatfield, E.M.C., Torstensen, E., Brigham, J., Simmonds, E.J., Laikre, L., Larsson, L.C., Stet, R.J.M., Ryman, N., Carvalho, G.R., 2006. Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc. R. Soc. B 273, 1459–1464.
- Sala-Bozano, M., Mariani, S., 2011. Life history variation in a marine teleost across a heterogeneous seascape. Estuar. Coast. Shelf Sci. 92, 555-563.
- Sala-Bozano, M., Ketmaier, V., Mariani, S., 2009. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol. Ecol. 18, 4811–4826.
- Schwarz, C., 2013. Estimation of movement from tagging data. In: Cadrin, S.X., Kerr, L.A., Mariani, S. (Eds.), Stock Identification Methods. Applications in Fishery Science, second ed. Elsevier Academic Press.
- Serchuk, F.M., Wigley, S.E., 1992. Assessment and management of the Georges Bank cod fishery: an historical review and evaluation. J. Northw. Atl. Fish. Sci. 13, 25–52.
- Shepherd, G., Cadrin, S., Correia, S., Gabriel, W., Gibson, M., Howe, A., Howell, P., Grout, D., Lazar, N., Lambert, M., Ling, W., 1996. Assessment of winter flounder in the southern New England and the Mid-Atlantic. NEFSC Ref. Doc. 96–05b.
- Taylor, N., McAllister, M., Lawson, G., Carruthers, T., Block, B., 2011. Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass. PLoS One 6 (12), e27693. http://dx.doi.org/10.1371/journal.pone.0027693.
- Thorsteinsson, V., 2002. Tagging methods for stock assessment and research in fisheries. Report of concerted action FAIR CT.96.1394 (CATAG). Reykjavik. Mar. Res. Inst. Tech. Rep. 79.
- Wirgin, I., Maceda, L., Grunwald, C., Roy, N.K., Waldman, J.R., Coastwide stock structure of winter flounder Pseudopleuronectes americanus using nuclear DNA analyses. Trans. Am. Fish. Soc. (in press).
- Wood, A.D., Cadrin, S.X., 2013. Mortality and movement of yellowtail flounder, *Limanda ferruginea*, tagged off New England. Fish. Bull. 111, 279–287.

Index

Note: Page numbers followed by "f" denote figures; "t" tables.

4	Advection (Ad), 333
AB, see Ascertainment bias	Advection-diffusion-reaction model (ADR
Acanthocephalans, 191–192	model), 386, 513-514
Acoustic tags and receivers, 399	AFLP, see Amplified Fragment Length
Acoustic telemetry, 398–399	Polymorphism
advantages and disadvantages, 401	Age effects, 134–135
animals tagging, 402f	Age-0 scaphirhynchus sturgeons, 224-225
array design, 407–409	Age-structured models, 519-520
contingent structure, 419-420	Akaike Information Criterion (AIC), 93
data analysis, 410-411	Algorithmic approach, 455–456
daily detection histories, 412f	Allele stuttering, 304–306
encounter histories, 412f	American Psychological Association
multistate models, 415	(APA), 480–481
presence/absence, 411-413	Amplified Fragment Length
residence time, 413-414	Polymorphism (AFLP), 307–307
triangulation, 415-417	Analysis of covariance (ANCOVA), 151,
deployment, 407-408	220-222
homing and site fidelity, 417-419	Analysis of variance (ANOVA), 150,
methods, 448-449	189-190
objectives and assumptions, 402-403	Animal behavior, 462
receiver array, 408f	Annuli, 143
scope of experiment, 409-410	ANOVA, see Analysis of variance
stock mixing, 420	APA, see American Psychological
tag selection, 403	Association
tagging method, 403-405	Apparent survival rate, 432, 434
technology, 398-400	Area restricted search, 459–460
tracking method	Arnason-Schwartz multistate model, 415
active telemetry, 405	Arnason—Schwarz model, 431—433
passive telemetry, 405-407	Ascertainment bias (AB), 310–311
Vemco VPS, 409f	Assessment-management scenarios,
Acoustic transmitters, 398–399	523-524
Active acoustic tracking, 460	Atlantic Bluefin tuna (<i>Thunnus thynnus</i>),
Active telemetry, 405	545-546
Active tracking, see Active telemetry	Atlantic cod (<i>Gadus morhua</i>), 238–250,
Ad hoc method, 79–81	336, 418, 503, 544–545
Adaptive sampling, 494–495	harvesting, 247f
Adopted migration theory, 17	north Atlantic stocks of, 238–250
ADR model, see Advection-diffusion-	PC1 vs. PC2 plot of, 248f
reaction model	Atlantic herring (Clupea harengus), 153,
Adult cestodes, 191–192	179–180, 341, 541f, 542
Adult movement	assessment and management approach,
from Eulerian perspective, 514–515	542–543
from Lagrangian perspective, 513–514	autumn-spawned herring larvae, 153

Atlantic herring (Clupea harengus) (Continued)	C
bluefin tuna larvae trajectories, 346f	C-start burst performance, 121
geographic distribution, 542	Calcified structures, 142
herring spawning aggregations, 154	application, 142
Irish Sea, 155	growth mark formation, 143
juvenile herring otoliths images, 154f	growth pattern detection automation,
larval bluefin tuna, 344–345	147-150
larval distributions, 342f	growth signatures, 142
larval herring production, 343–344	intraspecific differences in growth
management boundaries, 543f	histories, 150-152
patterns in otolith microstructure, 154	life history transitions, 142–143
probabilistic transport model, 345–346 racial characteristics, 153	otoliths, 144–146
spawning groups, 152–153	Salmon
spawning groups, 132 133 spawning season, 542	farmed fish with wild populations,
stock-specific growth patterns in,	157—160
155—156	larval origin reconstruction and
Atlantic Salmon, 120	dispersal pathways, 160–162
Autumn-spawned herring larvae, 153	scales, 146–147
, and a second s	stock identification, 142
В	viewing and analyzing images, 147 wild stocks of adult fish, 152–157
Barcode of Life Data Portal, 272	Candidate gene approach, 311–311
Barcode of Life Data System (BOLD), 272	genome-wide sequencing applications,
Barnacles (Balanus glandula), 515	312–312
Basic Local Alignment Search Tool	HSPs, 311–312
(BLAST), 271–272	MHC genes, 312-312
Basin model, 511	oxygen-carrying blood proteins,
Bayesian approaches, 277, 435	311–311
Bayesian inference, 462–463	Capillary-based automated fragment
Beaked redfish (Sebastes mentella),	analyzer, 305f-305f
546–547, 547f Behavior modes, 459–462	Capture history vector, 431
Best-fitting model, 441–442	Capture method, 404–405
Billfish (Istiophoridae), 388	Carassius carassius (C. carassius), 62–63
Binned data, 451–452	Cardiocephaloides physalis (C. physalis),
Biocomplexity, 502–503	193–195
Biological environment, 63	Caretta caretta, see Hatchling loggerhead turtles
Biomarker analysis, 447–448	Carlin dangler tags, 372, <i>see also</i> Glue-on
Black rockfish (Sebastes melanops),	shellfish tags
161-162	Catch per unit effort (CPUE), 465–466
BLAST, see Basic Local Alignment Search	Catcher awareness, 380
Tool	Catching methods, 378
Blue shark (Prionace glauca), 455–456	cDNA, see Complementary DNA
Blue threadfin, see Eleutheronema	Celtic Sea herring, 16
tetradactylum (E. tetradactylum)	Census population sizes, 318–318
Blue-green damselfish (<i>Chromis viridis</i>),	Centropomus undecimalis
161–162	(C. undecimalis), 83
Bluefin tuna, 545	Cestode plerocercoids, 191-192
Body cavity tags, 368–369, 369f, see also Self-locking tags	Chinook salmon (Oncorhynchus
BOLD, <i>see</i> Barcode of Life Data System	tshawytscha), 400
Bootstrapping analysis, 277	Cholesterol, 254
Box-transfer, 514	Chrysoblephus laticeps (C. laticeps), 387
Box-truss network, 114, 114f	Chum salmon, 122
Bull trout (Salvelinus confluentus), 419	CI, <i>see</i> Confidence interval Circularity, 134
	1 111 111 ALTER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Circuli, 143, 210–211	Digital imaging, 112
Clawed lobster, 384–385	Discrete stock/discrete time models,
Clupea harengus (C. harengus), 43-44,	429-431
83-84	Arnason-Schwarz model, 431-433
Cluster analysis, 117–118	dealing with less-than-perfect
Coastal spawning beds, 16	information, 434-435
Coded Wire Tags (CWT), 376	example, 436–438
Coho Salmon, 121	extended Arnason-Schwarz model, 433
COI, see Cytochrome c oxidase subunit I	harvest models, 433-434
Complementary DNA (cDNA), 313	model fitting, 435-436
Concholepas concholepas	yearly movement rates between halibut
(C. concholepas), 48-49, 49f	management, 439t
Confidence interval (CI), 190, 481-482	Discriminant function analysis (DFA), 151,
Connectivity, 20, 523f	174-175
contingents, 21	Disentangling sources
life-time migration behaviors, 21	experimental approaches, 70-71
types, 20	genetic methods, 70
Contingent stock, 336	phenotypic variation, 67
Contingent structure, 419–420	quantifying differences, 71-72
Continuous time and space models, 430,	sample standardization, 67
see also Discrete stock/discrete time	statistical methods, 67-70
models	Dispersion (Di), 333
continuous reading, 440-441	DNA barcodes, 268, 269, 300-301
example, 441–442	Dolphinfish, see Coryphaena hippurus
movement pattern, 443f	(C. hippurus)
skipjack tuna analysis regions, 442f	Dorsal pterygiophores, 368f
theory, 438–440	Double-anchor T-Bar tags, 383
Control region (CR), 265	Double-tagging experiments, 389
Conventional tag-and-recapture studies,	Drivers of plasticity, 63-64
401	DST, see Data storage tags
Conventional tagging methods, 452	Duty cycling, 460–461
Coral trout, 37–39	Dynamic Brownian bridge methods, 464
Coryphaena hippurus (C. hippurus), 79–81, 80f, 94f	E
CPUE, see Catch per unit effort	Early life stages (ELS), 340-341, 348
CR, see Control region	information, 331, 332f
CWT, see Coded Wire Tags	Atlantic bluefin tuna, 344-346
Cyprinodon variegates (C. variegates),	Atlantic herring, 341–344
63-64	Lobster ELS, 346-348
Cytochrome c oxidase subunit I (COI), 263	planktonic dispersal effect, 334f
_	role of, 331–335
D	use in stock identification
D-loop, 261	distribution, 335-337
Data hungry, 415	holistic approach, 340-341
Data storage tags (DST), 64, 451	Lagrangian particle tracking,
Data treatment methods, 389	339-340
Dealing with less-than-perfect	otolith chemistry, 337-338
information, 434-435	phenotypic traits, 338-339
Deep sea crab, 383	Easy-to-use software, 435
Deepwater fishery species, 85-86	Economic Exclusive Zone (EEZ), 11–12
Desaturation process, 250-251	Ecophenotypes, 78
Developmental conversion, 62	ED-EM, see Energy-dispersive electron
DFA, see Discriminant function analysis	microprobe
Dichistius capensis (D. capensis), 388	EEZ, see Economic Exclusive Zone
Digenean metacercariae, 191-192	EFA, see Elliptical Fourier analysis
Digenetic trematodes, 187	Effective population size, 318–319

Elasmobranch dorsal fin spines, 212–213	age-0 scaphirhynchus sturgeons,
Electronic tag detectors, 366	224–225
Electronic tagging, 3, 449, 456–457	assumptions, 215
Elemental fingerprint, 207f	characteristic and reproducible
Eleutheronema tetradactylum	markers, 215–216
(E. tetradactylum), 87, 87f	group mixture characterization, 216
Elliptical Fourier analysis (EFA), 129–130	chemical analysis, 219–220
ELS, see Early life stages	chemical fingerprint, 206–207
Energy-dispersive electron microprobe	data analysis, 220–222
(ED-EM), 219	elasmobranch vertebrae, 211–212
Enzymatic activity, 493	fin rays, 212–213
ESTs, see Expressed sequenced tags	influencing factors, 213–215
Estuarine spawning, 541–542	limitations of application, 216–217
EU-REDFISH project, 136–137	material collection, 217–219
Eulerian approach, 514–515	material preparation, 217–219
European Union for Bird Ringing	natal homing of bluefin tuna, 223
(EURING), 430	otoliths, 208–210, 214
European Union project, 521	resolving natal tags, 223–224
Exploratory data analysis, 494–495	scales, 210–211
Expressed sequenced tags (ESTs),	spawning component contribution, 224
313-314	spines, 212–213
Extended Arnason-Schwarz model, 433	Trans-Atlantic movement, 223
External attachment methods, 404	Fish movement, 516
External tag types, 367–374	Fish parasitological methods, 191
_	Fish scales, 238–250
F	Fish species taxonomy, 244t
Fastloc systems, 451	Fish stock identification, 278–282, 490
Fatty acid composition, 251	Fish tagging methods, 366
Fatty acid profiles, 235, 255	Fisheries scientists, 401
case histories, 238–250	Fishery management, 503–504, 536
cholesterol, 254	complex spatial structure, 29–30
desaturation process, 250–251	empty habitat patches, 30–31
fish scales, 238–250	metapopulation structure benefits, 30
garden experiments, 252	quota setting
genetic markers, 254	harvest control rules, 39–42
Imsa and Namsen PC plot of parr, 251f	MSE, 36–39
labor consuming procedure, 251–252	spatially structured stock assessment
methodology, 236	models, 31–36
chromatographic equipment, 237t	spatial management strategies, 42
gas chromatographic output,	marine protected areas, 46-48
236–237, 255	nested scales of governance, 48–51
PCA, 237–238	spatial distribution of catch, 43–46
RSD _{max} , 238	stock assessment, 329–330
SIMCA analysis, 238–250	stock identification process, 31
SIRIUS program package, 237–238	stock structure for, 522–524
muscle tissue FA value, 253f	thermal barriers, 30
relative distance of fish, 245t, 246t	units, 537
stock identification, 236, 254–255	Fishery-independent sources, 81
water temperature, 252f	Fishing effort distribution, 390
Fecundity, 94–95	Fishing mortality, 78–79, 516–517
Feeding, 467–468	Florida Keys, 88–89, 88f
Filleted shark, 375f	Fourier analysis, 131
Fin rays, 212–213	Fourier harmonics, 135
Fine-scale spatial structure, 544	Freshwater fishes, 388
Fingerprint, 337	Full life history metapopulation models,
Fish hard part chemical composition, 206	526

Full life history models, 515–516	Heteroplasmy, 262, 267
Fulton's condition factor, 61	Hidden Markov Model filters (HMM), 465
_	High resolution photographic image, 173
G	High-resolution passive monitoring
GBRMP, see Great Barrier Reef Marine	systems, 406
Park	Hill-Robertson effects, 264
GBS techniques, see Genotyping-by-	Hitch-hiking selection, 306
sequencing techniques	HMM, see Hidden Markov Model filters
Gene flow, 66–67	Hogfish, 89
Generalized linear models (GLMs),	Holistic approach tests complex networks,
176–177, 190	479–480
Genetic	Homarus gammarus (H. gammarus),
drift, 66	384–385
markers, 254, 487	Homing, 417–419
methods, 70	Homology, 131
stocks, 544–545	Homoplasmy, 262
structure, 516–517	Homoscedasticity, 174
techniques, 493–494	HOMSIR project, 491–493, 492f
Genetic stock identification (GSI), 310 Genetic variability	Horse mackerel (<i>Trachurus trachurus</i>), 135f, 486–487
gene flow, 66–67	HSP, see Heat-shock proteins
genetic drift, 66	
selection, 66	Hypothesis testing, 508–509
	1
stock structure, 65	=
Genomics, 303	IA, see Individual assignment
Genotypic stock, 330	IAT, see Implanted archival tags
Genotyping-by-sequencing techniques	IbD, see Isolation by Distance
(GBS techniques), 310	IBMs, see Individual-based models
Geographic apportionment, 512	ICCAT, see International Commission for
Geographic map, 274–275	the Conservation of Atlantic Tunas
Geolocation, 452–453	ICES, see International Council for the
Geometric methods, 115–116	Exploration of the Sea
Gill Raker Counts, 174t, 175f	ICPMS, see Inductively coupled plasma
GLMs, see Generalized linear models	mass spectrometry
Global positioning system (GPS), 451	Illegal, unreported, and unregulated (IUU
Glue-on shellfish tags, 372, 372f	fisheries), 317
GPS, see Global positioning system	Image analysis software, 147
Great Barrier Reef Marine Park (GBRMP),	Image processing, 130
38f-39f	Imaging software, 112
Growth mark formation, 143	Implanted archival tags (IAT), 451,
Growth pattern detection automation,	455-456
147-150	Imprinting, 16–17
Growth signatures, 142	Individual assignment (IA), 317
GSI, see Genetic stock identification	Individual-based models (IBMs), 513
	Inductively coupled plasma mass
Н	spectrometry (ICPMS), 219
Habitat based models, 465-466	Interdisciplinary analysis
Handling mortality, 389-390	approaches to same specimen, 490
Hard boundary constraints, 459	exploratory data analysis, 494–495
Harvest control rules, 39–42	holistic approach to stock identification,
Harvest models, 433-434	479
Hatchling loggerhead turtles (Caretta	interpreting results, 482–483
caretta), 449–450	logistics, operation and organization,
Heat-shock proteins (HSP), 311–312	491–494
Herring(Clupea harengus),	matched sampling, 484–485
486–487	mixed-stock analysis, 478–479
100 107	mined stock undrysis, 710 717

Interdisciplinary analysis (Continued) null hypothesis significance testing, 479–481 observational studies, 483 point estimation and confidence intervals, 481–482 power analysis, 483–484 realized sampling site positions for, 486f	Jackass morwong (Nemadactylus macropterus), 160–161 Juvenile Atlantic menhaden (Brevoortia tyrannus), 161 Juvenile coho salmon, 121 Juvenile Salmon Acoustic Telemetry System (JSATS), 399
sample size, 489–490 sampling in space, 485–487 in spawning area and time, 488–489	Kalman filter, 456–459 Kernel density method, 463–464 Kruskal–Wallis test, 174, 189
in time, 487–488 Interdisciplinary stock identification process, see also Stock identification biological stock structure, 539 case studies, 539–540 Atlantic Bluefin tuna, 545–546 Atlantic cod in New England, 544–545 Atlantic herring off New England, 542–543 beaked redfish in, 546–547 striped sea bream in, 548	LA-ICPMS, see Laser ablation inductively coupled plasma mass spectrometry Lagrangian approach, 512–513 Lake Baikal fish populations, 238–250 Large marine ecosystem (LME), 463 Large population size issue, 301–302 Large subunit (LSU), 265 Larval dispersal, 513 Larval nematodes, 191–192 Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), 219
winter flounder, 540–542 yellowtail flounder off New England, 543–544 consensus interpretation, 538 fishery management units, 537 multidisciplinary review, 538–539 priori hypotheses, 538 recommendations, 539 sources of information, 538	Leptocephalus, 61 Leucoraja erinacea (L. erinacea), 81 Leucoraja ocellata (L. ocellata), 81 Life history traits, 77–78 distribution and abundance data and designing new studies, 79–82 life cycle, 82–83 metapopulations and contingents,
spatial management units, 537 Internal implantation, 404 Internal tag types, 375–376, see also External tag types International Commission for the Conservation of Atlantic Tunas (ICCAT), 11–12, 539–540	83–84 ecophenotypes, 78 fishing mortality, 78–79 life history modeling, 468 natural selection, 78 reproduction and recruitment, 91–95 size and age, 85–91
International Council for the Exploration of the Sea (ICES), 2, 516–517, 539–540 International Standardization Organization (ISO), 382–383 Intramuscular game fish tags, 372–374,	stock identification, 79 testing stock structure hypotheses, 79 variation in, 78 Light based geolocation, 452–454 Limanda ferruginea (L. ferruginea), 35, 351 Linear morphometric distances, 114
373f Irish Sea, 155 ISO, see International Standardization Organization Isolation by Distance (IbD), 318 IUU, see Illegal, unreported, and unregulated fisheries	Linear morphometric distances, 114 LME, see Large marine ecosystem Location accuracy, 460–461 Locking flaps, 370–371 Log likelihood approach, 457 Logistic model, 92–93 Logistic regression, 174–175

Longer-term research recommendations,	Microsatellites, 304-307
545	Migratory contingent, 520
Longitude, 453–454	Migratory species, telemetry analysis of
Longitude matching accuracy, 456	algorithmic approach, 455–456
LSU, see Large subunit	archival tags, 451–452
Lumpfish specimens, 117f	Bayesian inference, 462–463
Earnprish specimens, 1171	behavior modes, 459–462
M	biological parameters, 447–448
Magnetic body cavity tags, 366	comparison, 461f
Major histocompatibility complex (MHC),	data from conventional tags, 448
312	depth, 465–466
Management strategy evaluation (MSE),	electronic tagging methods, 449
37, 522–523	error estimates for, 455f
Coral trout, 37–39	geolocation, 452-453
GBRMP map, 38f-39f	HMM, 465
management procedures, 37	beyond light, 454-455
simulation models, 37	light based geolocation, 453–454
stock assessment models, 36-37	SLRTs, 449–451
Management units, 536	statistical approach, 456–459
Mann-Whitney tests, 189	stock boundaries, 463–464
MANOVA, see Multivariate analysis of	synthesis, 466–468
variance	tagging study road map, 449, 450f
Marine finfish, 387	telemetry methods, 448–449
Marine protected areas (MPA), 46-47	Mitochondrial DNA (mtDNA), 261
attributes, 47–48	advantages and limitations,
effects, 47	260-261
Icelandic cod fishery, 48f	data processing
spawner density, 46–47	mtDNA sequence data tools,
Markov Chain Monte Carlo sampling	271-272
(MCMC sampling), 462–463	phylogeographic analysis of
Matched sampling, 484–485	mitotypes, 274–277
Maximum likelihood, 277	evolution, 263–264
Maximum sustainable yield (MSY), 507	extraction, 270
Maximum-likelihood estimates, 435	fish stock identification, 278-282
MCEA, see Multi-criteria evaluation	genetic approaches, 258-259
analysis	genetic data, 259
MCMC sampling, see Markov Chain	marine ecosystems, 258
Monte Carlo sampling	meta populations, 259
Meristics, 171	molecular techniques, 259-262
case studies in stock identification	PCR, 269
Atlantic herring, 179–180	restriction analysis, 269-270
Striped bass, 180–181	sequencing, 270-271
winter flounder, 177–179	in species and stock identification,
sampling techniques, 172–173	265-269
statistical analysis, 174–177	stock structure information, 258–259
stock discrimination, 171–172	transmission genetics, 262-263
stock structure, 172	MitoFish, 272
variables, 174	Mitotype phylogeographic analysis,
Merluccius merluccius (M. merluccius),	274—277
40, 42f	MitoZoa database, 272
Messenger RNA (mRNA), 313	Mixed stock analysis (MSA), 478-479
Metacercaria, 193–195	Mixed stocks, 13
Metapopulation, 477–478	Model validation, 507–508
Methanolysis, 236	Model verification, 507
MHC, see Major histocompatibility	Modeling complex population structure,
complex	506-507

Modern practice, 435	N
Molecular marker classes, 306f	NAFO, see Northwest Atlantic Fisheries
Mollusk valves, 129–130	Organization
Monogenetic trematodes, 187	Natal homing mechanisms
Morone Americana (M. Americana),	adopted migration theory, 17
84	closed populations in marine fishes, 17f
Morphometric analysis, 281–282	imprinting, 16–17
Morphometric landmarks, 109	NCPA, see Nested clade phylogeographic
methodological protocols	analysis
choice of characters, 112–116	NEAFMC, see North East Atlantic
sampling, 111–112	Fisheries Commission
statistical analysis, 116-118	Neighbor-joining, 276
morphometric differences interpretation,	Nested clade phylogeographic analysis
118	(NCPA), 276
Salmon case studies, 118–123	Nested scales of governance
phenotypic stock definition, 110–111	C. concholepas, 48–49
stock identification studies, 109–110,	MPAs, 48
110f	river herring, 50–51, 50t
Morphometric outlines, 129	TURF and non-TURF areas, 49–50
case studies in stock identification,	Next generation screening panels,
135—137	316–317
image processing, 130	Next-generation sequencing (NGS), 269,
interpretation, 135	304
mollusk valves, 129-130	NGS, see Next-generation sequencing
multivariate analysis, 134–135	Nonparametric methods, 463–464
shape variation, 129	Nonparametric tests, 174
statistical model fitting, 130-133	North East Atlantic Fisheries Commission
Movement estimation from tagging data	(NEAFMC), 11–12
continuous time and space models, 430,	Northeast U. S. Stock Assessment
438-442	Workshop, 539-540
discrete stock/discrete time models,	Northwest Atlantic Fisheries Organization
429-438	(NAFO), 11–12
Movement rates, 432, 434	Nuclear DNA (nucDNA), 265
Movement studies, 370	Nuclear genome, 298-299
MPA, see Marine protected areas	effective population size, 318-319
mRNA, see Messenger RNA	gene structure, 299f
MSA, see Mixed stock analysis	genetic patterns and processes,
MSE, see Management strategy evaluation	300
MSY, see Maximum sustainable yield	DNA barcodes, 300-301
mtDNA, see Mitochondrial DNA	large population size issue, 301–302
mtDNA sequence data tools, 271	neutral evolutionary forces, 302
BOLD, 272	nuclear markers applicability task,
chromatograms and interpretation,	315t
273f	mixed stock analysis, 317
extraction, 271–272	neutral vs. adaptive variation, 302-303
MitoZoa database, 272	nuclear "tool kit" for stock identification
Mullica RivereGreat Bay estuary, 419	candidate gene approach, 311-312
Multi-criteria evaluation analysis (MCEA),	microsatellites, 304-307
539 Multistate madels 415	proteomics, 312–314
Multistate models, 415	restriction-assisted methods,
Multivariate analysis, 115, 134–135	307-309
Multivariate analysis of variance	single nucleotide polymorphisms,
(MANOVA), 151, 196, 221–222	309-311
Multivariate maximum-likelihood model,	transcriptomics, 312-314
	seascape genetics, 318
Myxosporeans, 191–192	

GIS approach, 318 marine spatial planning, 318 stock identification, 299–300 stock structure, 315–317	PCA, see Principal component analysis; Principal components analysis PCR, see Polymerase chain reaction PCs, see Principal components
Null hypothesis significance testing, 479–481	PD, <i>see</i> Planktonic dispersal PDur, <i>see</i> Planktonic duration
	Peterson Disc tag, 366
0	Phenotypic character, 253
Observational studies, 483	Phenotypic modulation, 62
Ontogenetic rates, 112–113	Phenotypic stock, 330
Ontogeny, 61	Phenotypically plastic variability, 62
Operating model development, 506–507,	drivers of plasticity, 63–64
509	in environments, 62
Operational validation, 507–508	interpretation of population structure, 62
Otoliths, 143, 208–210, 214	reaction norms, 64–65
annual growth marks in, 149f choice of, 144	types, 62–63 Pink salmon, 91–92, 122
clarity of growth marks, 146	PIT tags, see Passive integrated
edge contours, 148	transponder tags
elemental signatures, 161–162	PIXE, see Proton-induced X-ray emission
growth, 338–339	Planktonic dispersal (PD), 333
microstructure patterns, 150	Planktonic duration (PDur), 333
mounting, 144–145	Planktonic larvae stage, 350
sectioning and polishing, 145–146	Planktonic survival (PS), 333
shape, 136	Planktonic transport (PT), 333
Overlap model, 514–515	Plastic anchor tags, 367–368
1	Plastic head in-water tags, 372–374
P	Plastic tipped dart tag, 367, 367f
Pacific ocean perch (Sebastes alutus), 512	PLS, see Partial least square
Pacific Ocean Shelf Tracking (POST), 400	PMRN, see Probabilistic maturation
PanI, 311	reaction norms
Panulirus argus (P. argus), 45f	Point estimation, 481–482
Parameter fitting, 23	Poisson distribution, 439–440
Parametric tests, 189–190	Polishing, 145–146
Parasite assemblage approach, 190	Polyethylene streamer tags, 370–371, 371f
Parasites tags, 185	Polygon methods, 463–464
biological tagging, 186	Polymerase chain reaction (PCR), 267, 269
case studies, 193–196	Polynomials, 131
in fish population studies, 185–186	Pomoxis nigromaculatus (P.
hosts and parasites collection, 191–193	nigromaculatus), 380
interpretation of results, 193 methodology, 188–191	Pooled-group PCA, 117—118 Pop up catallite tags (PSATs), 451
selection, 187–188	Pop-up satellite tags (PSATs), 451 Population
stock identification, 186	parameters, 489, 523–524
Parsimony analysis, 276–277	restoration morphology, 122–123
Partial least square (PLS), 237–238	structure types, 510–511
plots of heart tissue, 249f	Population dynamics, 468
plots of salmon, 239f	movement, 512–513
Partial warp analysis, 112	from Eulerian perspective, 514–515
Passive integrated transponder tags (PIT	full life history models, 515–516
tags), 373f, 374–376	from Lagrangian perspective,
detection, 382–383	513-514
Passive monitoring systems, 400	larval dispersal, 513
Passive telemetry, 405–407	straying and entrainment, 515
Passive tracking, see Passive telemetry	operating models development, 509
Patuxent River estuary, 519f	population structure types, 510-511

Population dynamics (Continued)	R
spatial heterogeneity, 511–512	Radio Frequency Identification tags
spatially structured populations,	(RFID tags), 375–376
510f	external tag types, 367–374
spawning isolation, 512	fish movement pattern, 383–388
POST, see Pacific Ocean Shelf Tracking	internal tag types, 375–376
Postsmolt scale growth patterns, 157	tagging data analysis, 389–391
Power analysis, 483–484	tagging methods, 378–383
Prawns, 386	Radio telemetry, 398–399
Prerequisites, 485	advantages and disadvantages,
Presence/absence, 411–413	401
Principal component analysis (PCA), 111,	animals tagging, 402f
116, 134, 174–175, 237–238	bull trout, 419
Principal components (PCs), 237–238	Random forests technique, 190
of fish samples, 241f	Random variability, 523–524
heart tissue samples of, 242f	Range testing, 408–409
muscle tissue samples of, 242f	RE, see Restriction enzymes
overlapping, 250	Reaction norm approach, 89, 90f
of parr, 250f	Reaction norms, 64–65
Probabilistic maturation reaction norms	Recapture rate, 432
(PMRN), 93	Receiver arrays, 400
Probabilistic transport model, 345–346	Recovery rate, 434
Probability density function, 333–334	Rectangularity, 134
Probe-based assay techniques,	Red Steenbras (<i>Dentex rupestris</i>),
219-220	367–368
Productivity and susceptibility analysis	Redfish (Sebastes mentella), 133f
(PSA), 39–40	Reduced genomic representation (RGR),
Protein coding genes, 264, 268	308–309
Proton-induced X-ray emission (PIXE),	REs, see Restriction endonucleases
219	Residence index, 413–414
Proven correct validation, 508	Residence time, 413–414
PS, see Planktonic survival	Residual standard deviation max
PSA, see Productivity and susceptibility	(RSD _{max}), 238
analysis	Response diversity, 502–503
PSATs, see Pop-up satellite tags	Response variables, 507
Pseudogenes, 267	Restriction analysis, 270
PT, see Planktonic transport	Restriction endonucleases (REs), 269
	Restriction enzymes (RE), 307
Q	Restriction fragment length polymorphism
Q Factor, 382	analysis, 270
Quantitative traits	Restriction-assisted methods,
continuous variability, 60	307
disentangling sources of phenotypic	adaptor ligation, 307
variation, 67–72	AFLP, 307
phenotypic traits, 60	fragmentation process, 307
population structure, 60	genomic DNA, 307
variation in, 59, 61	PCR amplification, 307–308
genetic variability, 65-67	whole-genome analyses, 308–309
phenotypically plastic variability,	RFID tags, see Radio Frequency
62-65	Identification tags
variability due to demography, 61	RGR, see Reduced genomic representation
Quota setting	Rotational harvest strategies, 44
harvest control rules, 39-42	RSD _{max} , <i>see</i> Residual standard deviation
MSE, 36–39	max
spatially structured stock assessment	Russell's catch equation, 9
models, 31–36	rasson s caten equation,)

S	Sharks, 386–387
Sablefish (Anoplopoma fimbria), 515	Shelled mollusks, 384
Sagitta, 144	Shifted stocks, 13–14, 14f
Sailfish (Istiophorus platypterus), 459	Short tandem repeats (STR), 304
Salmon	SIMCA, see Soft Independent Modeling of
farmed fish with wild populations,	Class Analogy
157-160	Simple sequence repeats (SSR), 304
larval origin reconstruction and dispersal	Simulation modeling, 23, 37, 502–504
pathways, 160–162	assessment, stock structure implications
Salmon case studies, 118-120	for, 520–522
adaptive hypotheses, 122	conceptual model, 506
body morphology of Atlantic, 120	considerations in, 505t
breeding experiments, 120	ecological consequences, 517–520
burst performance, 121	fisheries management, stock structure
C-start burst performance, 121	implications for, 522–524
Chum salmon, 122	hypothesis testing, 508–509
Coho Salmon, 121	model validation, 507–508 model verification, 507
fineness ratio, 120	
functional hypotheses, 123	operating model development, 506–507 opportunities and limitations, 524–526
morphometric patterns, 120	response variables, simulation and
morphometric stock identification, 123	measuring, 507
morphometrics, 120	stock structure, 516–517
pink salmon, 122	tailor-made model, 504
population restoration morphology,	10 cod demes, 517f
122–123	Single nucleotide polymorphisms (SNPs),
swimming behavior, 118–120	309-310
swimming kinematics, 121–122	advantage, 310
Salmon parr, 238—250	challenges, 310–311
Salmon shark (Lamna ditropis), 455–456 Salvelinus leucomaenis (S. leucomaenis),	chromosomal stretch, 309f
65	GBS techniques, 310
Sampling, 111–112	Site fidelity, 417–419
Sanger sequencing method, 270–271	Skipjack tuna (Katsuwonus pelamis), 33,
Satellite linked radio transmitter (SLRTs),	386, 468
449–451	SLRTs, see Satellite linked radio
SBT, see Southern bluefin tuna	transmitter
Scale growth patterns, 157	Small subunit (SSU), 265
Scale pattern analysis, 156	Small yellow croaker (Larimichthys
Scales, 210-211	polyactis), 523–524
Scanning electron microscope, 147	Small-scale PIT tag studies, 383
SCCZ, see Spring Cod Conservation Zone	SNPs, see Single nucleotide
School mackerel (Scomberomorus	polymorphisms
queenslandicus), 381	Soft Independent Modeling of Class
Scientific endeavors, 536	Analogy (SIMCA), 238–250
Sea surface temperature (SST), 455-456	Southern bluefin tuna (SBT), 466 Spatial distribution of catch
SEAPODYM, see Spatial ecosystem and	basin dynamics, 44
population dynamics model	Belizean spiny lobster, 46
Seascape genetics, 318	C. harengus, 43–44, 43f
Sebastes mentella (S. mentella), 82, 546	Chile's red sea urchin, 46
biological stocks, 547f	demographic differences, 44–45
EU Redfish Project, 546	eroding spatial structure, 43
ICES, 546–547	rotational harvest strategies, 44
Self-locking tags, 370, 370f	Spatial ecosystem and population
Sensitivity analyses, 508 Shallow water crabs, 384	dynamics model (SEAPODYM),
Shahow water claus, 304	468, 515

Index

Spatial heterogeneity, 511–512	applications, 3
Spatial indicators, 40	case studies on, 2
Spatial management strategies, 42	cursory treatment to, $1-2$
marine protected areas, 46-48	ecosystem framework, 350-352
nested scales of governance, 48-51	larval distributions formation, 352t
spatial distribution of catch, 43-46	larval flatfish distribution, 354f
Spatially explicit models, 507	weakfish life history, 351f
Spatially structured stock assessment	ELS information, 331, 332f
models	Atlantic bluefin tuna, 344–346
application, 33	Atlantic herring, 341–344
connectivity patterns, 36	Lobster ELS, 346-348
cryptic biomass implications, 33	planktonic dispersal effect, 334f
demographic units and exchange rates,	role of, 331–335
31-33	ELS use
rebuilding trajectories, 35	distribution, 335–337
stock area, 36	holistic approach, 340-341
in 2008 assessment, 32f-33f	Lagrangian particle tracking,
in 2010 assessment, 32f-33f	339-340
Spatiotemporal variation, 488	otolith chemistry, 337–338
Spawning (Sp), 333-335	phenotypic traits, 338-339
groups, 152	in fishery science, 1
isolation, 512	fishery stocks, 330
migration, 516	geostatistics use, 348-349
periodicity, 91–92	ICES Study Group, 2
sampling	identification process, 315-316
in spawning area, 488-489	life cycle models, 349–350
in spawning time, 488-489	management units, 3
seasonality, 91	stock, 329-330
Spheniscus demersus (S. demersus),	stock structure, 2-3, 349-350, 353
193-195	techniques, 340
Spines, 212–213	Stock identity research, 477-478
Spiny lobster, 385	Stock mixing, 420
Spotted mackerel (Scomberomorus	Stock structure, 22, 315–317
munroi), 381	cod demes, 517f
Spring Cod Conservation Zone (SCCZ),	connectivity, 523f
409f	ecological consequences, 517–520
male and female Atlantic cod resident	fish movement, 516
proportion, 414f	for fisheries management, 522–524
residence times of spawning Atlantic	fishing mortality, 516–517
cod, 413f	implications for assessment, 520–522
Squid and octopus, 384	inferences, 366–367
SSR, see Simple sequence repeats	model domain, 522f
SST, see Sea surface temperature	movement scenarios investigation, 518f
SSU, see Small subunit	Patuxent River estuary, 519f
State space models, 456–459	simulation models, 516, 525f
State-space formulation models, 441	spawning biomass simulations, 517
State-space models, 440-441, 457-458	stock identification methods, 516
Stationary reference tags, 408–409	white perch simulation model, 520f
Statistical methods, 67–70, 116–118	STR, see Short tandem repeats
Statistical model fitting, 130–133	Straying, 18, 515
Statistical power, 483–484	Striped bass (Morone saxatilis), 180–181
Stock assessments, 398, 447–448	Striped sea bream
Stock assignment application, 338–339	(Lithognathusmormyrus), 548,
Stock discrimination, 477–478	548f
Stock identification, 1, 79, 236, 477–478,	Sun altitude, 452–453
516, 536	Sunfish (<i>Mola mola</i>), 449–450

C1-4'	
Super-population	complex life cycles, 14–15
fraction, 433	connectivity, 20
size, 433	discrete groups of fish, 9
Superglue, 372	fishing across boundaries hereditary rights, 11–12
Т	
T-Bar anchor tag, 368, 369f	management unit, 12–13, 12f policy frameworks, 11
Tag	mixed stocks, 13
durability, 379	modern fisheries science, 8–9
loss, 436	natal homing mechanisms
recovery program, 376–377	adopted migration theory, 17
retention, 379	closed populations in marine fishes,
selection, 403	17f
shedding rate, 389	imprinting, 16–17
Tag-recovery models, 448	open life cycles, 15
Tagging method, 403–405	open populations
catching methods, 378	imprinting and straying, 18
data analysis, 389–391	marine planktivorous fishes, 19
holding techniques, 378	school-trap, 19–20
procedure and impacts, 379–380	segments, 19
reporting rates, 380–382	operational definitions
sterilization of tags, 378	conservation biology, 10–11
use of anesthetics, 378	ecological organization levels, 10f
Tagging mortality rates, 379	internal dynamics, 9–10
Tailor-made model, 504	reef fishes, 18
Telemetry data, 463	shifted stocks, 13–14, 14f
Telemetry methods, 448–449	spawning runs, 15–16
Template approach, 453	track fish stocks, 21–23
Temporal stability, 487	Universal primer, 262
Territorial user rights fishing (TURFs),	Utilization distributions (UDs), 416–417
Territorial user rights fishing (TURFs), 48–49	
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453	Utilization distributions (UDs), 416–417
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81	Utilization distributions (UDs), 416–417 Valid ageing methods, 85
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65	Utilization distributions (UDs), 416–417 Valid ageing methods, 85 Variability
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452	Utilization distributions (UDs), 416–417 Valid ageing methods, 85 Variability confounding effects of demography,
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82	Utilization distributions (UDs), 416–417 Valid ageing methods, 85 Variability confounding effects of demography, 61
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455	Utilization distributions (UDs), 416–417 Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method	Utilization distributions (UDs), 416–417 Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400,
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212 Vessel monitoring systems (VMS),
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212 Vessel monitoring systems (VMS), 525–526
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212 Vessel monitoring systems (VMS), 525–526 Visible Implant Alpha tags, 373f, 374
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415−418 Vertebrae, 211−212 Vessel monitoring systems (VMS), 525−526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415−418 Vertebrae, 211−212 Vessel monitoring systems (VMS), 525−526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415−418 Vertebrae, 211−212 Vessel monitoring systems (VMS), 525−526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems Volunteer angler tagging programs, 381
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81 U UDs, see Utilization distributions Ultrasonic pulses, 400	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415−418 Vertebrae, 211−212 Vessel monitoring systems (VMS), 525−526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81 U UDs, see Utilization distributions Ultrasonic pulses, 400 Ultrasonic tags, 399	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212 Vessel monitoring systems (VMS), 525–526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems Volunteer angler tagging programs, 381 Von Bertalanffy growth function (VBGF), 86–87, 149–150
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81 U UDs, see Utilization distributions Ultrasonic pulses, 400 Ultrasonic tags, 399 Unit stock, 7–8	V Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415−418 Vertebrae, 211−212 Vessel monitoring systems (VMS), 525−526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems Volunteer angler tagging programs, 381 Von Bertalanffy growth function (VBGF), 86−87, 149−150 VPS, see VR2W Positioning System
Territorial user rights fishing (TURFs), 48–49 Threshold based approach, 453 Thunnus thynnus (T. thynnus), 81 Thymallus thymallus (T. thymallus), 65 Time series data, 451–452 Trachurus trachurus (T. trachurus), 81–82 Track reconstruction, 454–455 Tracking method active telemetry, 405 passive telemetry, 405–407 transfer RNAs (tRNAs), 261 Transmission genetics, 262–263 Trawl-caught specimens, 172 Triangulation, 415–417 tRNAs, see transfer RNAs Tropical fish in Lakes Victoria, 238–250 TURFs, see Territorial user rights fishing Two-stock hypothesis, 81 U UDs, see Utilization distributions Ultrasonic pulses, 400 Ultrasonic tags, 399	Valid ageing methods, 85 Variability confounding effects of demography, 61 interpretation, 69f leptocephalus, 61 population-level averages, 61 VBGF, see Von Bertalanffy growth function Vemco's Radio Acoustic Positioning system (VRAP system), 400, 415–418 Vertebrae, 211–212 Vessel monitoring systems (VMS), 525–526 Visible Implant Alpha tags, 373f, 374 Visible Implant Elastomer™ tags, 374, 374f VMS, see Vessel monitoring systems Volunteer angler tagging programs, 381 Von Bertalanffy growth function (VBGF), 86–87, 149–150

566 Index

VR2W Positioning System (VPS) (Continued) Vemco, 409f

VRAP system, *see* Vemco's Radio Acoustic Positioning system

W

Wavelength-dispersive electron microprobe (WD-EM), 219

WD-EM, *see* Wavelength-dispersive; Wavelength-dispersive electron microprobe

White perch (*Morone americana*), 519 White perch simulation model, 520f White sharks (*Carcharodon carcharias*), 449–450

Winter flounder (*Pseudopleuronectes* americanus), 177–179, 420, 540–541

Atlantic Canada and northwest Atlantic continental shelf, 541f
Estuarine spawning, 541–542
northeast United States and continental shelf, 540f

regional genetic stock structure, 542 Within-group PCA, 116–117, 174–175

Y

Yellowtail flounder (*Limanda ferruginea*), 511, 543–544 geographic variation of female, 119f morphometric landmarks, 113f sexual dimorphism, 115f

Z

Zone-based system, 340