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PERSPECTIVE / PERSPECTIVE

Data weighting in statistical fisheries stock
assessment models

R.I.C. Chris Francis

Abstract: The conclusions drawn from fisheries stock assessment models can depend strongly on the relative weights as-
signed to different data sets. However, there is no consensus amongst practitioners as to the best approach to data weighting.
From a discussion of some key questions concerning data weighting in stock assessment models, I draw three guiding prin-
ciples: (i) do not let other data stop the model from fitting abundance data well; (ii) when weighting age or length composi-
tion data, allow for correlations; and (iii) do not down-weight abundance data because they may be unrepresentative. I
propose an approach to data weighting based on these principles. Two factors that complicate this approach are that some
decisions are inevitably subjective (which underlines the need for expert knowledge in stock assessment), and some technical
problems are unresolved.

Résumé : Les conclusions tirées des modèles d’évaluation des stocks des pêches dépendent fortement des poids relatifs attri-
bués aux différents ensembles de données. Il n’y a cependant aucun consensus entre les utilisateurs sur la meilleure manière
de pondérer les données. Une discussion de quelques-unes des questions principales sur la pondération des données dans les
modèles d’évaluation des stocks me permettent de tirer trois principes directeurs: (i) ne pas permettre à d’autres données
d’empêcher le modèle de bien s’ajuster aux données d’abondance, (ii) en pondérant des données de composition en âge et en
longueur, tenir compte des corrélations et (iii) ne pas assigner une pondération inférieure à des données d’abondance parce
qu’elles ne seraient pas représentatives — la méthodologie de pondération des données proposée ici est basée sur ces princi-
pes. Deux facteurs compliquent cette approche: certaines décisions sont inévitablement subjectives (ce qui souligne la néces-
sité d’obtenir des opinions d’experts dans l’évaluation des stocks) et certains problèmes techniques restent irrésolus.

[Traduit par la Rédaction]

Introduction
Most model-based fisheries stock assessments use multiple

data sets. Thus one decision that must be made, explicitly or
implicitly, during an assessment is how much weight to as-
sign to each data set. This can be important because the esti-
mated status of the stock being assessed will depend,
possibly strongly, on these weights. Although there is wide
agreement that data weighting is important (National Re-
search Council 1998; Breen et al. 2003; Hulson et al. 2008),
there seems to be no consensus amongst stock assessment
practitioners as to how it should be addressed. Reports on in-
dividual stock assessments (mostly unpublished) often devote
considerable space to data weighting, but there is wide varia-
tion amongst these reports in the methods used to weight dif-
ferent data sets. In this paper I discuss the main issues
involved in data weighting in a stock assessment setting, and

propose an approach to this problem. The topic is not
straightforward because, as I will try to show, there is no sat-
isfactory objective method of data weighting, and there are a
number of unresolved questions concerning technical details
of weighting schemes. Nevertheless, I think it is possible to
develop some useful guiding principles, which are based as
much on pragmatism and experience as on statistical theory.
Before describing these principles, and a proposed approach
to the problem, I will define some terminology and discuss
some key data-weighting questions. The more technical de-
tails are given in two appendices.

Notation and terminology
In understanding the notation and terminology used below

(Table 1), it is useful to view the stock assessment task at a
series of levels of increasing complexity. At the simplest
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level, this task involves fitting our data (contained in the vec-
tor O) to a model by estimating the “best” values for those
model parameters (in the vector P) whose values are not
known, where the best values are defined as being those that
minimize our objective function L(O, P). There are likely to
be three main types of parameters in P: (i) those that deter-
mine the historical dynamics of the fish population (e.g., the bi-
omass of the unfished population, the recruitment in each year,
and parameters for natural mortality and growth); (ii) those
that describe the action of the fishery (e.g., the fishing mor-
tality in each year, and the age at which fish are 50% se-
lected in a particular fishery); and (iii) those from the error
distributions for the data (e.g., a standard deviation (SD), or
coefficient of variation (CV), for an abundance index). Our
focus will be on type iii parameters, which affects data
weighting.
Looking at the data in more detail, we will, for the most

part, consider only two types of data: (i) observations (or es-
timates) of abundance (in biomass or numbers), and (ii) ob-
servations of the length or age composition of the catch
from a fishery or a survey. These are the dominant, and often
only, types of data used in stock assessments, and thus the
most important in discussions of data weighting (other data
types are discussed briefly below). We will think of the data
vector as being made up of a number of data sets, each of
which consists of a collection of individual data points,
which are written as Oiy, for abundance data, or Ojby, for
composition data. For example, one abundance data set might
consist of estimates of (relative or absolute) abundance from
a series of trawl surveys, with each individual data point
being an abundance estimate for one of the survey years. In
a typical composition data set, the individual data point is an
estimate of the proportion of the catch for a given year that
lies in a given length or age bin (bins may be defined by

combinations of sex and age or length). If there are several
fisheries, there may be one composition data set for each
fishery; there may also be composition data sets associated
with surveys.
Now, looking more closely at the objective function, this

may be written as follows:

ð1Þ LðO;PÞ ¼
X

iy
LiyðOiy;PÞ þ

X
jby
LjbyðOjby;PÞ

þ other terms

I will consider only those stock assessments that use “statisti-
cal” models, like those typically developed using computer
packages such as Stock Synthesis (NOAA 2011), CASAL
(Bull et al. 2008), A-SCALA (Maunder and Watters 2003),
Gadget (Begley 2005), or ADMB (ADMB Foundation
2011). I explicitly mean to exclude methods such as Virtual
Population Analysis, and its descendents (e.g., Pope 1972;
Shepherd 1999), in which composition data are treated as ob-
served without error, and so not subject to data weighting. In
statistical models, we can ignore the “other terms” (which
might include penalty functions and, if the assessment is
Bayesian, prior distributions) because they are not relevant to
the question of data weighting. Our focus is on the functions
Liy and Ljby, which for these models are negative log-likeli-
hoods, i.e., they describe the assumed error distribution for
each data point. Many different error distributions have been
used in stock assessment models but, all the common exam-
ples are expressed in terms of the expected value for the ob-
servation (Eiy or Ejby, which are functions of the parameters
in P) and a weighting parameter (see Table 2). The assumed
(or estimated) values of weighting parameters determine how
much weight is given to each data point. Thus, for example,
if we assume a “normal by CV” error distribution for an
abundance data point (T2.2 in Table 2) we can assign high

Table 1. Notation used in discussing and defining data weighting.

Type Symbol Description
Vector O Vector of all data (observations) that are fitted to in a stock assessment model

P Vector of all parameters being estimated in a stock assessment model
Function L Either the objective function in a stock assessment model or, if subscripted, the component of that

objective function associated with an individual data point (in the latter case, L represents a negative log-like-
lihood)

Variable O An individual data point (observation) (e.g., a survey biomass estimate, or the proportion of the catch from a
given year that is of a given age)

E The model’s expected value for an individual data point
T The true (real world) value for an individual data point
m The number of individual data points in a data set
myear The number of years covered by an abundance or composition data set
mbin The number of bins in a composition data set

Subscript i Indexes the abundance data sets used in a stock assessment model
j Indexes the composition data sets used in a stock assessment model
y Indexes the years within an abundance or composition data set
b Indexes the bins within a composition data set (these bins may be defined by age or length, possibly in combi-

nation with sex)
Weighting parameters

l, w Simple weights
c Coefficient of variation (CV) used in weighting data
s Standard deviation (SD) used in weighting data
N Multinomial sample size used in weighting data
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(or low) weight to that observation by setting ciy to be low
(or high). Another way of thinking of this is that the weight
we assign to an observation Oiy, is determined by how close
we expect it to be to the model’s expected value, Eiy; a high
weight means Oiy is expected to be close to Eiy (so its CV
will be small). Any adjustment of weighting parameters that
gives more (or less) weight to a data set is said to up-weight
(or down-weight) that data set.
It is important to understand that some sorts of information

used in stock assessments are not “data”, in the sense used in
this paper, and thus not relevant to discussions of data
weighting. For example, a set of age and length measure-
ments on individual fish may be used outside the assessment
model to estimate growth parameters (such as von Berta-
lanffy coefficients), which are then treated as fixed parame-
ters in the model. In this case, neither the age–length
measurements nor the growth parameters should be thought
of as data, and thus subject to weighting. The age–length
measurements would be considered as data only if they ap-
peared in the objective function (in which case the growth
parameters would be estimated within the model). Another
type of information that I will not treat as data, and thus sub-
ject to weighting, is that used in a Bayesian model to con-
struct a prior distribution for a model parameter. I will also
ignore the parameter, common to many assessment models,
that describes the degree of year-to-year variation in recruit-
ment (e.g., the parameters sr of McAllister and Ianelli 1997;
and lF of Savereide and Quinn 2004) because although it
looks, mathematically, like a data-weighting parameter, it
does not actually serve to weight any data set.
For readers interested in technical details, there are three

points to be made about the examples in Table 2. First, some

of the terms in the negative log-likelihoods may be consid-
ered optional. For example, many authors omit the log(siy)
term in examples T2.3–T2.5. This is appropriate if, as is
often true, the parameter siy is assumed to be known; but
it is inappropriate if siy is to be estimated. Second, the
weighted sum of squares (examples T2.1A, T2.1B) is not a
negative log-likelihood, but it is included here because its
use is not uncommon (e.g., Taylor et al. 2007; Hulson et
al. 2008), and it may be interpreted as a “normal by SD”
negative log-likelihood simply by setting siy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5=liy

p
(for T2.1A), or sjby ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5=ljby

p
(for T2.1B). Third, for ex-

amples T2.4A, T2.4B, and T2.5 we have a choice in
weighting parameters between the SDs in log space (siy or
sjby) and CVs in natural space (ciy or cjby). I have chosen
the latter because they are more easily interpretable.

Two-stage weighting
It is common practice to weight some or all data sets in

two stages. Stage 1 weights are devised before the model is
run, and generally use information about the way in which
the data were collected (i.e., sample sizes and structures). It
is not uncommon for each data point to have a different
weight. Stage 2 weighting occurs after the model has been
run (or sometimes during a model run), and is intended to
make the data weights more consistent with the model out-
put. The weighting adjustments at stage 2 usually apply to
whole data sets, rather than individual data points, using for-
mulations like those in Table 3. For example, if equation
T3.4 (Table 3) is used for composition data, then before the
model is run, the stage 1 weights, eNjy, will be fixed and pro-
visional values will be assigned to the stage 2 weights, wj.
The assessment model is then run, information from that run

Table 2. Examples of negative log-likelihoods (ignoring constant terms) used in stock assessment models for abundance (Oiy) or compo-
sition (Ojby) data, showing the parameter that is used to weight each data point and the sense in which this parameter works (i.e., does a
high weighting parameter value imply a high weight (+) or a low weight (–)).

Weighting

Negative log-likelihood (Liy or Ljby) Description Parameter Sense
T2.1A liy(Oiy – Eiy)2 Weighted sum of squares liy +
T2.1B ljby(Ojby – Ejby)2 Weighted sum of squares ljby +

T2.2 log ðciyEiyÞ þ 0:5
Oiy�Eiy

ciyEiy

� �2 Normal by CV ciy –

T2.3 log ðsiyÞ þ 0:5
Oiy�Eiy

siy

� �2 Normal by SD siy –

T2.4A log ðsiyÞ þ 0:5
log ðOiy=EiyÞ

siy
þ 0:5siy

h i2 Lognormal by CVa ciyb –

T2.4B log ðsjbyÞ � log exp �0:5
log ðOjby=EjbyÞ

sjby
þ 0:5sjby

� �2
� �

þ 0:01

� �
Robust lognormal cjbyc –

T2.5 log ðsiyÞ þ 0:5
log ðOiy=EiyÞ

siy

h i2 Lognormal by CVa ciyb –

T2.6 –NjyOjby log Ejby Multinomial Njy +

T2.7 0:5log ðE0
jbyÞ � log exp

�ðOjby�EjbyÞ2
2E 0

jby=Njy

h i
þ 0:01

n o
Robust multinomiald Njy +

aThe difference between the two lognormals is that in T2.4A, it is assumed that the expected value of Oiy is Eiy, whereas in T2.5 the expected value of
logOiy is assumed to be log Eiy;

bciy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðs2

iyÞ � 1
q

ccjby ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðs2

jbyÞ � 1
q

dE0
jby ¼ ð1� EjbyÞEjby þ 0:1=mbin;j
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is used to adjust the stage 2 weights, and the model is run
again with the adjusted weights. The process of adjusting the
weights may be applied several times until the weights reach
stable values (this is called iterative reweighting).

Some key data-weighting questions
Answers to the questions addressed in this section will

help to set the scene for the rest of the paper.

Why is data weighting important?
The main reason that data weighting is important in stock

assessments is that it can substantially change the results of
the assessment. This can sometimes be demonstrated by
constructing a profile on a key parameter (called a likelihood
profile if estimation is by maximum likelihood, or a poste-
rior profile if it is Bayesian; as illustrated in Fig. 1) (a pro-
file is constructed by refitting the assessment model many
times, each time with a different fixed value of the chosen
parameter – unfished biomass, B0, in this case). In this exam-
ple, the profile shows that that the abundance data (a single
time series of trawl survey biomass estimates) were best fit-
ted when B0 was 42 000 t; the composition data (proportions
at age in catches from the survey and two fisheries) were best
fitted at B0 = 80 000 t; and in this assessment the data have
been weighted in such a way that the model estimate of B0
(44 840 t) is quite close to the best estimate from the abun-
dance data. Data weighting was important in this assessment
because the estimate of B0 could have taken any value be-
tween 42 000 t and 80 000 t, depending on the relative
weights assigned to the biomass and composition data.
Also, the estimated current biomass (a key management in-
dicator in New Zealand stock assessments) could have taken
any value between 44% B0 and 57% B0, depending on the
data weighting (Fig. 1b).
Another reason that data weighting is important in stock

assessments is that it affects all the usual tools of statistical
inference that are used in these assessments (Deriso et al.
2007). For example, we may want to use the Akaike Informa-
tion Criterion (AIC; Akaike 1974) to decide which of two al-
ternative equations for a selectivity curve is most consistent

with our data, or to test the hypothesis that a fishery selectiv-
ity has changed in recent years. The decisions we make in
these cases may be affected by a change in data weighting.
Also, any estimated confidence (or credibility) intervals for
parameters (or for derived quantities, like current biomass)
will change when data weightings are changed.

Why is stage 2 weighting necessary?
There is an argument that says that we ought to be able to

do without stage 2 weighting. After all, correct weighting re-
quires knowledge of the error distribution of our observa-
tions, and many types of data allow us to estimate that error
distribution before we start modelling. This appears to be the
argument behind the claim by Maunder (2003, p. 470) that
weighting factors are not needed in what he calls “the new
integrated analysis."
The argument is wrong because it doesn’t recognise that

there are three types of error to consider (Fig. 2). These arise
because for any quantity we observe for our stock assessment
(e.g., a biomass, or a proportion at age in a given year) there
are three different values: (i) the value we observe, O; (ii) the
value expected by our model, E; and (iii) the true (real
world) value, T. O differs from T because of observation er-
ror, which is the error whose distribution, and likely size, we
may be able to infer from our data (some ways of doing this
are discussed below). E differs from T because of process er-
ror, by which I mean all the ways in which our model is only
an approximation to the real world. The error we are inter-
ested in (i.e., that described in our negative log-likelihoods)
is that between O and E. I call this total error because it is
the sum of observation error and process error.
This characterization of errors gives an obvious interpreta-

tion to the two stages of data weighting. At stage 1, we as-
sign the weights (or CVs) appropriate for observation error;
at stage 2, we adjust those weights to allow for process error.
This adjustment is usually done either multiplicatively (as in
eqs. T3.1–T3.4 of Table 3) or additively (as in T3.5–T3.8).
Note that when we add a process error with CV cproc to an
observation error with CV cobs, the total error has CVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2proc þ c2obs

q
(assuming the errors are independent, which

Table 3. Examples of equations that allow, for the example negative log-likelihoods of Table 2, two-stage data
weighting.

Weighting parameters

Equation Corresponding example(s) in Table 2 Stage 1 Stage 2
T3.1 liy ¼ eliywi T2.1A eliy wi

T3.2 ciy ¼ eciy=wi T2.2, T2.4A, T2.5 eciy wi

T3.3 siy ¼ esiy=wi T2.3 esiy wi

T3.4 Njy ¼ eNjywj T2.6, T2.7 eNjy wj

T3.5 ciy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiec2iy þ c2i

q
T2.2, T2.4A, T2.5 eciy ci

T3.6 cjby ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiec2jby þ c2j

q
T2.4B ecjby cj

T3.7 siy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffies2
iy þ s2

i

q
T2.3 esiy si

T3.8 Njy ¼ 1=½ð1=eNjyÞ þ ð1=NjÞ� T2.6, T2.7 eNjy Nj

Note: The tilde (~) above the symbol for a weighting parameter indicates that it applies to stage 1.
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seems reasonable, given their sources). A similar logic
applies to equation T3.8: if both O and E are multinomially
distributed, with parameters (Nobs,T) and (Nproc,T), respec-
tively, then the variance of (O – E) is the same as that of a
multinomial distribution with parameters (Ntotal,T), where
Ntotal ¼ 1=½ð1=NobsÞ þ ð1=NprocÞ�.
To avoid stage 2 weighting we must be able to estimate

the likely size of both observation and process error for all
our data before we run our model. I will show that it is pos-
sible to do this for some types of abundance data, but never
for composition data. Thus, stage 2 weighting will always be
necessary, at least for composition data.

Can we estimate process error outside the stock
assessment model?
The answer to this question is yes for some types of abun-

dance data, but no for composition data.

Several studies have attempted to estimate the process er-
ror associated with trawl survey biomass data by comparing
the estimated observation errors with the sizes of the resid-
uals when these biomass estimates are used in a stock assess-
ment model. Pennington and Godø (1995) analysed four
survey time series and concluded that the variance of the to-
tal error was approximately twice as large as that of the ob-
servation error (i.e., process and observation error were
approximately equal in variance). Francis et al. (2003) took a
different approach, assuming that the CV of the process error
was the same for each of 18 trawl-survey time series, and es-
timated that a process error CV of about 0.2 would be needed
to best explain the size of the stock assessment residuals.
These two results are broadly similar because the mean
observation-error CV in the latter study was 0.22. Both stud-
ies assumed that the main source of this process error was
year-to-year variation in survey catchability, although this as-
sumption was not necessary for their analyses. A third study,
by Millar and Methot (2002), focussed primarily on between-
species variation in mean catchability for six species of rock-
fish caught in a triennial series of eight trawl surveys off the
west coast of the US. However, they also estimated year-to-
year changes in catchability (assumed to be the same for all
species), which suggest a process error CV of about 0.35 for
this survey (this is the approximate CV, in natural space, of
the midpoints of the distributions in Millar and Methot
2002’s Fig. 5). This CV may be atypically high for research
surveys because this particular survey series uses chartered
commercial vessels and, as noted by Millar and Methot (2002),
it is not possible to use the same vessels and skippers each time.
For acoustic survey biomass estimates there are several

factors whose year-to-year variation has been identified as
contributing to process error. These include mean target
strength, the abundance of nontarget species, the proportion
of the target population that is not detectable (because it is
too close to the sea floor), and the timing of the survey rela-
tive to that of spawning activity. As long as the likely scale
of amongst-survey variation is known for each factor, it is

Fig. 1. Results from a profile on unfished biomass, B0, in the New Zealand hake assessment of Horn and Francis (2010): (a), the (total)
objective function (solid line), and the components of it associated with abundance (dashed line) and composition data (dotted line), (all zero-
adjusted), with plotted points showing the minimum for each curve; and (b), the relationship between B0 and current biomass in the profile.

Fig. 2. Schematic illustration of the three types of error that exist
between the three values of any quantity of interest (such as a bio-
mass or proportion at age): the observed value, O; the true (real
world) value, T; and the value E expected by our stock assessment
model.
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possible to estimate the extent of process error using a simu-
lation procedure (Rose et al. 2000; O’Driscoll 2004).
Process error in composition data is much more complex

because it occurs in two dimensions (time and age or length),
or sometimes three (if the data are sex-specific). The model
assumptions that contribute most to this error are those asso-
ciated with natural mortality and selectivities. For example,
in many assessments (including that associated with Fig. 1)
it is assumed that natural mortality is independent of both
age and time, and fishery selectivities do not vary with time.
In principle, we could use a simulation approach, similar to
that used for acoustic surveys, to estimate the distribution of
process error arising from the failure of these (or other simi-
lar) assumptions. This does not work in practice because we
do not know how wrong the assumptions are (e.g., we do not
know the scale of year-to-year variations in natural mortality,
or how this scale varies with age). Thus it is not realistic to
try to estimate the process error in composition data outside
the stock assessment model.

Why abundance data should have primacy?
Some approaches to data weighting treat all data types in

the same way. I suggest that this is a mistake, and that pri-
macy should be given to abundance data, by which I mean
that special attention should be devoted to ensuring that the
abundance data are well fitted by the model. My reasons
for this have to do with the purposes of stock assessment
modelling.
Most of the key questions we address in stock assessments

are to do with abundance. We want to know what is the cur-
rent stock abundance (usually relative to historical levels, or
to the unfished abundance), and whether it is increasing or
decreasing. We might also want to know what the effect of
possible future levels of fishing is likely to be, and we will
express this effect in terms of biomass trends (rates of
increase/decrease). Another quantity of interest is some meas-
ure of fishing pressure (usually either an instantaneous rate of
fishing mortality, or a catch/biomass ratio) which, of course,
is directly related to abundance (for a given catch, the greater
the abundance is in any given year, the lower the fishing
pressure must have been). We should give primacy to abun-
dance data because they provide direct information about the
stock assessment quantities that are of most interest, whereas
composition data provide only very indirect information
about these quantities. If we do not grant this primacy, then
there is a danger that any signal from abundance data will be
swamped by that from composition data, simply because the
latter data type is typically much more numerous (in terms of
individual data points).
It is easy to be misled by plots like Fig. 1, which suggest

that composition data contain much useful information about
abundance. The point to remember is that the likelihood cal-
culations that produced this plot depend on very strong as-
sumptions, which we know to be false, but which we need
to make to have a useful stock assessment model. In this
model it was assumed that natural mortality was independent
of age and year, and that the selectivities of the two fisheries
did not vary by year. Such assumptions are useful in allow-
ing us to infer average selectivity curves for the survey and
fisheries, and which year classes are particularly strong or
weak. However, it seems to be a mistake to rely on them in

making abundance inferences from composition data. In this
particular assessment we would see the weakness of such in-
ferences if we were to add a separate line in for each of the
three composition data sets to Fig. 1. These additional lines
(not plotted) would show that these data sets are inconsistent
in their (apparent) abundance signal: the line for the catch at
age data from one of the fisheries would have its minimum at
the lowest value of B0 (30 000 t), whereas for both the survey
and the other fishery the minimum would be at the highest
value (100 000 t).
The situation to avoid, is one in which the relative weight-

ing given to composition data causes a poor fit to the abun-
dance data. We should accept such a fit only if we are
confident that the composition data provide clear evidence of
abundance trends that differ from those suggested by our
abundance data. This, I suggest, will be a rare occurrence.
We rely on composition data to tell us about strong and
weak year classes and the shape of selectivity curves, not
about abundance trends.

How should we deal with abundance data that may be
unrepresentative?
It is not uncommon in stock assessment documents and

meetings for doubt to be expressed as to whether an abun-
dance data set is representative, i.e., whether the trend in
that data set is actually the same (allowing for observation er-
ror) as that in the population being assessed. For example, a
catch per unit effort (CPUE) data set will be unrepresentative
if it is from a fishery in which CPUE is not related to abun-
dance. Survey estimates that cover only a part of the popula-
tion will be unrepresentative if the population fraction
covered by the survey is very different in different years. If
two abundance data sets are clearly contradictory (i.e., they
show very different trends over the same years) then at least
one of them is likely to be unrepresentative.
It may seem reasonable to down-weight data sets that may

be unrepresentative, but this is a bad idea. A better response
is to consider alternative assessments in which possibly un-
representative data sets are omitted. Thus, if there is only
one suspect data set we should produce two assessments:
one including this data set, and the other excluding it. These
two assessments correspond to the two logical possibilities:
A, the data set is representative; or B, it is not. An important
uncertainty that must be communicated to fishery managers
is that although only one of the two assessments is likely to
be correct, we do not know which one. If we simply down-
weight the suspect data set we will produce a result that lies
somewhere between these two assessments. This result will
be wrong in case A, and it will be wrong in case B, and we
will not have alerted fishery managers to the possibility that
one data set is unrepresentative. Both Richards (1991) and
Schnute and Hilborn (1993) made a similar point when dis-
cussing the problem of contradictory data sets in stock as-
sessments. In this case it is important to acknowledge the
uncertainty about which data set is unrepresentative; a single
assessment using all data sets is likely to be wrong, no matter
which of the data sets turns out to be unrepresentative
(Schnute and Hilborn (1993) describe a likelihood that allows
both contradictory data sets to be used in the same assess-
ment and also acknowledges the uncertainty about which
one is unrepresentative, but this seems to me to be an elegant
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way of demonstrating the problem, rather than a practical
way of dealing with it in actual assessments).
Sometimes there will be clear evidence that an abundance

data set is unrepresentative. For example, consider an abun-
dance index that is initially stable and then suddenly in-
creases (or decreases) sharply. This would clearly be
unrepresentative in a fishery in which catches were stable
and there was no evidence of extreme (very strong or weak)
year classes. Data sets believed to be unrepresentative should
be discarded; they certainly should not be retained and down-
weighted.

How should we deal with correlations in composition
data?
It is commonly observed that fish in the same catch (e.g.,

from the same tow of a trawl net, or the same set of a long-
line) tend to be more similar to each other in length or age
than are fish from different catches. Pennington and Vølstad
(1994) called this intrahaul correlation. Sometimes this corre-
lation can occur at a higher level, with fish caught by the
same vessel, in a multiple-catch fishing trip, being more alike
than fish caught by different vessels (e.g., see Fig. 10 of
Francis 2006). These phenomena can induce substantial cor-
relations in age or length composition data sets that are con-
structed from samples from multiple catches (whether from
surveys or fisheries). The proportions Ojby and Ojb′y will tend
to be positively correlated if the bins b and b′, are close to-
gether, and negatively correlated if they are distant (e.g., see
Fig. 12 of Francis 2006). A very similar pattern was shown
in Fig. 1 of Hrafnkelsson and Stefánsson (2004), although
they were plotting different, but related, correlations (those
between the length frequencies at different survey stations,
rather than within the overall length frequency from a sur-
vey). These correlations are much bigger than those that al-
ways occur amongst multinomial proportions (the latter,
which are caused by the fact that the proportions for each
year must sum to 1, are always negative and usually small,
having the following value: –[EjbyEjb′y/(1 – Ejby)(1 – Ejb′y)]0.5).
The effect of these correlations is to reduce the amount of

information in composition data sets. This was demonstrated
by Pennington and Vølstad (1994), who analysed length fre-
quency data for haddock in 26 trawl surveys on Georges
Bank. For each survey they calculated what they called the
effective sample size: the number of fish that would be re-
quired, in a simple random (i.e., uncorrelated) sample from
the population, to estimate the population mean length with
the same precision as was achieved in the survey. Over the
26 surveys, the median effective sample size was 21, which
was half the median number of tows that caught haddock,
and only 2.5% of the median number of fish measured (these
numbers come from Table 1 of Pennington and Vølstad
1994). In a similar analysis, based on trawl surveys con-
ducted in the Barents Sea, off Namibia, and off South Africa,
Pennington et al. (2002) found that the effective sample size
for each survey was, on average, about the same as the num-
ber of tows.
The correlations discussed so far are part of the observa-

tion error for composition data, but there is also likely to be
correlation in the process error. Consider, for example, a
stock assessment in which a fishery selectivity is assumed to
be constant, but actually varies from year to year. In a year in

which the fishery happens to target larger (or older) fish than
usual, the selectivity curve will be shifted to the right, com-
pared with that expected in the model, and so will the ob-
served length (or age) frequency from the catch (Fig. 3).
Notice that the residuals (Ojby – Ejby) are all negative for the
smaller lengths (up to about 48 cm), and all positive for the
greater lengths (Fig. 3). This pattern would be reversed in a
year in which the selectivity curve was shifted to the left.
Thus, this year-to-year shifting of the selectivity would in-
duce the same type of correlations in the process error for
the proportions at length as was described above for the ob-
servation error (i.e., positive correlations between bins that
are close together, and negative correlations for distant bins).
Other types of process error would produce a similar effect
(e.g., year-to-year variation in the natural mortality on small
fish – perhaps caused by fluctuations in their food supply).
How should we take account of the correlations associated

with composition data sets? There are three possible ap-
proaches, none of which is completely satisfactory. The first,
and most common approach, is to ignore the correlations
(i.e., to act as if they were zero). A simple error model is
used for the composition data (e.g., T2.4B or T2.6 in
Table 2), and some method that assumes zero correlations is
used to set weights at stages 1 and 2. Some of the many var-
iants of this approach are described in Appendix A. The dan-
ger with this approach is that the composition data sets are
likely to be over-weighted (remember that correlations tend
to reduce the amount of information in composition data,
and less information should mean less weight), and this could
cause poor fits to abundance data. The second approach is to
use a complicated error model with an appropriate correla-
tion structure. One problem with this approach is that
although there have been several attempts to model observa-
tion error in composition data (e.g., Kvist et al. 2001; Hrafn-
kelsson and Stefánsson 2004; Miller and Skalski 2006) we
have no way of knowing whether these will be appropriate
for total (i.e., observation + process) error. Another problem
is that these error models typically require many more

Fig. 3. Illustration of the relationship between the observed (solid
line) and expected (broken line) catch length frequencies in a year in
which the true fishery selectivity is shifted to the right of that as-
sumed in the stock assessment model.

1130 Can. J. Fish. Aquat. Sci. Vol. 68, 2011

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
N

O
A

A
 N

M
FS

 L
IB

R
A

R
Y

 E
A

ST
 C

O
A

ST
 o

n 
07

/1
8/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



parameters than the simple models. I am not aware of any
assessments using this second approach. I favour the third
approach, which is to use simple error models, but to allow
for correlations by using a data-weighting approach analo-
gous to the method of Pennington and Vølstad (1994) for
calculating effective sample sizes. That is to say, the weights
(in the form of CVs or multinomial sample sizes) are calcu-
lated so as to be consistent with the size of the errors in
mean length (for length composition data) or mean age (for
age compositions) (see Appendix A for details of three meth-
ods using this approach).
To see the effect of allowing for correlations, consider a

model run from the 2006 assessment of southern hake (Mer-
luccius australis) in Chile, in which there were four age com-
position data sets, all of which were assumed to have a
multinomial error distribution with sample size 150 (the
same for all years). If we use stage-2 weighting methods that
ignore correlations, the resulting adjusted sample sizes are
mostly greater than 150 (see columns 2–4, Table 4), suggest-
ing that insufficient weight was given to the composition data
sets in this model. However, when we allow for correlations,
the adjusted sample sizes are all much smaller than 150 (last
column, Table 4), implying that the composition data were
over-weighted. This pattern is not uncommon; multinomial
sample sizes calculated with allowance for correlations are
usually much smaller than those in which correlations are
ignored. An effect of the correlations is illustrated (Fig. 4).
Although there is broad agreement between the observed
mean ages and those expected from the model (in that both
show an overall decline), the expected values are mostly out-
side the 95% confidence intervals for the observed values.
In other words, year-to-year variation in the age composi-
tion data was much greater than is consistent with a simple
random sample size of 150 (as was assumed in calculating
the confidence intervals). Use of this sample size implies
that these data sets contain more information than they
really do.
I should emphasise that my preference for stage-2

weighting methods based on errors in mean length or age
is not based on any statistical theory supporting these
methods. It is simply a pragmatic response to (i) the fact
that the commonly used methods are based on an assump-
tion (of uncorrelated residuals) that is demonstrably
wrong; and (ii) the empirical observation (in plots like

Fig. 4) that these methods give too much weight to com-
position data.

How can robust likelihoods help?
Robust likelihoods are particularly important for composi-

tion data because they help to avoid the situation in which
the model fit is driven by a small number of composition
data points that are extreme outliers. These likelihoods allow
a better fit to the majority of composition data points and re-
duce the probability that the composition data will prevent
good fits to abundance data.
Fournier et al. (1990) pointed out that standard maximum-

likelihood methods can perform poorly when applied to
length composition data because they are too sensitive to the
deviations from the model’s hypotheses (i.e., process error)
that are common with such data. They devised a robust alter-
native to the multinomial likelihood (T2.7 in Table 2: I have
called this a robust multinomial because of the way it is para-
meterised, but technically it is a robust multivariate normal),
which is used in MULTIFAN-CL (Fournier et al. 1998), a
stock assessment program used for many tuna stocks. [In the
original version of the robust multinomial, the term Njy was
replaced by min(Njy, 1000); I omitted this here because I
think it will rarely be used in stock assessments with effec-
tive stage 2 weighting]. A modification of T2.7, in which
E0
jby ¼ ð1� OjbyÞOjby þ 0:1=mbin;j, is available in some pro-

grams (e.g., Maunder and Watters 2003; Bull et al. 2008) fol-
lowing the finding by Starr et al. (1999) that the original
likelihood can produce biased estimates. An approach similar
to that of Fournier et al. (1990) was used to make a robust
lognormal (T2.4B in Table 2) that is available in CASAL
(Bull et al. 2008).

Proposed approach to data weighting
From the questions discussed above I derive three princi-

ples and an end point to aim for in addressing the problem
of data weighting in stock assessments. Principle 1: Do not
let other data stop the model from fitting abundance data
well. Principle 2: When weighting composition data, allow
for correlations. Principle 3: Do not down-weight abundance
data because they may be unrepresentative.
From a data-weighting point of view, the ideal end point

of a stock assessment is a single assessment model in which

Table 4. Final (stage 2) multinomial sample sizes, estimated using four alternative methods
of calculation (TA1.1, TA1.2, TA1.3, TA1.8; see Appendix A for details), for four age
composition data sets with multinomial errors (and assumed sample size 150) in one model
run from the 2006 assessment of southern hake (Merluccius australis) in Chile.

Estimated sample size

Composition data set TA1.1* TA1.2* TA1.3* TA1.8†

Trawl fishery 258 115 116 15
Commercial longline fishery 240 154 152 10
Artisanal longline fishery 557 251 248 25
Survey 338 232 233 69

*These methods do not allow for correlations.
†This method allows for correlations.
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all abundance data sets are fitted well. This may not be pos-
sible when there are conflicts amongst the data sets. In that
case, we should aim for a set of alternative assessment mod-
els, in each of which one or more data sets has been omitted
but all remaining abundance data sets are well fitted. The fol-
lowing approach to data weighting is intended to achieve this
desired end point while respecting the above three principles.

Weighting abundance data
To apply Principle 1, we must have some idea, before we

run the stock assessment model, of how we are going to de-
cide whether the model has fitted the abundance data well.
That is to say, we need to know how large the CVs (or SDs)
of the total errors for these data sets should be. I have de-
scribed above some methods for estimating these total CVs
for trawl and acoustic indices. For other abundance data sets,
I suggest using the approach adopted by Clark and Hare
(2006, p. 9) for a CPUE data set: use the CV of the residuals
of the fit of a data smoother to the abundance data (this is
equivalent to saying that we expect the stock assessment
model to fit these data as well as the smoother). These total
CVs should be applied at stage 1 (i.e., before the model is
run). They should not be adjusted at stage 2, because they
have already been set to reflect our expectations as to how
well the model should fit these data.

Weighting other types of data
For composition data, I suggest using robust likelihoods

(e.g., T2.4B or T2.7 from Table 2), to reduce the influence
of extreme outliers, and setting the initial (stage 1) weights
to represent the approximate size of observation errors. Be-
cause these initial weights will be adjusted, often substan-
tially, with stage-2 weighting, their relative sizes (within data
sets) are more important than their absolute sizes. For exam-
ple, it is important that years with poorer sampling of the

catch be given less weight than those with better sampling.
The weighted sum of squares (T2.1B in Table 2) should be
avoided for composition data, because it implies that for a
proportion p, CV(p) ∝ 1/p, whereas the more typical
pattern is that for a multinomial proportion, i.e.,
CVðpÞ / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� pÞ=pp

(e.g., see Fig. 3, Crone and Sampson
1998). Because composition data typically derive from com-
plex multistage samples, bootstrap resampling is an excel-
lent (although computationally intensive) way of estimating
observation-error CVs. Some other approaches have been
suggested by Morton and Bravington (2008) and Robotham
et al. (2008). If the (robust) multinomial distribution is pre-
ferred to the lognormal, a nonlinear regression (of CV on
proportion) can be used to calculate the equivalent multino-
mial sample size from the bootstrap-estimated CVs (Crone
and Sampson 1998). If these more complicated approaches
are not possible, then I see little harm in the use of the
(preferably robust) multinomial with sample sizes set by
some ad hoc rule (e.g., Crone and Sampson 1998 estimated
a relationship with number of trips sampled; Gilbert and
Phillips 2003 set sample sizes to be 5× the number of land-
ings sampled; Maunder and Watters 2003 used number of
wells sampled; see also the discussion of length composition
sample sizes in Thompson et al. 2009). I don’t think it is
important to allow for correlations (Principle 2) at stage 1.
Stage-2 weighting is important for composition data be-

cause it allows us to include process error, which cannot be
estimated before the model is run, and thus avoid over-
weighting these data. Many different methods of stage-2
weighting have been proposed (see Appendix A). Those
methods that allow for correlations are to be preferred, be-
cause they almost always produce smaller weights for the
composition data (as in Table 4) and thus reduce the proba-
bility that these data will cause a poor fit to the abundance
data (Principle 1).

Fig. 4. Observed (×) and expected (curved line) mean age for the four age composition data sets in the stock assessment of Table 4: (a) com-
mercial trawl; (b) commercial longline; (c) artisanal longline; and (d) survey. The vertical lines are 95% confidence intervals for mean age,
calculated assuming simple random sampling with sample size 150 in each year.
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One weakness of stage-2 weighting methods that allow for
correlations is that they don’t work well with data sets that
cover few years. For example, if we have a 5-year composi-
tion data set with 20 age bins, the stage-2 weights from such
methods are not well estimated, because they derive from just
5 mean-age errors, whereas those from most methods ignor-
ing correlations (e.g., methods TA1.1–TA1.3) are based on
the errors at 100 data points (or 200, if sex is included). It
will sometimes be sensible to make inferences from other
larger data sets. For example, if we find for our large compo-
sition data sets that the adjusted sample sizes with method
TA1.8 are approximately 20%, say, of those calculated with
TA1.1, then we might assume that this ratio is true for a
small data set. Don’t be concerned if the final weights for
composition data are rather small. Recall the results quoted
above from Pennington and Vølstad (1994) and Pennington
et al. (2002), which show that effective sample sizes for
length compositions can be very small (those for age compo-
sitions based on age-length keys tend, in my experience, to
be larger). These small weights will reduce the chance that
composition data will cause a poor fit to abundance data
(Principle 1) and often do not greatly affect estimates of
those parameters about which these data are most informative
(year-class strengths and selectivity curves).
It is difficult to provide specific advice for data types other

than abundance and composition, e.g., proportions mature by
length (Taylor et al. 2007), and length increments from
mark–recapture experiments (Breen et al. 2003). The only
general point I would make is that Principle 1 should apply
to these data.

Judging whether abundance data are well fitted
When we have completed stage 2 weighting and rerun the

model with the adjusted weights, we should check whether
the abundance data are well fitted. A common way to do
this is to calculate, for each abundance data set, the standard
deviation of the normalized (or standardized) residuals
(SDNR) (Breen et al. 2003) (see Appendix B for methods of
calculation). For an abundance data set to be well fitted, the

SDNR should not be much greater than 1 (a value much less
than 1, which means that the data set is fitted better than was
expected, is not a cause for concern). What is meant by
“much greater than 1” depends on m (the number of years in
the data set). Since the normalized residuals are (approxi-
mately) normally distributed, a reasonable guideline is that
the SDNR should be less than ½c2

0:95;m�1=ðm� 1Þ�0:5, where
c2
0:95;m�1 is the 95th percentile of a c2 distribution with

m – 1 degrees of freedom (e.g., this means upper limits of
1.54, 1.37, and 1.26 for m = 5, 10, and 20, respectively).
Although an SDNR not much greater than 1 is a necessary

condition for a good fit, it is not sufficient. It is important to
plot the observed and expected abundances to be sure that
the fit is good (Fig. 5).

What to do when abundance data are not well fitted
When an abundance data set is not well fitted by an assess-

ment model, the first thing to check is whether Principle 1 is
being violated. Can we get a good fit by either up-weighting
the abundance data or down-weighting the composition (or
any other) data? If so, this should be done. A point to note
is that if, to achieve a good fit, an abundance data set is up-
weighted, its SDNR after up-weighting should be calculated
using the original weights (because these weights represent
our best information about how well this data set should be
fitted).
What should be done if the problem does not lie with the

composition data? If there is only one abundance data set,
then this should be considered unrepresentative (unless there
is some acceptable way to modify the model structure to
achieve a good fit), and thus discarded. If there are multiple
abundance data sets, and one or more is not well fitted, then
there is good reason to believe that at least one data set is
unrepresentative (although not necessarily one of those that
is not well fitted). The approach to take here is as outlined
above in the section on unrepresentative data sets. Create a
set of alternative models, in each of which one or more abun-
dance data sets is omitted, and all the remaining abundance
data sets are well fitted. The set of alternative models should

Fig. 5. Demonstration that the standard deviation of the normalized residuals (SDNR) by itself is not a good measure of how well a model
biomass trajectory (line) fits a set of biomass observations (×). The SDNR is exactly the same in both panels but the residual patterns indicate
a good fit in panel (a), and a poor fit in panel (b).
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be as small as possible. The point to note here is that we
should not simply down-weight potentially unrepresentative
data sets (Principle 3); instead we should investigate the ef-
fect of omitting them, or other data sets which may be in
conflict with them. The aim is to present the set of alterna-
tive models to fishery managers and say that each one of
these models could be true, but we don’t know which one. It
may be possible to use the expertise of people with knowl-
edge of the data, and the fishery, to provide an indication as
to which of the alternative models are more, or less, likely to
be true.

Dealing with doubt about abundance data
Principles 1 and 3 should not be interpreted as suggesting

that stock assessment scientists should ignore any doubts
they may have about the representativeness of their abun-
dance data. Nor do I want to suggest that it is easy to deter-
mine whether such data are representative. It is not. What I
am advocating is that we deal with any doubt about the rep-
resentativeness of a particular abundance data set by con-
structing an alternative model (or models) that omits that
data set. Any model that includes this data set is intended to
address the possibility that the data set is representative, so
for this model we apply Principles 1 and 3. The model (or
models) without this data set addresses the possibility that
the data set is not representative.

Goodness of fit to composition data
The above data-weighting procedure does not involve

checking whether the composition data are well fitted. This
is because, in my experience, a poor fit to composition data
is much more likely to be caused by poor model assumptions
than by inappropriate data weights. For example, fits to fish-
eries composition data may be poor if the wrong selectivity
curve is assumed (e.g., if a logistic selectivity is assumed
when the actual selectivity is strongly domed). Note that
SDNRs are not an appropriate measure of goodness of fit for
composition data because the theory underlying them as-
sumes that the errors are uncorrelated.

Discussion
This paper offers three aids to those dealing with the diffi-

cult problem of data weighting in fisheries stock assessments:
(i) some guiding principles; (ii) an end to aim for; and (iii) a
proposed approach to achieve that end. Of these, the last is
least important. For many assessments, even a simple trial
and error approach, as suggested by Fournier and Archibald
(1982), may be adequate if it is aimed towards the end I
have described, and supported by the guiding principles.
One source of difficulty in data weighting is that some of

the decisions involved are inevitably subjective. For example,
there is no objective way of deciding whether abundance data
are adequately well fitted, or of setting the degree of smooth-
ing to be used in setting CVs for abundance data sets. This
necessity for subjective decisions underlines the importance
of expert knowledge (concerning the fishery, the data, and
the models) in stock assessment. I don’t think the problem of
subjectivity is sufficiently severe that we should abandon
statistical population models, as advocated by Cotter et al.
(2004).

Another difficulty is that there are still many unresolved
technical problems. For example, should observation and
process errors be combined multiplicatively (as in T3.1–T3.4)
or additively (as in T3.5–T3.7)? It is unclear why method
TA1.1 performs so differently from TA1.2 and TA1.3 in
the example of Table 4, although the derivations of these
methods show they are intended to achieve the same thing
(see Appendix A). I know of only one approach to stage-2
weighting of composition data that allows for correlations
(method TA1.8, with variants TA1.9 and TA1.10). If other
researchers addressed the problem of devising such a
method their approaches might be equally plausible, while
producing quite different results. There is a need for a sim-
ple and plausible error distribution for composition data that
allows for substantial correlations.
Even when the data-weighting approach described above

appears to work well, and produces a single assessment model
in which all data sets are well fitted, it is a useful exercise to
experiment with different data weightings (or exclusion of
some data sets). This provides important information about
the robustness of our assessment. Not all stock assessments
are sensitive to changes in data weighting (Breen et al. 2003;
Savereide and Quinn 2004) but we can’t know about any such
sensitivity unless we investigate alternative weightings.
I offer brief comments on some earlier studies that consider

data weighting. McAllister et al. (2001) considered just the
weighting of abundance sets, in a setting different from that
addressed here in that composition data were either not used
(surplus production models) or were treated as known without
error (Virtual Population Analysis). Gavaris and Ianelli (2002)
identified data weighting as one of four generic statistical is-
sues important in stock assessments and described two ver-
sions of two-stage weighting (one uses a special case of
TA1.1 [see their Table 1]; in the other, the terms “extrinsic”
and “intrinsic” [see their p. 257] apparently correspond to my
“stage 1” and “stage 2”). Breen et al. (2003) estimated a pa-
rameter (their ~s) that is the standard deviation of a component
of error common to all data sets. This is an interesting ap-
proach that has little effect on point estimates of parameters,
but has the merit of reducing the effect of changes in data
weights on measures of the uncertainty of parameter esti-
mates. Taylor et al. (2007), applying an approach to data
weighting proposed by Stefánsson (2003), set weights for
each data set according to how well it was fitted by the model
when it was strongly up-weighted. This idea seems worth pur-
suing, but I think it would be much better if the objective
function used proper likelihoods, rather than simple sums of
squares, and of course Principle 1 must apply. Irwin et al.
(2008) used concentrated likelihoods (i.e., weighting parame-
ters were replaced by their maximum likelihood estimates), so
that their data sets were essentially self-weighting, and then,
as a sensitivity analysis, investigated the effect of sequentially
up-weighting each data set by a factor of 10. This approach
does not address the problem of correlations in composition
data, nor does it give primacy to abundance data. Candy
(2008) described a complicated stage-2 weighting method for
composition data which involved treating the error in the
model fit to these data as being the sum of two components:
random error and systematic lack of fit. Though this charac-
terization of the error seems sensible, I do not agree that the
stage-2 weighting should include only the first component.
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Appendix A: Some methods of stage-2
weighting for composition data
In this appendix I provide equations for 10 methods of

stage-2 weighting for composition data (Table A1) and de-
scribe their derivations.
McAllister and Ianelli (1997) presented a method of

stage-2 weighting assuming a multinomial error structure.
They assumed that the stage-2 sample size is the same for
all years in a data set, and they took this sample size as the
average of the Njy calculated using TA1.1 (see eqs. (2.5)
and (2.6) in their Appendix 2). Their approach is based on
the fact that, with a multinomial distribution,
VarðOjby � EjbyÞ ¼ VarðOjbyÞ ¼ Ejbyð1� EjbyÞ=ðwj

eNjyÞ, and
also that VarðOjby � EjbyÞ � ðOjby � EjbyÞ2. Therefore,
Ejbyð1� EjbyÞ=ðwj

eNjyÞ � ðOjby � EjbyÞ2. Equation TA1.1,
which can be derived by summing this last equation over b
and rearranging the terms, is a generalization of the method
of McAllister and Ianelli (1997) in which the stage-2 sam-
ple size for each year is assumed to be a multiple of that for
stage 1 (i.e., Njy ¼ eNjywj).
Method TA1.3 applies to the same situation as TA1.1 (i.e.,

weighting assumption T3.4) but its derivation is based on the

assumption, that for each j,
P

by
NjyðOjby�EjbyÞ2

Ejby
has a c2 distribu-

tion with myear,j(mbin,j – 1) degrees of freedom (this is the as-
sumption underlying the usual c2 test used in the analysis of
contingency tables) and so has expected value myear,j(mbin,j – 1).
Dunn and Hanchet (2009) used this same assumption to
create method TA1.6 for the situation where weighting as-
sumption T3.8 (i.e., 1=Njy ¼ 1=eNjy þ 1=Nj) is to be used.
Note that eq. TA1.6 has no explicit solution for Nj (i.e., it
must be solved numerically). However, in the special case where
the initial sample sizes are the same for all years (i.e., eNjy ¼ eNj

for all y) there is an explicit solution, which is method TA1.7.
The methods discussed so far use a multinomial error for

the composition data. If, instead, we assume a lognormal er-
ror, with additive weighting assumption T3.6, it is possible to
estimate the stage-2 weighting parameter, cj, directly as a
model parameter (i.e., cj is chosen to minimize the objective
function). This is method TA1.4, which was devised for
CASAL (Bull et al. 2008).
In developing methods TA1.2 and TA1.5 I applied the

same general approach to two specific situations. I will first
describe the general approach, and then how it was applied
in these two situations. The aim in this approach was to
standardize the errors (Ojby – Ejby) so that they all have the
same variance. That is, I wanted to find m quantities, Xjby,
(which will be functions of the weighting parameter, wj or
cj), so that the standardized error, Sjby ¼ ðOjby � EjbyÞ=Xjby,
had constant variance, i.e., Var(Sjby) = kj, for all years y, and
bins b. Here, I am thinking of the Sjby as being a set of m
random variables whose distributions (determined by the as-
sumptions of the multinomial or lognormal error model) all
have mean 0 and variance kj. When we do our stage-2
weighting, after running our stock assessment model, we can
calculate the actual value of each of these standardized errors,
and how that value changes as we change our weighting pa-
rameter. Our aim is to find the value of the weighting param-
eter that makes the variance of this set of m standardized
errors, which I write as Var(Sjby), equal to kj. [Note the im-
portant distinction between Var(Sjby), which is the variance
of a random variable, and Varby(Sjby), which is the variance
of a set of m numbers calculated from the model output].
Now I show how I applied this general approach to two

specific situations. If we assume multinomial errors and
Njy ¼ wj

eNjy (i.e., weighting assumption T3.8) we can use
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the same equation as was used by McAllister and Ianelli
(1997), viz. VarðOjby � EjbyÞ ¼ Ejbyð1� EjbyÞ=ðwj

eNjyÞ. This
means that the errors can be standardized by setting
Xjby ¼ ½Ejbyð1� EjbyÞ=eNjby�0:5, which makes kj = 1/wj, and
leads to the equation for TA1.2. With lognormal errors,
Var(Ojby – Ejby) = (Ejbycjby)2, so to standardize the errors
we simply set Xjby = Ejbycjby and kj = 1, which, together
with the assumption c2jby ¼ ec2jby þ c2j (weighting assumption
T3.6), produces method TA1.5. As with method TA1.6,
this method requires numerical solution.

Methods allowing for correlations
None of the methods discussed so far has allowed for the

possibility of substantial correlations within a data set. Meth-
ods TA1.1, TA1.2, TA1.4, and TA1.5 assume there are no
correlations; the remaining methods allow only for the small
negative correlations that are associated with the fact that all
proportions must sum to 1 in each year.
To develop methods that allow for substantial correlations I

used an approach similar to that described above for TA1.2 and
TA1.5, except that, following Pennington and Vølstad (1994),
the error to be standardized was ðOjy � EjyÞ, where
Ojy ¼

P
bðxbOjbyÞ and Ejy (defined similarly) are the observed

and expected mean ages (or lengths), and xb is the age (or length)
associated with the bth bin. If our composition data set has a mul-
tinomial distribution then VarðOjy � EjyÞ ¼ VarðOjyÞ ¼ vjy=Njy,

where vjy ¼
P

bðx2bEbjyÞ � E
2

jy is the variance of the expected

age (or length) distribution. Therefore, with Njy ¼ wj
eNjy (i.e.,

weighting assumption T3.4), VarðOjy � EjyÞ ¼ vjy=ðwj
eNjyÞ and

we can standardize our errors by setting Xjy ¼ ðvjy=eNjyÞ0:5, and
kj ¼ 1=wj. This produces stage-2 weighting method TA1.8,
which can be solved explicitly for wj. However, if
1=Njy ¼ 1=eNjy þ 1=Nj (i.e., weighting assumption T3.8), we set

Xjy ¼ ½vjyð1=eNjy þ 1=NjÞ�0:5 and kj = 1, which leads to the equa-
tion for method TA1.9, which can be solved numerically for Nj.
When the composition data are assumed to have a lognor-

mal error distribution, the calculations are a bit more compli-
cated. Here, we need to impose the constraint (which is
implicit with multinomial, but not lognormal, errors) that
proportions sum to 1. Thus we treat Ojy as being equal toP

b xbOjby /
P

b xb, and calculate its variance using the stand-
ard approximation for the variance of a ratio of two random
variables (eq. 10.17 of Stuart and Ord 1987), which produces
VarðOjyÞ ¼ S22 þ S21S3 � 2S1S4, where S1 =

P
b xbE2

jby, S2 =P
b(xbcjbyEjby)2, S3 =

P
b(cjbyEjby)2, and S4 =

P
b xb(cjbyEjby)2.

Then we simply set Xjy ¼ VarðOjyÞ0:5 and kj = 1, which
leads to method TA1.10. Again, the equation for this
method must be solved numerically (in this case we search
for the value of cj which makes the equation true, remem-
bering that c2jby ¼ ec2jby þ c2j ).

Methods requiring numerical solutions
Finally, a word about what I mean above by “numerical

solution” (and a reassurance that this solution is not diffi-
cult to achieve). Consider method TA1.5, where we are
solving for the weighting parameter cj. To solve this equa-
tion we first evaluate the left-hand side of the equation for
cj = 0, 0.1, 0.2, …, continuing until a value greater than 1
is found. We might find, for example that for cj = 0, 0.1,
0.2, and 0.3 the left-hand side of the equation has values
0.37, 0.56, 0.83, and 1.25, respectively, so that our solution
lies between 0.2 and 0.3. Simple linear interpolation be-
tween the last two values produces the solution cj ¼ 0:24
(¼ ½0:2ð1:25� 1Þ þ 0:3ð1� 0:83Þ�=ð1:25� 0:83Þ).
References
Bull, B., Francis, R.I.C.C., Dunn, A., McKenzie, A., Gilbert, D.J.,

Smith, M.H., and Bian, R. 2008. CASAL (C++ algorithmic stock

Table A1. Equations for some methods of stage-2 weighting of composition data, grouped by the weighting assumption (from
Table 3) on which they are based, and whether they allow for substantial correlations (see text for explanations and sources).

Method
Weighting
assumption Equation

Allows for
correlations?

TA1.1 T3.4 wj ¼ ð1=eNjyÞ �
P

b Ejbyð1� EjbyÞ
	 
� P

bðOjby � EjbyÞ2
	 
� 


No

TA1.2 T3.4 wj ¼ 1=Varby ðOjby � EjbyÞ
�½Ejbyð1� EjbyÞ=eNjby� 0:5

� 

No

TA1.3 T3.4 wj ¼ myear;jðmbin;j � 1Þ	 
�	P
by
eNjyðOjby � EjbyÞ2=Ejby



No

TA1.4 T3.6 cj estimated as model parameter No
TA1.5 T3.6 VarbyfðOjby � EjbyÞ

�½Ejbyðec2jby þ c2j Þ 0:5�g ¼ 1 No

TA1.6 T3.8
P

byfðOjby � EjbyÞ2
�½Ejbyð1=eNjy þ 1=NjÞ�g ¼ myear;jðmbin;j � 1Þ No

TA1.7 T3.8a 1
Nj
¼ f½PbyðOjby � EjbyÞ2

�
Ejby�

�½myear;jðmbin;j � 1Þ�g � 1
Nj

No

TA1.8 T3.4 wj ¼ 1=Vary½ðOjy � EjyÞ
�ðvjy=eNjyÞ0:5� Yes

TA1.9 T3.8 VaryfðOjy � EjyÞ
�½vjyð1=eNjy þ 1=NjÞ�0:5g ¼ 1 Yes

TA1.10 T3.6 Vary½ðOjy � EjyÞ
�ðS22 þ S21S3 � 2S1S4Þ0:5� ¼ 1b Yes

Note: Var is the usual finite-sample variance function [for a sample x1,…,xn, VarkðxkÞ ¼
P

kðxk � xÞ2=ðn� 1Þ, where x is the sample mean].
aWith the additional assumption that eNjy ¼ eNj for all y.
bSee text for definitions of S1, S2, S3, and S4.
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Appendix B: Calculation of SDNRs

For each data point, Oiy, a normalized residual is a number
that indicates how different that observation is from the mod-
el’s expected value (Eiy), and that has been transformed so that
its distribution is approximately normal, with mean 0 and SD 1
(assuming the likelihood for the data point is correct). To
calculate the SDNR (standard deviation of the normalized
residuals) for a data set, we first calculate the normalized
residual for each data point (using formulae like those in
Table B1) and then use the usual formula to calculate the
standard deviation of these residuals. No formulae are given
for the composition-data likelihoods because SDNRs are
inappropriate for this type of data (because of correlations).

Table B1. Formulae for calculating normalized residuals for the example
negative log-likelihoods of Table 2.

Table 2 likelihood Formula
T2.1A (2liy)0.5(Oiy – Eiy)
T2.2 (Oiy – Eiy)/ (ciyEiy)
T2.3 (Oiy – Eiy)/siy
T2.4A f½logðOiy=EiyÞ�=siyg þ 0:5siy

T2.5 ½logðOiy=EiyÞ�=siy
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