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a  b  s  t  r  a  c  t

This  paper  revisits  topics  addressed  in two  previous  papers  on  data  weighting  in fisheries stock  assess-
ment  models:  the  first  was  general  (Francis,  2011; Can.  J.  Fish.  Aquat.  Sci.  68,  1124–1138);  the second
considered  the related  problem  of  finding  the  best  likelihood  for composition  data  (Francis,  2014;  Fish.
Res. 151,  70–84).  In the  light  of  subsequent  literature  and  experience,  four  topics  seemed  in need  of
increased  emphasis  or  elaboration.  (1)  For  composition  data,  it is better  to  think  in terms  of  “right-
weighting”  (i.e., weighting  that  is statistically  appropriate)  than  “down-weighting”.  (2) The  sensitivity  of
some assessments  to changes  in weighting  can  sometimes  be reduced  by restructuring  to  reduce  model
misspecification;  this  is  a good  idea,  but should  be  seen  as complementary  to data  weighting,  rather  than
an  alternative  to it.  (3)  It seems  typical  that  more  than  half  of  the  variance  of composition  residuals  arises
from  process  error (arising  from  model  misspecification)  rather  than observation  error.  (4)  Changing  the
likelihood  for  composition  data  from  the multinomial  to  the  Dirichlet-multinomial  has  some  advantages
but  is  not  without  problems.  Some  new  topics  are  discussed:  most  iterative  reweighting  of  composition

data  is multiplicative,  but additive  methods  deserve  consideration;  data  weighting  is more  complicated
in  state-space  models;  catch  data should  not  be  subject  to  data  weighting;  there  are  significant  disadvan-
tages  in  structuring  age-related  observations  of  fishery  and  survey  catches  as  frequencies,  rather  than
compositions  (i.e., as  numbers,  rather  than  proportions);  methods  of  weighting  three  additional  data
types  (conditional  age  at length,  tagging  abundance;  and  tagging  length-increment)  are  described.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

A key feature of modern fisheries stock assessment models is
hat they simultaneously analyse two or more types of data in a
ikelihood framework. This feature has been present in stock assess-

ent models since at least the early 1980s (Fournier and Archibald,
982). In this century it is often signalled by the adjective “inte-
rated”, both within the fisheries literature (e.g., both Maunder
2003); Maunder and Punt (2013) refer to “integrated analysis”),
nd in that relating to population modelling more broadly (e.g.,
oth Newman et al. (2014); Schaub and Abadi (2011) use “inte-
rated population modelling”). When there are multiple data types
he term data weighting refers to decisions made by the modeller
hat affect the relative influence of each data type (and of each
ndividual datum within a data type) on model outputs. In two
ecent papers I first showed how these decisions can have a pro-

ound effect on the outcome of stock assessments and presented
ome principles aimed at guiding stock assessment scientists in
ata weighting (Francis, 2011), and then suggested that some data-

E-mail address: chris.francis@clear.net.nz

ttp://dx.doi.org/10.1016/j.fishres.2016.06.006
165-7836/© 2016 Elsevier B.V. All rights reserved.
weighting difficulties could be reduced by moving away from the
multinomial likelihood for composition data (Francis, 2014). In the
present paper my  aim is to revisit the matters covered by these
papers in response both to subsequent publications and to pre-
sentations and discussions at the October 2015 workshop “Data
conflict and weighting, likelihood functions, and process error”
organised by CAPAM (Center for the Advancement of Population
Assessment Methodology). To allow the present paper to stand
alone I will combine brief summaries of the main points of the two
earlier papers with new material that either elaborates on topics
that I now think need more explanation, fills gaps that have become
apparent, responds to subsequent literature and discussions, or
identifies gaps in our knowledge.

2. Background and definitions

Much of the discussion of data weighting below will be
restricted to two  types of data: abundance (e.g, absolute or rel-

ative biomass estimates from trawl or acoustic surveys, from
fishery catch per unit effort [CPUE], or from tag-recapture experi-
ments) and composition (estimated proportions, by age or length,
in catches from fisheries or surveys). These are by far the domi-

dx.doi.org/10.1016/j.fishres.2016.06.006
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2016.06.006&domain=pdf
mailto:chris.francis@clear.net.nz
dx.doi.org/10.1016/j.fishres.2016.06.006
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Age (y)

A
ge

 (
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Fig. 1. Comparison, for trawl fishery data from the 2006 assessment of southern
hake (Merluccius australis) in Chile, of A, actual between-age correlations in compo-
sition residuals with B, those expected from a multinomial distribution. The area of
each circle is proportional to the corresponding correlation (with open circles for
positive correlations, and filled circles for negative; the largest absolute correlation
 R.I.C.Chris Francis / Fishe

ant (and sometimes only) data types in age-structured statistical
tock assessment models. Some reference will be made to other
ata types.

The weight applied to each datum in a stock assessment model
s defined by a parameter of the likelihood associated with that
atum. This likelihood describes the assumed distribution of the
rror associated with that datum, which is to say the difference
etween O, the observed value of the datum, and E, the value
xpected by the model. For abundance data the most commonly
sed likelihoods are the lognormal or normal, and the weight-

ng parameter is typically a c.v. (coefficient of variation) or, less
requently, an s.d. (standard deviation). For compositions, the
ominant likelihood is the multinomial, for which the weighting
arameter is an effective sample size though lognormal likelihoods
weighted either by a c.v. or by a log-space s.d.) are sometimes
sed (e.g., Punt and Kennedy, 1997). Here the adjective “effective”
Pennington and Vølstad 1994) is intended to emphasise that this is
ot an actual sample size (i.e., the number of fish measured or aged);

t is usually much smaller than the actual sample size because of
actors like intra-haul correlation (the fact that two  fish from the
ame haul are typically more alike than those from different hauls).
f we expect the error associated with a datum to be small (or large)
hen we should apply a large (or small) weight to it, which means
sing a small (or large) c.v. or a large (or small) effective sample
ize.

We can distinguish three ways of weighting data in stock assess-
ents. The weighting is called outside the model if the values of the
eighting parameters are calculated, and fixed, before the model

s run. It is inside the model if the weighting parameters are esti-
ated, along with other parameters (such as selectivities, and the

opulation unfished biomass, B0), each time the model is run. This
ncludes situations in which the weighting is partially fixed before
he model run, and partially estimated during the model run (e.g.,
e may  define the c.v. of the ith observation in a set as (ci

2 + c2)0.5,
here the ci are fixed beforehand and c is estimated), because it is
ot until the model is run that the weighting of the data set is deter-
ined. The third way of weighting data is called iterative, because

t involves the following iterative procedure.

. Set initial weights for the data set

. Run the model

. Use information from the model output to adjust the data
weights

. Repeat steps 2 and 3 as often as desired

(This terminology is slightly different from that of Francis
2011), who used the term “two-stage” to include both iterative
eighting and the type of inside-the-model weighting in which the
eighting is partially fixed before the model run.) Francis (2014)
escribed likelihoods that can be weighted inside the model as
elf-weighting, and pointed out that most likelihoods commonly
sed for compositions (including the multinomial) are not self-
eighting because they are improper. This is a major reason for

he use of iterative weighting in stock assessments.
I will call the weighting of a data set in a stock assessment model

tatistically appropriate if the sizes of the errors, (O − E), are consis-
ent (in some sense) with the associated likelihood and weighting
arameter(s). This is not intended to be a formal definition (thus the
hrase “in some sense”), but two simple examples should demon-
trate its intent. Suppose we have a set of observations, Oi, indexed
y i, and the associated weighting parameters are c.v.s, ci, so the
.d. of the ith error is given by si = ciEi. Then, assuming the errors

re uncorrelated, our weighting will be statistically appropriate if
e ensure that Vari[(Oi − Ei)/si] ≈ 1. How close this variance should

e to 1 for the weighting to be deemed statistically appropriate
ill, of course, depend on the number of observations and the val-
shown is 0.94). The multinomial correlations were calculated for the average (across
years) of the expected compositions.

ues of the cis. This method of ensuring statistical appropriateness
is not valid when the Oi are the individual composition proportions
because it ignores the large correlations (both positive and nega-
tive) that are common amongst the errors in these proportions and
very different from the small negative correlations associated with
multinomial errors (Fig. 1). For such data, Francis (2011) suggested
that the weighting would be statistically more appropriate if we
ensure that Varj

[(
Ōj − Ēj

)
/Sj

]
≈ 1, where, for the jth composition,

Ōj and Ēj are the observed and expected mean age (or size), and Sj
¯
is the standard error of Oj (this is the basis of weighting methods

TA1.8-10 of Francis, 2011). Francis (2014) referred to multinomial
sample sizes calculated following this approach as Pennington sam-
ple sizes, since the approach adapts, for use with stock assessment



R.I.C.Chris Francis / Fisheries Research 192 (2017) 5–15 7

Table  1
Effect on estimated uncertainty of reweighting the (age and length) composition data in the 2014 stock assessment of the southern stock of Chilean kingclip (Genypterus
blacodes):  multinomial sample sizes for compositions (assumed to be the same for all years) and estimated standard errors of selected outputs. The reweighting used method
TA1.8  of Francis (2011).

Sample sizes Standard errors

Model Age Length B0 (t) Depletion (%) Ffinal (y−1)
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Reweight 10 8 

Change in standard errors 

esiduals, a method of Pennington and Vølstad (1994) to charac-
erise observation error in survey composition data. I acknowledge
he looseness of the above definition of statistical appropriateness
particularly in the undefined precision associated with “≈”), but I
an see no useful way to formalise this definition. The discussion
elow of the question “how many times to iterate” (Section 4.2)
ffers some guidance in this matter.

I will sometimes refer to the difference (O − E) as the total error
o emphasise that it can be thought of as the sum of the obser-
ation error (O − T), where T is the true (i.e., real world) value of
hat we observe, and what I call the process error, (T − E), which

xists because our models are only approximations of the real
orld (note that the term “process error” has a different mean-

ng in state-space models, which I discuss separately below). This
ecomposition of the total error is important because the two
rror components are very different in nature. Observation error
sometimes called sampling error) is completely independent of
he model and its assumptions. Its likely size can often be estimated
rom the variability within the raw data from which our observa-
ions are constructed (e.g., from within-stratum variation of catch
ates in a trawl survey biomass estimate), and we  can often influ-
nce this size by changing our sampling intensity. By contrast, the
rocess error is purely a consequence of our model assumptions,
nd its likely size may  be affected by changes in these assumptions.
n important example of this concerns assumptions about fishery
electivity. Real world fishery selectivities change from year to year
s a consequence of changes in the spatio-temporal distribution of
oth the species of interest and of fishing activity (which may  be
ffected by factors such as weather, the price of fuel, and the abun-
ance and/or value of other species). Thus we can expect to reduce
he size of process error in fishery compositions (which means that
he total error will decrease, so the weighting of these data should
e increased) if we allow the fishery selectivity to be time-varying,
ather than the same in all years. Note that we cannot directly quan-
ify the extent of process error, but we can estimate its variance by
ubtraction using Vprocess = Vtotal − Vobservation (which follows from
he above definition). It’s worth noting also that, although some of
he correlation structure seen in composition residuals (e.g., Fig. 1)
ndoubtedly arises from process error, there is clear evidence that
here is also some in the observation error (Hrafnkelsson and Ste-
ánsson 2004; Miller and Skalski 2006).

The approach to data weighting presented by Francis (2011)
as developed in the context of what I will call conventional stock

ssessment models (this is simply a convenient label for a com-
on  type of model; I do not wish to imply that “non-conventional”
odels are necessarily inferior in any way). These include the most

ommonly used models in north America, South Africa, Australia,
nd New Zealand, such as AMAK (Anonymous, 2016), ASAP (Legault
nd Restrepo, 1999), BAM (Craig, 2012), CASAL (Bull et al., 2012),
SCAM (Martell, 2011), MULTIFAN-CL (Fournier et al., 1998), and
tock Synthesis (Methot and Wetzel, 2013). Most of the cur-
ent paper also assumes conventional models, but some different

pproaches to stock assessment, including state-space models, will
e briefly discussed in a separate section below.
339 2.16 0.016
504 2.82 0.019
+49% +31% +21%

3. Why  data weighting is important

Francis (2011) gave two reasons to believe that data weighting
is important. The first, and more important, is that it can substan-
tially affect the results of a stock assessment, as results from two
recent stock assessment reviews show. In both reviews, models
were rerun after replacing the existing weighting of composition
data by that based on method TA1.8 of Francis (2011). For rougheye
rockfish (Sebastes aurora)  this reweighting reduced the estimate of
depletion (the final year spawning biomass as a percentage of the
unfished biomass) from 0.63 to 0.45 and decreased yield by “around
30%” (NMFS 2013); for Pacific sardine the reweighting was  done for
three alternative models and the ratios of new to old estimates of
final-year 1+ biomass were 3.2, 0.38, and 0.71 (NMFS 2011). In both
assessments the reweighting substantially reduced the multino-
mial sample sizes used to weight the composition data − by factors
of about 5 for rougheye rockfish and 15 for Pacific sardine. For
another example of how strongly the weighting of compositions
can affect assessment outputs see Sharma et al. (2014fig. 9 [for
reference points] and fig. 10 [for biomass trajectories]). It should
be noted that the effects of reweighting an assessment are very
variable, even when the changes in weights are as substantial as
in these examples. Reweighting of a similar scale sometimes has
only minor effects on assessment outputs. The important factor
seems to be the extent of conflict between the different data types
in the assessment: the greater this conflict, the greater the effects
of reweighting. I will discuss data conflict further below.

The second reason to believe that data weighting is impor-
tant is that it affects any statistical inference we  may make from
our assessments. The most common such inference is in the form
of measures of uncertainty (e.g., a standard error or confidence
interval for depletion, or the probability that the final-year spawn-
ing biomass exceeds some biological reference point). Another
type of statistical inference is the use of AIC (Akaike 1974) to
choose between competing models. A change in data weighting will
almost always change our measures of uncertainty and may  change
the conclusion of an AIC-based inference. Usually, a decrease (or
increase) in the weight assigned to a data set will increase (or
decrease) estimated uncertainty, as illustrated in Table 1, where
a 7.5- to 10-fold reduction in the weighting of composition data
increased estimated standard errors by 21–49%. If our data weight-
ing is not statistically appropriate our statistical inferences risk
being invalid. It is tempting to conclude that data weighting does
not matter in those assessments for which key model outputs are
relatively insensitive to changes to data weighting. This conclusion
will be mistaken if we attach any importance to our estimates of the
uncertainty of the assessment, because these estimates are likely
to be sensitive to weightings.

4. An approach to data weighting

4.1. Abundance data
Francis (2011) argued that we should prioritise abundance data
in stock assessment models because (a) they contain direct infor-
mation about the matters most important to stock assessment; (b)
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PUE data from the Canadian 2J3KL stock of cod (Gadus morhua) which collapsed
n  the early 1990s. Replotted with permission from Fig. 1 of Schnute and Hilborn
1993) [© Canadian Science Publishing or its licensors].

omposition data contain comparatively little direct information
bout these matters (because of uncertainty about natural mor-
ality and selectivity), although model misspecification sometimes

akes it appear otherwise (see below); and (c) without such priori-
isation there is a danger that the abundance data will not be well
tted in our models because their influence will be swamped by
he much more numerous composition data. By “prioritise” I sim-
ly mean that we should ensure that our abundance data are fitted
s well as possible. There are two techniques we can use to this end.

The first technique to encourage acceptable fits to abundance
ata is to weight these data outside the model. The weights
ust allow for both observation and process error. Francis (2011)

escribed three approaches for setting them (adding process error
o trawl survey observation-error c.v.s; a simulation technique for
coustic surveys; and, for CPUE, the method of Clark and Hare
2006) using a data smoother). Some scientists weight their abun-
ance data inside the model (e.g., by use of concentrated likelihoods
Brodziak, 2005) or by estimating a process-error c.v. inside the

odel). This approach is statistically sound, and will often produce
cceptable results, but I caution against it on the grounds that it
an result in poor fits to the abundance data, particularly when
hese data are in apparent conflict with other data (a situation dis-
ussed below). When we fix the abundance weights we  encourage
he model to find parameter values that produce acceptable fits to
hese data; when we allow the model to estimate these weights we
re effectively giving it permission to down-weight these data to
ustify a poor fit (i.e., we are not prioritising the abundance data). If
he abundance data are weighted inside the model it is important
o check that this does not lead to a poor fit to these data.

The second technique to encourage acceptable fits to abundance
ata is the use of alternative models fitted to different subsets of the
vailable data. For example, when two abundance data sets show
uch different trends that it is impossible to fit both well (e.g., Fig. 2)
e must acknowledge that at least one of them must be wrong. I

hink that the best way to express our uncertainty about which is
rong, and to evaluate the consequences of this uncertainty, is to

reate two alternative models, each of which uses just one of the
bundance data sets (and fits it well). This uncertainty is hidden

hen we include both abundance indices in our model but fit nei-

her well. When there are many abundance indices (an extreme
xample is the 2009 assessment of bocaccio (Sebastes paucispinis),
here there were eight indices for adult fish and two  for juveniles
search 192 (2017) 5–15

(Field et al., 2009)) it is more challenging to devise a small set of
alternative models, each of which includes, and fits well to, a subset
of the abundance indices. Another situation where this technique
is useful is when there is uncertainty about whether an abundance
index is representative of the stock being assessed. Francis (2011)
pointed out that, rather than down-weighting this data set (a com-
mon  response), we  should evaluate the effect of the uncertainty by
comparing outputs from a model which includes, and fits well to,
the data, and an alternative model that excludes the data.

The preceding comments apply to the most common type of
abundance data, arising from surveys or fishery CPUE, with a sin-
gle datum for each time step. Abundance data from tag-recapture
experiments are more complex, with each datum typically repre-
senting just those recaptures within a single length (or age) bin over
a given time period. This data type was  not considered by Francis
(2011). Though it is not possible to weight these data outside the
model (because the weighting depends on the extent of correla-
tions induced by process error), they can be iteratively reweighted
using an approach which is analogous to method TA1.8 (Francis,
2011) for compositions (see Appendix A).

4.2. Composition data

Composition data should not be weighted outside the model
because it is not possible to quantify the process error, which often
makes up a substantial proportion of the total error for these data
(Table 2). Because the composition likelihoods used in most stock
assessment programs are not self-weighting (Francis, 2014) [the
two exceptions I am aware of are the logistic-normal likelihood
in iSCAM (Martell 2011 [where is it labelled multivariate logistic])
and the recent introduction of the Dirichlet-multinomial in Stock
Synthesis (Thorson et al., 2017), which I discuss below] it is usually
necessary to weight composition data iteratively, rather than inside
the model.

For iterative reweighting we  must decide: (a) how to set the
initial weights, (b) how to adjust the weights iteratively, and
(c) how many times to iterate the reweighting. One method of
setting initial weights is to make them correspond to the obser-
vation error, as estimated by bootstrap resampling of the raw data
from which the compositions are constructed (e.g., Stewart and
Hamel (2014)); Thorson (2014) proposed an alternative way. A
simpler approach is to set initial multinomial sample sizes equal
to the numbers of sets (or trips) sampled for each composition.
In both methods the intention is to give greater weight to com-
positions in years when sampling was  more intensive. A common
approach to adjusting the initial weights after running the model
is to use one of several algorithms based on two  equations of
McAllister and Ianelli (1997) (see Appendix B). As noted above, this
approach is not statistically appropriate because it assumes com-
position residuals are uncorrelated; a better approach (described
above) uses Pennington sample sizes, which typically produce
much lower composition weights (Table 3) [lower weights make
sense because the correlations reduce the amount of information
in composition data]. It should be stressed that there is no ‘correct’
method of weighting compositions with a multinomial likelihood,
because the likelihood itself is incorrect (since it does not allow
the substantial correlations that are typical of these data); how-
ever, some weightings will be more statistically appropriate than
others. There is no simple answer to the question as to how many
times to iterate the reweighting. My  experience is that it usually
requires rather large changes (more than a factor of 2) in com-
position sample sizes to have an appreciable effect on key model

outputs (e.g., the estimated spawning biomass trajectory). Thus
I do not think it necessary to iterate until there is no apprecia-
ble change in the sample sizes; a better stopping criterion is no
appreciable change in key outputs. Another reason to limit the
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Table  2
Demonstration, using ten data sets from six New Zealand stock assessments, that a substantial percentage of the total error in composition data can be due to process
error.  For each composition data set (which was  from either a survey or fishery) this percentage (in the final column) was  calculated as 100(1 − Ntotal/Nobs), where Nobs and
Ntotal are median Pennington sample sizes for the observation and total error, respectively (this calculation uses the relationship Vprocess = Vtotal − Vobservation and the fact that
multinomial variances are inversely proportional to sample sizes; for details of the calculation of Nobs and Ntotal see the text associated with Table 1 of Francis, 2014).

Assessment Percentage
Species reference Type Source Nobs Ntotal process error

Hoki (Macruronus novaezelandiae) McKenzie (2013) age survey 116 83 28
age fishery 937 20 98
age fishery 261 69 74

Hake  (Merluccius australis) Horn (2013) age survey 89 24 73
age fishery 150 14 91

Ling  (Genypterus blacodes) McGregor (2015) age survey 323 152 53
age fishery 193 38 80

Smooth oreo (Pseudocyttus maculatus) Doonan et al. (2009) length fishery 146 64 56
Paua  (Haliotis iris) Fu (2016) length fishery 327 65 80

Fu (2014) length fishery 245 67 73

Table 3
Comparison of effective sample sizes calculated by method TA1.8 of Francis (2011), which produces Pennington sample sizes that allow for correlations, and two algorithms
based  on McAllister and Ianelli (1997), which do not (numbers in parentheses are approximate 95% confidence intervals for the TA1.8 sample sizes, as calculated by
SSMethod.TA1.8 [Taylor et al., 2014]). The sample sizes were calculated for four age composition data sets from the 2006 assessment of southern hake (Merluccius australis)
in  Chile using a single iteration from a model run in which the input sample sizes were all 150.

Effective sample sizes

McAllister and Ianelli (1997) Francis (2011)

Composition data set Number of compositions Arithmetica Harmonica TA1.8

Trawl fishery 24 258 154 15 (10,33)
Commercial longline fishery 15 240 122 10 (6,32)
Artisanal longline fishery 12 557 210 25 (16,63)

338 294 69 (45,360)
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a See Appendix B for details.

umber of iterations is that Pennington sample sizes are often
ot very precisely estimated (e.g., see the confidence intervals in
able 3, which depend on the number of compositions in the data
et).

The idea underlying Pennington sample sizes has also been used
o develop iterative reweighting methods for two other data types:
onditional age at length (Punt, 2017), and length-increment data
rom tag-recapture experiments (Punt et al., 2017). An important
eature of the former method is that it allows for correlations both
ithin and between length classes. [Both this method and TA1.8

re now available for users of Stock Synthesis in the R package r4ss
Taylor et al., 2014), in which they are called SSMethod.Cond.TA1.8
nd SSMethod.TA1.8, respectively.]

The weighting adjustment in most commonly used iterative
eweighting methods is multiplicative but I think a good case
an be made for considering additive methods in some circum-
tances, though this will require a slightly different approach to that
iven in the additive methods of Francis (2011). All the reweight-
ng methods in Table 3 use multiplicative adjustment, setting
2y = wN1y, where N1y and N2y are the input and adjusted samples
izes for year y, and w is an adjustment factor calculated from the
odel residuals. Francis (2011) described two methods with addi-

ive adjustment: in method TA1.9 (for a multinomial likelihood),
/N2y = 1/N1y + 1/Nadj; and in TA1.10 (for a lognormal likelihood),
2
2y = c2

1y + c2
adj, where the cs are c.v.s (and the adjustment terms,

adj and cadj, are calculated from the model residuals). The differ-
nce between using additive and multiplicative adjustments can
e substantial in terms of the resultant weights (Fig. 3). In the
xample in Fig. 3 the two reweighting methods assign about the

ame overall weight to the data set (i.e., the median samples sizes
rom the two  methods are similar) because both use the idea of
ennington sample sizes. However, the strong between-year vari-
tion in the input sample sizes is preserved by the multiplicative
input sample size was 24; the TA1.8 adjustment factor, w, was 0.17; and the TA1.9
adjustment sample size, Nadj, was 5.9.

method, but much reduced with the additive method. The the-
oretical idea behind these additive methods is that to get the
variance of the combination of two  independent errors we  sim-
ply add the variances of the individual errors (note that variances
are proportional to 1/N for multinomial errors, and to squared
c.v.s for lognormal errors). My  intention in presenting methods
TA1.9 and TA1.10 in Francis (2011) was  that we  would be adding
observation and process errors, but I now realise that to prop-
erly implement this intention we  need to make some changes
these methods. For TA1.9 we should rewrite the above equation

as 1/Ny ,total = 1/Ny ,observation + 1/Nprocess, in which Ny ,total, the sam-
ple size used for year y, is calculated from its two  components:
Ny ,observation, which must be inferred in some way  from the vari-
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bility in the raw composition data (perhaps using methods like
hose of Stewart and Hamel, 2014 or Thorson, 2014); and Nprocess,
hich we must initially guess, and then iteratively update using

he equation for TA1.9 in Francis (2011, table A1) [the
∼
Njy and Nj of

hat equation correspond to Ny ,observation and Nprocess, respectively,
n the present notation]. A simple starting point for this iteration is
o assume no process error, which means that the initial value of
process is infinite, so that Ny ,total = Ny ,observation in the initial model

un of the iterative procedure (this is what I did, with a single itera-
ion, to calculate the additive sample sizes for Fig. 3). Perhaps, given
he results in Table 2, mediany(Ny ,observation) would be a better ini-
ial value for Nprocess. [Ideally, the Ny ,total would be calculated inside
he assessment program from user-provided values of Ny ,observation
nd Nprocess (as it is in CASAL) but it is not difficult for users to do
his calculation outside the program and input just the Ny ,total]. We
eed to make analogous changes to method TA1.10, for which the
odified equation should be c2

y,total = c2
y,observation + c2

process, and it
s cprocess that is iteratively updated. I think the additive methods
re worth considering because they have some theoretical support
i.e., that variances of independent component errors are additive),
hereas the above equation for the multiplicative methods is ad

oc. An important point to understand is that we  have theoreti-
al support for the additive methods only if we can argue that our
alues of Ny ,observation accurately represent the magnitude of obser-
ation error for our composition data. It does not make sense to
se TA1.9 if we set Ny ,observation to some arbitrary value, like the
umber of trips or landings sampled in year y (unless, of course,
revious analyses have shown that these values are representa-
ive of observation error). I would also say that the choice between
dditive and multiplicative methods is much less important than
he decision to use composition weighting methods that allow for
orrelations.

Punt et al. (2014) suggested that the composition reweighting
ethod TA1.8 “may fail when selectivity is modelled as a random
alk because the model predictions of the mean age (length) will
atch the observed value very closely and the effective sample

izes could become very large”. I agree that this could possibly
appen but suggest that the problem here would not be with the
ata weighting; rather it would be in the parameterisation of a
andom walk structure that has allowed over-fitting of the com-
osition data. The difficulty is in finding the right balance between
roviding sufficient flexibility in the selectivity parameterisation
o mimic  temporal changes in selectivity, but not so much flex-
bility that the model is fitting to noise in the composition data.
s Nielsen and Berg (2014) note, approaches to addressing this
ifficulty are often rather ad hoc. One obvious indication of over-
tting would be if the samples sizes after reweighting were larger
han was consistent with observation error alone. A reasonable
esponse would be to constrain the parameters of the random
alk. Punt et al. (2014) also expressed concern that when the

omposition data are in conflict with other data method TA1.8
could lead to the model converging to the fit which mimics
he compositional data better.” I think this would be a prob-
em only if the conflict remained after the selectivity was made
ime-varying. Adding flexibility to the parameterisation of selec-
ivity (e.g., using a random walk to allow variation with time)
ill tend to reduce, if not remove, data conflicts involving com-
osition data, as Lee et al. (2014) showed. Both the potential
roblems discussed by Punt et al. (2014) are associated with the
ossibility that method TA1.8 could assign too much weight to
omposition data, which is surprising, given that this method

ypically assigns smaller weights to these data than other iterative-
eighting schemes.
search 192 (2017) 5–15

4.3. Catch data

Francis (2011) did not discuss the weighting of catch data
because these data are usually treated as known, either exactly
(i.e., without error), or almost exactly. In the former case the catch
equation is solved to calculate, for each fishery f and time step t,
the fishing pressure (expressed either as an exploitation rate or
an instantaneous fishing mortality rate) so that model’s expected
catch, Cexp

ft
, is equal to the observed catch, Cobs

ft
. For the latter case

(assuming catches are almost exactly true), the catches are treated
as observations with very small errors (e.g., by assigning them
a small c.v. − e.g., 0.05, or even 0.01), so the fishing pressures
are estimated, like other parameters, rather than calculated. This
latter approach should not be thought of as a form of data weight-
ing. It is simply a computationally convenient way of ensuring
that Cexp

ft
≈ Cobs

ft
, used because it is cumbersome to solve the Bara-

nov catch equation with multiple fisheries at the same time step.
Stock Synthesis offers a third, intermediate, approach referred to
as “hybrid” fishing mortality (Methot and Wetzel 2013). The three
approaches typically produce very similar assessments.

I believe these approaches will usually be sensible even when
there is some, possibly substantial, doubt about the catch data. This
is because there is rarely sufficient information to estimate the
catches within the assessment model. A useful way to deal with
uncertainty about catches is to construct alternative models which
differ only in their catch data. For example, if the uncertainty relates
to catches in the early years of the fishery, we may  start with a base
model which uses our best estimates of catches for these years, and
bracket this with two  alternative models in which the early catches
are either increased or decreased by 30%, say. The difference in the
outputs from the three models is then an expression of the effect
of our uncertainty about the early catches.

5. Right-weighting vs down-weighting

Some recent papers have written about down-weighting com-
position data in a way  that may  be misleading. For example,
Maunder and Punt (2013) interpreted Francis (2011) as recom-
mending that age and length compositions be down-weighted to
ensure an adequate fit to abundance data; and Lee et al. (2014)
said that “Resolving model issues through the use of model process
to reduce the misfit to the problematic data components rather
than statistical down-weighting is preferable”. The problem is that
“down-weight” is a relative term: it simply means to reduce the
weight currently applied to a data set. Thus a general recom-
mendation about (or discussion of the merits of) down-weighting
composition data does not make sense; down-weighting relative
to what? The usage is understandable, because the recommenda-
tion by Francis (2011) to allow for correlations when weighting
compositions will result in a down-weighting relative to many
commonly-used weighting schemes. However, it would be better
to speak of right-weighting, rather than down-weighting, where by
the former term I simply mean applying a weighting procedure that
is statistically appropriate (as described above). With regard to the
preceding quote from Lee et al. (2014) I would agree that it is cer-
tainly desirable, where possible, to resolve issues (e.g., data conflict
[discussed below]) by modifying assumptions concerning model
processes. However, I think that data weighting should be seen
complementary to such modifications, rather than an alternative to
them.
6. Data conflict & misspecification

As noted above, data conflict is of importance here because
changes in data weighting are likely to have greater effect on
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ssessment outputs when there is conflict within the data. It is not
ncommon in stock assessments to find evidence of conflict, both
ithin and between data types. Amongst abundance data sets, such

onflicts are usually immediately apparent from a plot of the data
n a comparable scale (as in Fig. 2). Conflicts involving composition
ata are not usually so evident in data plots but can sometimes be
een in likelihood profiles. For example, Fig. 4A shows an apparent
onflict between the abundance data, which are best fitted when
0 ≈ 42 000 t, and the composition data, for which the best value of
0 is about 80 000 t; Fig. 4B indicates a conflict within the composi-
ion data, with that from fishery s1 being most consistent with low
alues of B0, while the other compositions favour high values.

The phrase “data conflict” is potentially misleading because it

uggests that the source of the conflict is in the data, but in fact it
ore often arises from model misspecification, i.e., errors in model

ssumptions. For example, the conflict in Fig. 2 probably arises not
ecause of any problem with the abundance data themselves, but
search 192 (2017) 5–15 11

because of a wrong assumption about those data: that both time
series were proportional to biomass. Much of the apparent data
conflict in Fig. 4 could well arise from misspecification in one or
both of two  processes – natural mortality and selectivity – which
affect model inferences from composition data. In fitting to these
data the model calculates an expected age composition to compare
with each observed composition, but the expected compositions
will be biased by errors in the model’s representations of natu-
ral mortality and selectivity. Misspecification in these processes is
inevitable. For example we  should expected natural mortality to
vary with time, space, and fish size, but there is rarely sufficient
information to estimate this variation, so it is commonly ignored in
model assumptions.

How should we deal with data conflict? First of all we should
endeavour to remove (or at least reduce) it by restructuring our
model (i.e, changing the model assumptions to reduce model mis-
specification), as advocated by Lee et al. (2014). A difficulty is that
demonstrating the existence of conflict is much simpler than iden-
tifying its cause. Note that any restructuring of the model should
be followed by a check to see whether the compositions are still
right-weighted (because the statistically appropriate weighting
may  change when the model assumptions are modified). When
restructuring fails to remove conflict, I think that our response
should depend on the data type(s) involved. For conflicts amongst
abundance data, the response I describe above (see first reference to
Fig. 2) is consistent with the assertion of Punt and Hilborn (1997)
that “The most fruitful approach to handling situations in which
there are conflicting sources of information . . . is to conduct analy-
ses for each source separately and present the results to the decision
makers”. This response is often not practicable when the conflict
involves composition data (though it is sometimes a useful exer-
cise to see what happens when a composition data set is dropped
and the corresponding selectivity is fixed at a plausible value). Nor
is it advisable when the conflict is seen in a profile on an abso-
lute abundance parameter (as in Fig. 4) because the conflict may
be illusory. Maunder and Piner (2015) noted that “relatively minor
model misspecification (e.g. a too inflexible selectivity curve) can
have a large impact on the information about absolute abundance
[apparently] contained in the composition data”. Here we  should
prioritise the abundance data, as described above, so the first thing
to check is whether the abundance data are well fitted. Since these
data were well fitted in the 2010 hake assessment, the conflict with
the composition data in Fig. 4A was of less concern. Note also that an
examination of the vertical scale in this plot shows that the conflict
is not great. Although the minimum value of the composition objec-
tive function occurs at a value of B0 (80 000 t) very far away from the
assessment estimate of 45 000 t, the goodness of fit to the compo-
sition data is only very slightly different between these two value
of B0 (a difference of only about 2 in negative log-likelihood). Had
the fit to the abundance data been poor, the next step would have
been to check whether the composition data were right-weighted.
If they were, then we  should see whether we can achieve a satisfac-
tory fit to the abundance data by down-weighting the compositions
(or, possibly, up-weighting the abundance data). I would empha-
sise that this is a last resort; it is always preferable that data be
right-weighted.

The interpretation of likelihood profiles is more complex than
I thought when discussing the profile of Fig. 4 in Francis (2011)
(in which fig. 1A shows the same profile). My  statement “the esti-
mate of B0 could have taken any value between 42 000 t and 80
000 t, depending on the relative weights assigned to the biomass
and composition data” was misguided. It was based on the simplis-

tic assumption that the positions of the minima of the abundance
and composition likelihoods (42 000 t and 80 000 t, respectively)
would be unchanged if either data type were reweighted. A simple
experiment showed that both these minima shifted (in the same
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Table  4
Effect on the B0 profile of Fig. 4A of reweighting either the composition or abundance data. The tabulated values are the changes (relative to the profile of Fig. 4A) in the
values  of B0 (t) at which each objective function component has its minimum. The data sets were up- (or down-) weighted by halving (or doubling) the associated c.v.s (note
that  a lognormal likelihood was  used for both data types in this assessment).

Reweight compositions Reweight abundance

Objective function component Up-weight Down-weight Up-weight Down-weight
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irection) when the weighting on either data type was  halved or
oubled (Table 4). However, the change in the estimate of B0 caused
y each reweighting (shown in the bottom row of Table 4) is exactly
s expected: i.e., the estimate decreased when either the abundance
as up-weighted or the compositions were down-weighted, and

ice versa.

. Replacing the multinomial with the
irichlet-multinomial

Because the multinomial likelihood does not allow substantial
orrelations, its use in stock assessment models is a clear misspeci-
cation, and we could improve our stock assessments if we  replaced
his likelihood by one that better reflected the error distributions of
eal composition data (Francis, 2014). Another advantage of find-
ng a better likelihood is that it would allow us to simulate more
ealistic composition data. Almost all stock assessment-related
imulation studies that involve generating composition data do so
sing the multinomial, and this must undermine any claim that
onclusions from these studies would be applicable with real com-
osition data.

The Dirichlet-multinomial, which has recently been introduced
nto Stock Synthesis as an alternative to the multinomial (Thorson
t al., 2017), has some clear advantages. It is self-weighting [but
ote that, of its two weighting parameters – one Dirichlet, the
ther multinomial – only the former is estimable] so there is no
eed for iterative reweighting, which greatly simplifies the assess-
ent process and also ensures that the uncertainty associated with

he composition weighting is included in any measures of stock
ssessment uncertainty (e.g., standard errors or confidence inter-
als for assessment outputs). It also has the advantage of allowing
ero proportions, which the logistic-normal likelihood, proposed
y Francis (2014) as a better replacement for the multinomial, does
ot. Thorson et al., (2017) acknowledge that, unlike the logistic-
ormal, the Dirichlet-multinomial cannot hope to mimic  the strong
etween-bin correlations that are characteristic of compositions.
owever, they hypothesise that compositions are also likely to be
orrelated among years and fleets, and suggest that the best strat-
gy for dealing with such a complicated correlation structure is via
mixed-effects models” (presumably something akin to the state-
pace models discussed below). Both the hypothesis and suggested
trategy certainly deserve consideration. However, it remains to be
een whether it is satisfactory to deal with an observation-error
orrelation in compositions by using random effects to model a
ime-varying process that might induce similar correlations.

The Dirichlet-multinomial suffers from two other weaknesses.
horson et al. (2017) showed that, when used in an assessment,
his likelihood gives results similar to those obtained with the

ultinomial likelihood subject to iterative reweighting following
cAllister and Ianelli (1997). This does not seem a strong recom-
endation for the new likelihood in the context of conventional

odels (without random effects), because the evidence is that
cAllister and Ianelli methods overweight composition data in

uch models (see, e.g., Table 3). It remains to be seen whether such
eighting will be satisfactory in models with random effects (dis-
2 000 −4 000 +2 000
26 000 −14 000 +20 000
1 000 −2 000 +3 000

cussed in the next section). Another weakness is that the degree
of overdispersion is the same for every (age or length) bin with
the Dirichlet-multinomial, but has been shown to be strongly bin-
dependent in real composition data (Fig. 5 of Hrafnkelsson and
Stefánsson, 2004; Tables 2 and 3 of Miller and Skalski, 2006).

8. Other approaches in stock assessment

As noted above, the “conventional” stock assessment models
assumed by Francis (2011) in his approach to data weighting are
widespread but not universal. There are two departures from this
type of model that deserve comment here.

8.1. State-space models

The first departure is the use of what have come to be called
state-space models (e.g., Millar and Meyer, 2000; Linton and Bence,
2008; Nielsen and Berg, 2014; also see de Valpine, 2002 for an
excellent introduction to the associated theory, but note that
this field is rapidly evolving because of substantial technological
advances since 2002). In discussing these models I will use the
term process variation to designate what is usually called “process
error” in the state-space literature, because I have used the latter
term in a different sense (see definition above). Process variation
refers to year-to-year changes in processes (or quantities) such
as recruitment, natural mortality, fish growth, fishery selectivity,
proportion mature, etc. Conventional models typically ignore all
process variation except for recruitment: yearly values of recruit-
ment (or, equivalently, log-space deviates from an expected value)
are treated as fixed effects, to be estimated, like other parameters,
and the parameter quantifying their variability (usually denoted
�R) is fixed, rather than estimated. In state-space models, varia-
tion may  be modelled in one or more processes, and the associated
deviates are usually treated as random effects (to be integrated
over, rather than estimated) whose variance parameter is usually
estimated [for an explanation of why the annual values should
be integrated over see the discussion by de Valpine (2002) of the
difference between what he calls “true” and “errors-in-variables”
likelihoods].

Including process variation in a model affects data weighting
because it reduces process error. Recall that the weight assigned to
each observation needs to allow for both observation and process
errors. Some of the process error in a conventional model will be
caused by the fact that much process variation has been ignored
(i.e., processes that vary from year to year have been treated as
time-invariant). Thus, when we add process variation to a model we
are likely to reduce the process error associated with an observation
(and thus allow greater weight to be applied to the observation).
However, it would be wrong to assume that we can remove all
process error in a state-space stock assessment model because not
all process error is associated with process variation: some is due

to other factors, such as errors in either fixed parameters (e.g.,
using the wrong parameter values for natural mortality or growth)
or mathematical forms (e.g., using the wrong equation for mean
length at age or a fishery selectivity, or the multinomial likelihood
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or compositions that include substantial correlations). Moreover,
t is not feasible to model all of the many model processes that
ary from year to year. Thus, what is commonly labelled “observa-
ion error” in the state-space literature will always be a mixture of
hat I have called observation and process errors.

I am not aware of any need to modify the data-weighting
pproach of Francis (2011) for use with state-space models. How-
ver, the weighting problem becomes more complex with these
odels. In a conventional model we may  think of the data-
eighting problem as being one of partitioning the total error

mongst the various data sets. Decreasing the weight given to a data
et is equivalent to increasing its share of the total error. In a state-
pace model, we partition the total error amongst both data sets and
ime-varying processes. Increasing the variance of a time-varying
rocess is the same as increasing its share of the total error. So, as
ell as asking (i) “do we have the right balance of weights amongst

he different data sets?”, with state-space models we  need also ask
ii) “do we have the right balance between data and time-varying
rocesses?”, and, when there are multiple time-varying processes,
iii) “do we have the right balance of weights (i.e., process vari-
nces) amongst these processes?”. Linton and Bence (2008) used

 simulation experiment to show that (ii) was usually difficult to
nswer in their state-space statistical catch-at-age model (in their
erminology we would say that they could not usually produce good
stimates of both process and observation process error variances
NB they did obtain good estimates in the case when an informa-
ive prior was used for the process error variance, but noted that “it
s unlikely that a stock assessment analyst would have the neces-
ary data to set such an informative prior”]). It is well understood
hat getting (i) wrong can strongly affect the outcome of a stock
ssessment. What is less clear is how influential errors in (ii) and
iii) are.

.2. Use of frequencies rather than compositions

Conventional models differ from some earlier assessment
odels (particularly Virtual Population Analysis [VPA] and its

escendants [e.g., Pope, 1972; Shepherd, 1999]) in structuring age-
elated observations of fishery and survey catches as compositions,
ather than frequencies (i.e., as proportions, rather than numbers).
uch of the above discussion of data weighting assumes the use

f compositions, and so is not relevant to some recent state-space
odels (e.g., Millar and Meyer, 2000; Nielsen and Berg, 2014) that

ave reverted to the use of frequencies, rather than compositions.
The use of age frequency observations seems to me  to make

uch more difficult both the broader task of stock assessment, and
he more specific task of data weighting. Survey data contain two
undamentally different types of information: abundance (the total
uantity of fish observed − by number or weight), and age structure
how that total quantity breaks down by age). I have argued above
hat we should prioritise the former type, particularly when, as is
ot uncommon, there is conflict between the two types. This is
traightforward when the two types of information are presented
n separate data sets (as in conventional models), but not when they
re combined in age frequencies. For fishery data, separating the
wo types of information allows us to easily distinguish between
and thus weight differently) the total catch for each year (which is
ften known relatively precisely) and the age structure of the catch
which is much less precisely known).

When fishery age frequencies (rather than compositions) are
sed in stock assessment models they are often aggregated across
sheries. This practice is problematic because it withholds from the

odel two potentially useful types of information about between-

shery heterogeneity. First, there may  be, for logistical or other
easons, quite substantial between-fishery differences in sampling
ntensity, which means that different weights should be applied
search 192 (2017) 5–15 13

to data from different fisheries. This is not possible with aggre-
gated data. Second, a model with aggregated age frequencies lacks
information about any year-to-year changes in the contribution
that each fishery makes to the total catch. These changes in con-
tribution could be useful in tracking year-to-year changes in the
aggregate fishery selectivity. For example, suppose a fishery which
typically catches old fish, gradually contributes a bigger and bigger
proportion of the total catch. Then we would expect the aggregate
fishery selectivity to gradually shift to the right, but a model with
aggregated age frequencies would lack an important piece of infor-
mation (the change in contribution from the fishery) to inform the
estimation of such a shift.

9. Concluding comments

In recent years there seems to have been an increasing
consciousness of data weighting amongst the stock assessment
community: data-weighting decisions are now more often dis-
cussed and explicit in assessment documents (where once they
were tacit and implicit), and new methods of data weighting have
been developed. This is a positive change, which must be improving
the quality of stock assessments. Another worthwhile development
is a greater attention towards removing some model misspecifica-
tion, with the aim of lessening the sensitivity of assessments to
data weighting by reducing (apparent) data conflicts (particularly
those involving composition data). Nothing in these developments
suggests a need to modify the three guiding principles of data
weighting given by Francis (2011): (i) do not let other data stop
the model from fitting abundance data well; (ii) when weighting
age or length composition data, allow for correlations; and (iii) do
not down-weight abundance data because they may  be unrepre-
sentative. Here, I have tried to extend the message of the earlier
paper by (a) providing increased emphasis or elaboration of some
points, and (b) to discuss a few topics that have arisen more recently
(see Abstract for a summary).

There are two  particular areas of research whose development I
follow with interest because I think they might have a strong effect
on data weighting. The more general, and active, area is the use
of random effects to model process variation in stock assessment
models and thus reduce process error, model misspecification,
and (potentially) data conflict. Heavy computational requirements
slowed progress in this area until the recent development of TMB
(Kristensen et al., 2016). [To those who  have, as I once did, doubts
about whether random effects are really significantly different from
fixed effects I offer the growth modelling example of Francis et al.
(2016), where the former worked but the latter did not; for a the-
oretical justification see the text associated with the last reference
above to de Valpine (2002)]. The other, more specific, research area
of interest is the difficult search for a convincing replacement for
the multinomial as a likelihood for composition data. As I say above,
I suspect we  can do better than the Dirichlet-multinomial proposed
by Thorson et al. (2017), but the logistic-normal that I advocated
(Francis, 2014) is not without problems. I am aware of promising
research in this area and believe that weighting composition data
inside the stock assessment model, with a likelihood which more
accurately represents the error distribution of these data, will rep-
resent a great advance over methods like TA1.8, which, though the
best we  can currently do using the multinomial likelihood, are sim-
ply ad hoc solutions to the problem of using the wrong likelihood.
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ppendix A. Data weighting for tag-recapture abundance
ata

In this Appendix I describe the rationale behind a recently-
roposed method for weighting tag-recapture data for stock
ssessments using CASAL. This method applies to situations in
hich the data include information about the tag rate (the propor-

ion of captured fish that are tagged), and so are informative about
opulation abundance. Without tag rate information the data are
till informative about growth, but the present weighting method
s not applicable (but see Punt et al., 2017).

The tag-recapture data are presented to CASAL in a series of
ubsets, each of which is associated with catches over a given time
eriod in a given area. Within each subset the fish are binned (usu-
lly by length, but conceivably by age) and the data presented for
he ith bin in the jth subset are

nij , the number of captured fish examined for tags, and
mij , the number of examined fish that are found to have tags
The default assumption is that the mij are independent (between

ins and between subsets) and mij ∼ RobustBinomial(nij , pij), where
ij is the model’s expected tag rate (see p. 77 of Bull et al., 2012
or the form of the robustification). Then eij = nijpij is the expected
umber of tagged fish in the ith bin of the jth subset, and we  define
j = �imij and ej = �ieij .

There is evidence that some (probably most) tag-recapture data
ets are over-dispersed. That is, they are more variable than would
e expected from the above assumptions, and thus should be down-
eighted. To investigate this possibility we can construct residuals,

j = (mj − ej)ej
−0.5. Since the nij are typically large, the mij should be

pproximately Poisson(eij), and the additive property of indepen-
ent Poisson distributions means that mj should be approximately
oisson(ej), and so have mean and variance equal to ej . Thus we
hould expect that Varj(rj), which we denote by w, should be
pproximately 1. With some data sets w is substantially greater
han 1, i.e., the data are over-dispersed. This is presumably because,
ather than being independent between bins, the mij are positively
orrelated.

CASAL provides a dispersion parameter, d, as an informal means
f allowing for over-dispersion, with the (robust binomial) log-
ikelihood of each subset of tag-recapture data being divided by d.
he default is d = 1; setting d > 1 implies over-dispersion and down-
eights the data. The proposed tag-recapture weighting method,

n which d ≈ w, is motivated by analogy with a normal likelihood.
f our observations, mij , were normally distributed with variance
2, then dividing our log-likelihood by a dispersion parameter, d,
ould have exactly the same effect as multiplying �2 by d. Thus set-

ing d = w for our tag-recapture data is like multiplying the assumed
inomial variance of each mij [i.e., nijpij(1 – pij)] by w,  which changes
he expected variance of the rj from 1 to w, as observed, and makes
he weighting of this data statistically appropriate. This weight-
ng method was first applied in the 2013 assessment of the New
ealand SNA 1, where the change in weighting from d = 1 to d = 2.7
ad a moderate effect on estimated biomass trajectories (see Fig.
0 of Francis and McKenzie, 2015).
A1.1 similarities with TA1.8
It is instructive to note several similarities between this weight-

ng method and method TA1.8, which Francis (2011) devised to
eight (length or age) composition data. Both methods involve
search 192 (2017) 5–15

constructing a residual, rj , for each of a series of subsets of a data
set, and then adjusting the data weighting so that the expected vari-
ance of the rj is close to the observed variance. For the composition
data, each subset is a single composition vector (i.e., the propor-
tions at age or length in the catch from a given fishery (or survey)
in a given time period) and the rj are standardised residuals of mean
length or mean age. Both weighting methods use w (=Varj(rj)): for
the tag-recapture data we set d ≈ w;  for method TA1.8 we  divide
the initial effective sample sizes by w. Note that both methods rely
on the associated data set consisting of sufficiently many subsets to
obtain a reasonably reliable estimate of w. Further, both weighting
methods allow for correlations within the data subsets that are not
allowed for in the data likelihood.

Another similarity is that neither of the likelihoods for these
weighting methods is self-weighting. That is, we can not make
our weighting parameter, w, an estimable model parameter, rather
than calculating it (outside the model) as Varj(rj). Francis (2014)
pointed out that the multinomial distribution is not self-weighting
for composition data because, as it is used in stock assessment mod-
els it is improper (i.e., its integral, over all permissible values of the
observations, rather than being 1, is a function of the parameters
of the distribution). The same is true of the binomial distribution
in the tag-recapture likelihood. In CASAL, this is made improper by
two factors: the robustification and the use of d /= 1. The former
factor is probably minor, but the latter is not, as I shall explain. With
the usual (non-robustified) binomial, the probability that we would
observe m tagged fish in the ith bin of the jth data subset is given
by Pij (m) = pm

ij

(
1 − pij

)nij−m
n!/

[
m!

(
nij − m

)
!
]
. Standard theory

shows that if we  sum this probability over all permissible values of

m we  get 1 (i.e.,

nij∑

m=0

Pij (m) =  1). However, introducing a dispersion

parameter, d, is equivalent to replacing Pij (m) by Pij(m)1/d, and this

makes our distribution improper because

nij∑

m=0

Pij(m)1/d is no longer

equal to 1, and in fact depends on the distribution parameters, nij ,
pij , and d. If we  try to estimate d we  find that our estimate tends to

infinity, and this is simply because Pij

(
mij

)1/d
, the likelihood of our

observation mij , is monotone increasing as a function of d.

Appendix B Some iterative reweighting algorithms based on
McAllister and Ianelli (1997)

McAllister and Ianelli (1997, equations (2.5), (2.6) in Appendix
B) described an iterative reweighting algorithm for composition
data with a multinomial likelihood. Their first equation calculates,
from the assessment model output, an effective sample size, Neff,ij,
for the jth composition in the ith data set [NB the sample sizes
labelled “effN” in Stock Synthesis output are the Neff,ij]; and the
second equation calculates the new sample size for all compositions
in the ith data set as Nnew,i = meanj(Neff,ij).

This algorithm seemed reasonable at a time when (as McAllister
and Ianelli (1997) say) it was  “common practice” to use the
same input sample size for all compositions in a data set (i.e.,
Ninput,ij = Ninput,i for all j). However, it is not reasonable now that
it is common to recognise year-to-year variations in sampling
intensity by assigning a different input sample size to each com-
position. To allow for this change of practice a common variant
of the original algorithm retains the first equation, but replaces
the second by Nnew,ij = Ninput,ij meanj(Neff,ij/Ninput,ij). Both the orig-

inal and variant algorithms are strongly affected by outliers in
the form of the extremely high values of Neff,ij that occur when,
by chance, one or more observed compositions happens to lie
very close to its expected value. In recent years a second vari-

http://www.CAPAMresearch.org/data-weighting/workshop
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nt algorithm has become more common in which the arithmetic
ean in this last equation is replaced by the harmonic mean,
hich is less sensitive to outliers [the harmonic mean of x1, x2,

 . .,  xn is n/
∑

i

(
1/xi

)
]. These two variants of the McAllister and

anelli (1997) reweighting algorithms are denoted “Arithmetic” and
Harmonic” in Table 3 above. A third variant uses Nnew,ij = Ninput,ij
armonic-meanj(Neff,ij)/mean(Ninput,ij).
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