
 
 
 
 

 
  

Integrating data from chevron traps and video cameras into a standardized 
index of abundance for vermilion snapper, Rhomboplites aurorubens 

 

Daniel C. Gwinn, Nathan M. Bacheler, and Kyle Shertzer 

 

SEDAR55-WP07 
 

Submitted: 8 December 2017 
 
 

 

 

 

 

 

 

This information is distributed solely for the purpose of pre-dissemination peer review.  It does 
not represent and should not be construed to represent any agency determination or policy.  



Please cite this document as: 
 

Gwinn, D. C., N. M. Bacheler, and K. Shertzer.  Integrated data from chevron traps and video 
cameras into a standardized index of abundance for vermilion snapper (Rhomboplites 
aurorubens). SEDAR55-WP07. SEDAR, North Charleston, SC. 59 pp. 

 



1 

 

SEDAR55-WP07 

 

Integrating data from chevron traps and video cameras into a standardized index of 

abundance for vermilion snapper (Rhomboplites aurorubens) 

 
1Daniel C. Gwinn, 2Nathan M. Bacheler and 2Kyle Shertzer 

 
1 Biometric Research, South Fremantle, Western Australia, Australia. 
2 National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, North 

Carolina, United States of America. 

 

Abstract 

Standardized chevron trap sampling has been used since 1990 to monitor reef fish 

along the southeast Atlantic coast. Since 2011, video cameras have been paired with chevron 

traps creating two semi-independent fisheries indices.  Here we develop a State-Space Model 

for vermilion snapper to combine both chevron trap catches and video counts into a single 

integrated abundance index for stock assessment. The index spans the time frame of 1990-

2016 and accounts for variation in sampling efficiency of both sampling gears as well as 

covariates describing the spatial distribution of fish. The index is meant to describe 

population trends of vermilion snapper in the region. Index values for 2015-2016 include a 

calibration factor to account for a change in camera type. 
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Background 

Many economically important reef fish species along the southeast US Atlantic coast 

have been monitored using fishery-independent chevron fish traps since 1990. Since 2011, 

cameras have been attached to chevron traps to provide an additional index of reef fish 

abundance. Early research comparing trap catches to video counts showed substantial 

variation between the two (Bacheler et al. 2013a), likely due to differences in how 

environmental conditions influenced the ability of traps and videos to detect various species 

of fish (Bacheler et al. 2014, Coggins et al. 2014). For instance, vermilion snapper and gray 

triggerfish were more likely observed in traps than by video when water temperature was 

warm, and more likely observed by video when water was clear (Bacheler et al. 2014). At a 

2015 stock assessment workshop for red snapper and gray triggerfish (SEDAR 41), chevron 

trap and video data were used to compute separate indices of abundance that were 

subsequently combined following the method of Conn (2010). Workshop attendees noted that 

the gears lacked independence since cameras were attached to traps, but attendees also were 

unwilling to discard one of the indices because no other fishery-independent indices were 

available and because both gear types were considered informative. The method we propose 

here combines trap and video data into a single time series so information from both is used 

while accounting for the lack of independence between the two gears.  

One methodological approach to combine trap and video data is through the use of 

hierarchical model structures that can separate aspects of the ecological process of interest 

from aspects of the observation process (Gelman et al. 2007, Royle and Dorazio 2008). There 

are few effective ways to achieve this separation with count-based data, but two examples 

include N-mixture models (Royle 2004) and State-Space Models (SSM, Schnute 1994). The 

application of N-mixture models to fish is fairly new in the fisheries literature and quite rare 

(but see Webster et al. 2008, Flowers and Hightower 2013, Chambert et al. 2016, Scheerer et 

al. 2017). The paucity of examples of N-mixture models applied to fish is likely a result of 

the stringent assumptions required by these models. Because N-mixture models rely on the 

variance of replicate count data to separate the abundance from the detection process, strict 

population closure and a binomial sampling process are required for useful model 

performance (Barker et al. 2017). Indeed, preliminary analysis of vermilion snapper data 

indicated random extra-binomial variation in the replicate camera counts and dependence of 

the camera counts on the chevron trap due to its depleting effects on the local abundance 

during the first ~100 min of sampling. These types of extra-binomial variation and 

dependencies make the application of N-mixture models impractical. 

Alternatively, State-Space Models have a long history in fisheries (e.g. Schnute 1994, 

Maunder et al. 2013, Shertzer et al. 2016) and have been applied to integrate multiple data 

types into a single index (e.g. Conn 2010, Staton et al. 2017). Because SSMs do not rely on 

binomial sampling to estimate “true” abundance and detection probability, they require fewer 

assumptions. SSMs typically are applied to time series data and assume that catch (trap catch 

or camera counts) is a random variable drawn from a specified distribution with a mean that 

is equal to the true relative abundance each year. For the parameters of this model to be 

estimable, the assumption also is made that the true relative abundance is non-independent 

among years, which is a biologically valid assumption for most biota with multi-year 

lifespans.  
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Here we develop a novel fishery-independent index of abundance for vermilion 

snapper in the US South Atlantic through the development and application of a State-Space 

Model using trap and video data collected by the Marine Resources Monitoring, Assessment, 

and Prediction (MARMAP) program (1990-2016), the Southeast Area Monitoring and 

Assessment Program South Atlantic (SEAMAP-SA, 2009-2016), and the Southeast Fishery-

Independent Survey (2010-2016). Collectively, these three fishery-independent sampling 

programs are referred to as the Southeast Reef Fish Survey (SERFS).  The SSM has three key 

features that make it particularly useful for this application: (i) The model incorporates the 

chevron trap catches and camera counts into a single index and has the potential to 

incorporate additional information as available. (ii) The model corrects for shifts in the 

sampling frame by modeling temporal variation at the meta-population level separate from 

spatial variation at the sub-population level. (iii) The model corrects for changes in sampling 

efficiency due to temporal and spatial variation in the environment through the use of 

covariates of detection and random effects.  

 

Data and Treatment 

There were 15,629 chevron trap samples available covering a period of 27 years 

(1990-2016). For the time period of 2011-2016, the chevron traps were fitted with a video 

camera resulting in 7,644 41-frame video samples available. For analysis, we used un-

transformed catch of the chevron trap and the sum of the counts across the 41 camera frames 

(SumCount). We chose to use the SumCount of the camera data because (i) preliminary 

analysis indicated that modeling each of 41 camera frames for each video sample 

substantially increase computation time, (ii) SumCount changes linearly with the mean count 

(Bacheler and Carmichael 2014), which is often the preferred camera metric (Conn 2011, 

Schobernd et al. 2014), and (iii) using the SumCount preserves the discrete nature of the 

camera counts allowing for the use of derivations of the Poisson distribution to describe both 

the chevron trap and camera observation processes. 

We applied several data filters to simplify predictor variables, remove records with 

missing predictor variables, or remove unusual values. We removed any data points in which 

the survey video was considered unreadable by an analyst (e.g., too dark, corrupt video file), 

or if the trapping event was flagged for any irregularity that could have affected catch rates 

(e.g., trap dragged or bounced).  Additionally, any survey video for which fewer than 41 

video frames were read (n =150) was removed from the full data set.  Standardizing the 

number or readable frames for any data point was essential due to our use of SumCount as a 

response variable. We also identified any chevron trap or video sample in which 

corresponding predictor variables were missing and removed them from the final data set. 

After the filtering process, the final data set contained 13,903 chevron trap samples, of which 

6,767 had corresponding video camera samples (Table 1). R code used to filter the data is 

provided in Appendix A. 

 

The Model 

  We fit the chevron trap catch and video SumCount data to a State-Space Model (SSM) 

that described patterns in vermilion snapper relative abundance through space and time. Our 

SSM was formulated in a hierarchical framework with a sub-model that described patterns in 
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“true” relative abundance and two secondary sub-models that described the observation of the 

“true” relative abundance with chevron traps and video cameras. By modeling the abundance 

process and observation process with separate sub-models we were able to separate 

observation error from process error and account for some aspects of systematic variation in 

sampling efficiency (i.e. detection probability).  

Our model describes changes in the standardized relative abundance (hereafter 

referred to simply as abundance, Nt) from year to year with an exponential growth model as:  

 

log���� = log���	
� + �� (1) 

 

where �� represents the log-scale change in abundance between time t-1 and time t. 

Abundance was treated as an unobserved (latent) variable and represents the time series of 

primary interest (i.e., the standardized index). The parameter �� was modeled as a random 

variable on the log scale drawn from a normal distribution as: 

 

��~Normal��̅, �� (2) 

 

where �̅ is the expected population change between time t-1 and t, and � is the standard 

deviation, representing the magnitude of process error.  

 Spatial variation in abundance across sample sites each year was modeled as: 

 

��,� = log���� + ����,�
� + ����� (3) 

 

where the term log���� is the year specific intercept of the linear model, ����,�
�  is a linear 

combination of spatial covariates, and ����� describes random spatial variation in abundance 

that is unexplained by the covariate structure. 

 We approximated the chevron trap catches (��,�
��� 

) and the camera SumCounts (��,�
!�") 

as deviates drawn from Poisson log-Normal distributions, which are similar in character to 

negative binomial distributions (Nitzoufras 2009, p. 315-317), but can demonstrate better 

mixing properties than negative binomial distributions when applied in Bayesian programs 

such as JAGS.  We specified these models as: 

 

��,�
��� ~Poisson '(�),*+!,-*,.

*/01+2*/013 
(4) 

��,�
!�"~Poisson '(�),*+!,-*,.

405+2405+6*3 (5) 

 

where the mean on the log scale is the site-specific abundance ��,� plus a linear combination 

of environmental and sampling covariates (i.e. ����,7
��� 

 and ����,7
!�") to account for 

systematic variation in sampling efficiency. The parameters ����  and �!�" are gear-specific 

log-Normal distributed random observation errors modeled as, ��,�~���89:�0, ��, with a 

mean of zero and an estimated standard deviation specific to each sampling method (i.e. 
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����  and �!�"). The parameter <� is a fixed value (i.e. log(1.72)) that accounts for the 

increased field of view of the video cameras used in 2015 and 2016. 

 

Model Covariates 

 We incorporated a suite of covariates into our abundance and observation models. We 

selected covariates based on two key considerations. Our first consideration was to separate 

covariates that influenced the spatial distribution of fish from those that influenced temporal 

patterns in fish abundance. This was important because spatial and temporal patterns of 

abundance are modeled in two separate hierarchical layers (i.e. equation 1 and 3) to create a 

distinction between the fishery index, i.e. temporal patters in abundance at the meta-

population level (Nt), from spatial variation in the data due to patterns in the spatial 

distribution of fish and shifts in the sampling frame through time (��,�). Thus, we include a 

main and quadradic effect of latitude (lat and lat2), longitude (lon and lon2) and depth (depth 

and depth2), as well as the potential interaction between latitude and longitude as covariates 

of local-scale abundance. We included both main and quadratic effects of these variables to 

account for any optimal ranges in latitude, longitude and depth within our sampling frame 

that vermilion snapper may prefer. The interaction between latitude and longitude was 

included to allow any preferred range of one variable to be dependent on the other. For 

example, if vermilion snapper demonstrated a preferred distance from shore, a positive 

interaction between latitude and longitude could approximate this spatial distribution. Spatial 

covariates of abundance were incorporated into the model as: 

 

����,�
� = =
:9>�,� + =?:9>�,�

? + =@A(B>ℎ�,� + =DA(B>ℎ�,�
? + =E:���,� +

=F:���,�? + =G:9>�,�:���,�. 

(6) 

 

Our second key consideration was to separate covariates of the abundance and 

detection processes. This was important because our model likely has limited ability to 

disentangle systematic patterns in abundance from systematic patterns in detection when they 

are similar. Thus, we do not expect to be able to resolve the effects of covariates that have 

similar influences on patterns in abundance as they do on patterns in detection (Barker et al. 

2017). Under this consideration, the most useful covariates for predictive purposes are those 

that either, (i) only influence the abundance or the detection process, or (ii) have very 

different influences on the abundance and detection processes. Thus, we included main and 

quadratic effects of trap soak time (E and E2), main and quadratic effects of temperature 

(temp and temp2), water turbidity (turb), percent hardbottom substrate (sub), bottom relief 

(relf), current direction (dir1 and dir2), and attached biota (bio) into our chevron trap 

observation model.  

Another consideration was that certain covariates were measured using the camera 

(i.e. turb, sub, relf, dir1, dir2, and bio) and were, thus, only available for the time period of 

2011-2016, while other covariates (i.e. E, E2, temp, and temp2) were available for the entire 

time period of our data set. This was not an issue for the camera detection sub-model, but it 

required us to model chevron trap detection covariates separately for the time period of 1990-
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2010 and 2011-2016. We, therefore, incorporated covariates of chevron trap detection for the 

time period of 1990-2010 into the model as: 

 

����,�
��� = H
I�,� + H?I�,�

? + H@>(8B�,� + HD>(8B�,�
?  (7) 

 

and for the time period of 2011-2016 as: 

 

����,�
��� = H
I�,� + H?I�,�

? + H@>(8B�,� + HD>(8B�,�
? + HE>J�K�,� + HFLJK�,�

+ HG�(:M�,� + HNAO�1�,� + HQAO�2�,� + H
SKO��,� 

(8) 

 

where the subscript t represents samples collected between 1990 and 2010 for equation 7 and 

between 2011 and 2016 for equation 8.  

In the camera detection sub-model, we included turbidity, current direction, main and 

quadratic effects of bottom temperature, percent hardbottom substrate and attached biota as: 

 

����,�
!�" = T
 + T?>J�K�,� + T@AO�1�,� + TDAO�2�,� + TE>(8B�,�

+ TF>(8B�,�? + TGLJK�,� + TN�(:M�,� + TQKO��,� 

(9) 

 

where T
 allows for a systematic difference in the detection probability of the camera relative 

to the chevron trap. All covariate definitions are provided in Table 2.  

 

Model Fit Test 

 We evaluated model fit for eight general model error structures with Bayesian p-

values (Bp, Kery 2010). The Bayesian p-value is a posterior predictive check that provides a 

measure of under- or over-dispersion of the data relative to the model (Kery 2010, Hooten 

and Hobbs 2015, Broms et al. 2016). The eight model error structures included models that 

either included or excluded the random variables �����, ���� , and/or �!�". Because these 

parameters are random effects, they offer little predictive advantage when included in our 

models, however, evaluating how their inclusion or exclusion impacts general model fit is 

necessary to accurately describe the magnitude and shape of the residual error, to partition the 

residual error between biological and observation processes and to appropriately estimate the 

uncertainty in our model parameters and predictions (Kery and Schaub 2012).  

To perform the model fit evaluation, we first randomly selected 100 data points from 

each of six data categories to validate the fit of our models. Our categories were, (i) trap 

catches = zero prior to 2011, (ii) trap catches = zero post 2010, (iii) trap catches > zero prior 

to 2011, (iv) trap catches > zero post 2010, (v) camera SumCounts = zero, and (vi) camera 

SumCounts > zero. We expected that understanding how our model fit each of these data 

types would provide comprehensive insight into the model’s ability to back predict our 

fishery index. For each selected data point, we simulated the corresponding trap or video 

count for each Markov Chain Monte Carlo (MCMC) iteration and calculated a Pearson 

residual between the simulated and expected value (i.e. predicted U?) and observed and 

expected value (i.e. observed U?). The simulated data are considered “perfect” because they 

are generated directly from the model and, thus, the resultant Pearson residual represents the 
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fit of the model when all model assumptions are perfectly met (Kery 2010). We then created 

a fit metric that is equal to zero when the Pearson residual was greater for the observed data 

than the simulated data and is equal to one, otherwise. The Bp was then calculated as the 

mean of the posterior sample of the fit metric for each taxon, where a mean of 0.5 indicates 

perfect model fit to the data and a mean approaching 1 or 0 indicates under- or over-

dispersion of the data relative to the model, respectively. We further investigated model fit 

with diagnostic plots of site-specific Bayesian p-values for non-zero data and residual plots 

(Appendix C-J). However, because count data drawn from derivations of a Poisson 

distribution with small expected values do not conform to a Chi-square distribution (Pierce 

and Schafer 1986) we also calculated the site-specific probability of predicting a zero for 

count data with observed values equal to zero (Appendix C-J). 

 

Variable Selection for Index Prediction 

 For the fishery index prediction, we used the best fitting model (determined with the 

model fit test) that included only the subset of covariate effects that were statistically 

different from zero (i.e. statistically significant) for each sub-model. However, if a main 

effect was not statistically different from zero, but a quadratic effect or interaction with the 

variable was, we included the main effect in the model. We evaluated the statistical 

significance of all covariates by summarizing the posterior distributions of the best model 

determined by our model fit test. We considered covariates statistically significant if their 

95% Bayesian credible intervals did not overlap with zero. This approach to determining 

statistically significant variables approximates an V = 0.05 and is a common approach taken 

in Bayesian statistics when the risk of overparameterization is low (which is likely the case 

for this data set given a total of 13,903 sample locations used to fit the model; e.g. Burton et 

al. 2012, Beesley et al. 2015, King et al. 2016). 

 

Model Fitting Methods 

The posterior distributions of all parameters were estimated using a Gibbs sampler 

implemented in JAGS (Plummer 2003). We called JAGS from program R (R Core Team 

2015) using the library R2jags (Su and Yajima 2015). All prior distributions of log-scale 

covariate effect parameters were specified as diffuse normal distributions. Standard deviation 

parameters were specified as Gamma distributions with shape parameters equal to 0.01 and 

were verified to not influence the range of posterior distributions. Inference was drawn from 

10,000 posterior samples taken from two chains of 500,000 samples. We discarded the first 

250,000 values of each chain to remove the effects of initial values and thinned the chain to 

every 50th value. Convergence of all models was diagnosed by visual inspection of trace plots 

and Gelman-Rubin statistic ( R̂ ≤ 1.1 indicate model convergence, Gelman et al. 2004). JAGS 

model code is provided in Appendix B. 

 

Results and Discussion 

All models converged after 500,000 iterations and required up to 74 hours of 

computer processing of two MCMC chains run in parallel. Our posterior-predictive check 

indicated that three of our models adequately fit our data (models 1, 2, & 3 in Table 3). All of 

these models included a random effect in the abundance sub-model (�����) and either a 
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random effect in the camera sub-model (�!�"), the trap sub-model (���� ), or both. Further 

inspection of residual plots provided little evidence of additional support for any one of the 

three models (Appendices C, D, and E) indicating that our models could not fully disentangle 

the variability in the data due to process noise in the spatial distribution of abundance and 

noise due to unexplained variation in sampling efficiency. However, estimated temporal 

patterns in the indices of abundance were nearly identical among these three models 

indicating that results are robust to this uncertainty in the optimal model error structure (See 

Figures C4, D4, and E4 in Appendix C, D, and E). Alternatively, there were subtle 

differences in the covariate effect estimates among the three top model error structures that 

could alter the conclusion about the statistical significance of six covariates including depth, 

lon (abundance sub-model), relief, dir1, dir2 (trap sub-model), and turb (camera sub-model). 

The difference in the covariate effect estimates and their standard errors tended to be small, 

but never-the-less resulted in changes in credible interval overlap with zero (see Appendix 

K). For this working paper we chose to allow the model the opportunity to partition the 

variability among sub-models by using? the full model with all random effects (model 1 in 

Table 3, Log-N Poissonabun & cam & trap) to produce the index of abundance and evaluate 

covariate effects.  

Our covariate evaluation procedures indicated that most of our covariates had a 

statistically significant influence on abundance or detection (Table 4). This result is not 

surprising since we selected covariates based on our a priori expectation that they may 

influence these processes. The direction of the covariate effects on the observation sub-

models tended to be consistent with previous research on the sampling efficiency of these 

gears. For example, we found a dome-shaped effect of soak time on the chevron trap 

sampling efficiency where the maximum efficiency equates to a soak time of approximately 

110 min with reductions in sampling efficiency for soak times of shorter or longer intervals 

(Figure 2). This relationship of chevron trap efficiency and soak time has been observed for 

multiple fish species, including vermillion snapper (Bacheler et al. 2013b, Bacheler et al. 

2013c). Similarly, we found that the sampling efficiency of both sampling gears tended to be 

invariant to temperature when the bottom temperature was low, but sharply increased at 

temperatures greater than 24°C (Figure 2 and 3). This result corroborates the findings of 

Bacheler et al. (2014) for vermillion snapper. Alternatively, we observed a positive effect of 

percent hard-bottom substrate on the sampling efficiency of both gears (Figures 2 and 3). 

This result is in contrast to the negative effect of percent hard-bottom substrate on the 

sampling efficiency of chevron traps observed by Bacheler et al. (2014). However, the 

relative positive effect of hard-bottom substrate on camera sampling efficiency is much 

greater than for the chevron traps (TG vs HF, Table 4), which may give the appearance of a 

negative effect for chevron traps when unaccounted for in the camera observation model. 

Three covariate effect estimates were not statistically different from zero. These 

included the main effect of depth in the abundance sub-model (=@ , Table 4), the effect of 

water turbidity in the chevron trap sub-model (HE, Table 4), and the effect of bottom relief in 

the chevron trap sub-model (HG, Table 4). Because the quadratic effect of depth was 

statistically significant in the abundance sub-model (=D, Table 4), we retained the main effect 

for the fishery index prediction. However, we removed the covariate effect of water turbidity 
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and bottom relief in the chevron trap sub-model for index prediction. The model excluding HE 

and HG demonstrated a lower value of DIC (Spiegelhalter et al. 2002) than the fully 

parameterized model (model 1 in Table 3). The DIC for the fully parameterized model 1 was 

42063.8, whereas the DIC of model 1 excluding HE and HG was 41371.7, suggesting increased 

out-of-sample predictive performance for the reduced version. The annual index of 

abundance predicted by the reduced version of model 1 is presented in Table 5 and Figure 4. 

The index demonstrates a statistically significant negative linear trend through time (Figure 

5). 

 One of the expected benefits of our SSM is that it accounts for shifts in the sampling 

frame from year to year. For example, over the length of time of the Southeast Reef Fish 

Survey sampling program, the number of chevron traps set each year has systematically 

increased as the program expanded (particularly since 2011). The expanding of this program 

has led to changes in the distribution of traps relative to latitude, longitude, and depth. Panel 

(a) of Figure 6 shows the average latitude, longitude, and depth of traps set for each year of 

the program (values are scaled for plotting). There is variability in the mean covariate values 

among years with apparent systematic increases in depth and decreases in latitude over the 

life of the program. Panel (b) of Figure 6 demonstrates the predicted observed change in 

abundance at the meta-population level when these covariates are not accounted for. 

Although the uncertainty in the metric is high, we can see a systematic bias in observed 

abundance that increases over time, which is fully accounted for in our final SSM models. 
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Tables 

 

Table 1. Summary of data and the spatial attributes of the sample frame each year. 

 

Year # of video 

samples 

# of trap 

samples 

Depth 

Range (m) 

Latitude 

range (ºN) 

Longitude 

range (ºW) 

1990 0 313 17 - 93 30.42 - 33.82 80.62 - 77.28 

1991 0 272 17 - 95 30.75 - 34.61 80.62 - 76.17 

1992 0 288 17 - 62 30.42 - 34.32 80.33 - 76.81 

1993 0 392 16 - 94 30.44 - 34.32 80.90 - 76.81 

1994 0 390 16 - 93 30.74 - 33.82 80.90 - 77.26 

1995 0 382 16 - 60 29.78 - 33.75 80.90 - 77.28 

1996 0 361 14 - 100 27.92 - 34.33 80.37 - 76.81 

1997 0 401 15 - 97 27.87 - 34.59 80.90 - 76.64 

1998 0 425 14 - 92 27.44 - 34.59 80.90 - 76.10 

1999 0 215 15 - 75 27.27 - 34.41 80.89 - 76.71 

2000 0 299 15 - 101 28.95 - 34.28 80.89 - 76.49 

2001 0 252 14 - 91 27.87 - 34.28 80.90 - 76.40 

2002 0 244 13 - 94 27.86 - 33.95 80.90 - 76.75 

2003 0 224 16 - 92 27.43 - 34.33 80.54 - 76.81 

2004 0 282 14 - 91 29.00 - 33.97 80.90 - 76.51 

2005 0 303 15 - 69 27.33 - 34.32 80.48 - 76.39 

2006 0 297 15 - 94 27.27 - 34.39 80.37 - 76.57 

2007 0 337 15 - 92 27.33 - 34.33 80.89 - 76.51 

2008 0 303 15 - 92 27.27 - 34.59 80.48 - 76.81 

2009 0 404 14 - 91 27.27 - 34.60 80.90 - 76.39 

2010 0 752 14 - 92 27.34 - 34.59 80.90 - 76.39 

2011 542 542 15 - 93 27.23 - 34.54 81.22 - 76.40 

2012 1009 1009 15 - 106 27.23 - 35.02 81.22 - 75.45 

2013 1106 1106 15 - 100 27.33 - 35.01 81.22 - 75.45 

2014 1358 1358 15 - 110 27.23 - 35.01 81.22 - 75.45 

2015 1350 1350 16 - 110 27.26 - 35.02 81.22 - 75.45 

2016 1402 1402 17 - 115 27.23 - 35.01 81.22 - 75.45 
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Table 2. Covariate descriptions and definitions. 

 

Variable Abbreviation Class Definition 

 Latitude lat continuous The latitude of the sample location. 

 Longitude lon continuous The longitude of the sample location. 

 Depth depth continuous A continuous variable indicating the water 

depth at the trap location. 

 Soak time E continuous A continuous variable indicating the length 

of time the trap was set before retrieval. 

 Temperature temp continuous The water bottom temperature at the trap 

locations during sampling. 

 Turbidity turb categorical A dummy variable indicating the level of 

turbidity (1 = level 2, 0 = level 1). 

 Substrate sub continuous The proportion of visible substrate that is 

hard bottom. 

 Relief relf categorical A dummy variable with value of 1 indicating 

that the relief was “high”. 

 Current away dir1 categorical A dummy variable that is 1 when the current 

direction is flowing away from the camera 

lens. 

 Current side dir2 categorical A dummy variable that is 1 when the current 

direction is flowing from the side of the 

camera lens. 

 Biota bio continuous The percent cover of attached biota visible 

during any video. 
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Table 3. Bayesian p-values for model fit evaluation. The superscript “z” indicates 

observations that are equal to zero and the superscript “n” indicates non-zero observations. A 

value of 0.5 indicates perfect model fit, and values approaching 1 or 0 indicate under- or 

over-dispersion, respectively. 

 

# Model 
2011 - 2016  1990 - 2010 

Cameraz Trapz Cameran Trapn  Trapz Trapn 

1 Log-N Poissonabun & cam & trap 0.38 0.68 0.51 0.48  0.65 0.50 

2 Log-N Poissonabun & trap 0.56 0.17 0.47 0.57  0.50 0.54 

3 Log-N Poissonabun &cam 0.38 0.68 0.51 0.48  0.66 0.50 

4 Log-N Poissoncam & trap 0.99 1.00 0.36 0.53  1.00 0.54 

5 Log-N Poissonabun 0.00 0.00 0.00 0.00  0.60 0.47 

6 Log-N Poissontrap 0.00 1.00 0.00 0.53  1.00 0.56 

7 Log-N Poissoncam 0.56 0.00 0.51 0.00  0.00 0.00 

8 Poison 0.00 0.00 0.00 0.00  0.00 0.00 
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Table 4. Covariate parameter posterior summaries. Posterior means, standard deviations and 

credible intervals are derived from posterior samples of the full model (model 1 in Table 3). 

The parameter flag indicates when the 95% credible intervals of posterior samples excludes 

zero (1=yes, 0=no). 

 

Variable Parameter Mean 
Standard 

deviation 

95% Credible 

intervals 

Parameter 

flag 

Abundance     

 Latitude =
 -1.47 0.35 -2.20, -0.80 1 

 Latitude2 =? -1.05 0.13 -1.31, -0.79 1 

 Depth =@ 0.10 0.08 -0.07, 0.26 0 

 Depth2 =D -0.14 0.02 -0.19, -0.10 1 

 Longitude =E 0.90 0.30 0.33, 1.52 1 

 Longitude2 =F -1.05 0.15 -1.36, -0.77 1 

 Lat:Lon =G 0.79 0.27 0.27, 1.31 1 

Trap detection     

 Soak time H
 3.93 0.82 2.32, 5.58 1 

 Soak time2 H? -2.36 0.61 -3.56, -1.16 1 

 Temperature H@ 0.82 0.05 0.72, 0.92 1 

 Temperature2 HD 0.10 0.01 0.08, 0.13 1 

 Turbidity HE 0.06 0.12 -0.19, 0.30 0 

 Substrate HF 0.66 0.10 0.46, 0.86 1 

 Relief HG -0.43 0.22 -0.85, 0.02 0 

 Current away HN 0.65 0.17 0.34, 0.99 1 

 Current side HQ 0.30 0.14 0.01, 0.59 1 

 Biota H
S -0.30 0.10 -0.49, -0.11 1 

Camera detection     

 Turbidity T? 0.79 0.15 0.49, 1.08 1 

 Current away T@ 1.08 0.20 0.70, 1.45 1 

 Current side TD 0.45 0.18 0.09, 0.82 1 

 Temperature TE 0.37 0.08 0.21, 0.52 1 

 Temperature2 TF 0.06 0.03 0.01, 0.10 1 

 Substrate TG 1.27 0.12 1.02, 1.50 1 

 Relief TN 0.91 0.22 0.44, 1.34 1 

 Biota TQ -0.30 0.12 -0.52, -0.06 1 
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Table 5. Posterior summaries of the index of abundance (i.e. the predicted annual relative 

abundance of the meta-population). 

 

Year Nt 
Scaled 

index SD 
2.5% 

CI 

97.5% 

CI 
CV 

1990 0.0571 0.8150 0.0234 0.0244 0.1161 0.4097 

1991 0.3054 4.3584 0.1152 0.1411 0.5855 0.3772 

1992 0.1480 2.1116 0.0566 0.0657 0.2825 0.3824 

1993 0.1073 1.5309 0.0410 0.0483 0.2079 0.3822 

1994 0.2157 3.0779 0.0783 0.0999 0.4072 0.3630 

1995 0.0892 1.2723 0.0325 0.0416 0.1657 0.3645 

1996 0.0883 1.2600 0.0342 0.0393 0.1723 0.3877 

1997 0.0436 0.6228 0.0175 0.0194 0.0850 0.4004 

1998 0.0533 0.7603 0.0200 0.0244 0.1007 0.3749 

1999 0.0850 1.2128 0.0345 0.0362 0.1679 0.4055 

2000 0.0903 1.2890 0.0335 0.0403 0.1697 0.3712 

2001 0.0859 1.2256 0.0343 0.0373 0.1706 0.3997 

2002 0.1046 1.4928 0.0406 0.0474 0.2049 0.3884 

2003 0.0289 0.4117 0.0132 0.0113 0.0620 0.4583 

2004 0.0365 0.5215 0.0149 0.0154 0.0722 0.4068 

2005 0.0333 0.4758 0.0136 0.0146 0.0668 0.4066 

2006 0.0242 0.3460 0.0100 0.0103 0.0495 0.4136 

2007 0.0392 0.5593 0.0156 0.0172 0.0779 0.3979 

2008 0.0522 0.7453 0.0198 0.0232 0.1002 0.3792 

2009 0.0530 0.7557 0.0200 0.0236 0.1002 0.3784 

2010 0.0418 0.5963 0.0146 0.0202 0.0767 0.3501 

2011 0.0160 0.2280 0.0062 0.0072 0.0308 0.3888 

2012 0.0198 0.2822 0.0071 0.0094 0.0369 0.3576 

2013 0.0102 0.1463 0.0038 0.0048 0.0196 0.3745 

2014 0.0139 0.1987 0.0048 0.0068 0.0256 0.3412 

2015 0.0166 0.2367 0.0056 0.0084 0.0300 0.3395 

2016 0.0327 0.4671 0.0117 0.0154 0.0614 0.3582 
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Figures 

 

 
Figure 1. The predicted response of sub-population abundance to spatial covariates. The gray 

region represents 95% Bayesian credible intervals. 
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Figure 2. The predicted response of chevron trap sampling efficiency to sampling and 

environmental covariates. The gray region represents 95% Bayesian credible intervals. 
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Figure 3. The predicted response of video camera sampling efficiency to sampling and 

environmental covariates. The gray region represents 95% Bayesian credible intervals. 

  



21 

 

 

 
Figure 4. The predicted annual relative abundance of the vermilion snapper meta-population. 

The gray region represents 95% Bayesian credible intervals. The dotted line represents the 

estimated linear trend. 
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Figure 5. The posterior distribution of the slope of the linear trend in annual abundance 

between 1990 and 2016. 
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Figure 6. Impact of changing sampling frame on the predicted relative abundance at the meta-

population level. The gray region represents 95% Bayesian credible intervals. 
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Appendix A. R code for filtering data 

 

#------------------------------------------------------------------------------# 

#  FILTER DATA 

#------------------------------------------------------------------------------# 

#Data records where both trap and camera were employed 

 subrecords = which((dat_tmp$year>=2011) & 

 !is.na(dat_tmp$temp) & 

 !is.na(dat_tmp$depth)& 

 !is.na(dat_tmp$lat) & 

 (dat_tmp$current_direction!='unknown') &  

(dat_tmp$no.readable.frames==41)& 

 (dat_tmp$current_direction!='') &  

(dat_tmp$turbidity!='unknown') &  

(dat_tmp$turbidity!=2)& 

 !is.na(dat_tmp$biotic_density) &  

(dat_tmp$soaktime<=150) &  

(dat_tmp$soaktime>=50)& 

 !is.na(dat_tmp$percent_substrate) &  

(dat_tmp$depth<=150) &  

(dat_tmp$percent_substrate!='Unknown')& 

 (dat_tmp$percent_substrate!='unknown') &  

(dat_tmp$biotic_density!='unknown')) 

#Data records when only the trap was employed 

 brecords = which((dat_tmp$year<2011) &  

!is.na(dat_tmp$temp) &  

!is.na(dat_tmp$depth)& 

 !is.na(dat_tmp$lat) &  

(dat_tmp$soaktime<=150) &  

(dat_tmp$soaktime>=50) &  

(dat_tmp$depth<=150)) 
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Appendix B. State-Space Model JAGS code 

 

model { 

#PREDICTIONS FOR MODEL FIT 

#MODEL FOR TIME PERIOD 2011-2016 

 #CAMERA OBSERVATION MODEL   

  for(i in 1:cn){ 

  cc[i] ~ dpois(cam_exp[i]) 

  cam_exp[i] <- exp(cam_exp_b[i]+epic[i]) 

  cam_exp_b[i] <- (N[i]+log_pc[i]+camcorr[i]) 

  epic[i] <-0#~ dnorm(0,tau[2]) T(-10,10) 

 #TRAP OBSERVATION MODEL  

  tc[i] ~ dpois(trp_exp[i]) 

  trp_exp[i]  <- exp(trp_exp_b[i]+epit[i]) 

  trp_exp_b[i]  <- (N[i]+log_pt[i]+log_ptc[i]) 

  epit[i] ~ dnorm(0,tau[1]) T(-10,10) 

 #ABUNDANCE MODEL 

  N[i] <- lam_cov[i] + Npred[year[i]] + epin[i] 

  epin[i] ~ dnorm(0,tau[4]) T(-10,10) 

  } 

#MODEL FOR TIME PERIOD 1990-2010   

  for(i in (cn+1):n){ 

 #TRAP OBSERVATION MODEL  

  tc[i] ~ dpois(trp_exp[i]) 

  trp_exp[i]<- exp(trp_exp_b[i]+epit[i]) 

  trp_exp_b[i]<- (N[i]+log_pt[i]) 

  epit[i] ~ dnorm(0,tau[1]) T(-10,10) 

 #ABUNDANCE MODEL 

  N[i] <- lam_cov[i] + Npred[year[i]] + epin[i] 

  epin[i] ~ dnorm(0,tau[4]) T(-10,10) 

  }   

#COVARIATE VECTORS 

 #Abundance covariates 

   lam_cov[1:n] <- bet[1]*lat[] + bet[2]*lat2[] + bet[3]*depth[] +  

                   bet[4]*depth2[] + bet[5]*lon[] + bet[6]*lon2[] +  

                   bet[7]*lat[]*lon[] 

 #Trap detection covariates   

   log_pt[1:n] <- eta[1]*effort[] + eta[2]*effort2[] + eta[3]*temp[] +  

                  eta[4]*temp2[]  

   log_ptc[1:cn] <- eta[5]*turb[] + eta[6]*substrate[] + eta[7]*relief[] +  

                    eta[8]*dir1[] + eta[9]*dir2[] + eta[10]*biota[]              

 #Camera detection covariates 

   log_pc[1:cn] <- phi[1] + phi[2]*turb[] + phi[3]*dir1[] + phi[4]*dir2[] +  

                   phi[5]*ctemp[] + phi[6]*ctemp2[] + phi[7]*substrate[] + 
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                   phi[8]*relief[] + phi[9]*biota[] 

 

#TEMPORAL ABUNDANCE PROCESS MODEL (exponential population growth w/ AR1 

process error)   

  for(i in 2:nyr){ 

  Npred[i] <- Npred[i-1] + r[i] 

  r[i] ~ dnorm(rmu,tau[3]) 

  } 

  Npred[1] ~ dnorm(0,.1) 

  r[1] ~ dnorm(rmu[1],tau[3]) 

  rmu ~ dnorm(0,.1) 

#PRIOR DISTRIBUTIONS 

  for(i in 1:7){bet[i] ~ dnorm(0,0.1)} 

  for(i in 1:10){eta[i] ~ dnorm(0,0.1)} 

  for(i in 1:9){ phi[i] ~ dnorm(0,0.1)} 

  for(i in 1:5){ 

  tau[i] <- pow(sig[i],-2) 

  sig[i] ~ dt(0,1/(0.3^2),2) T(0,10) 

  }   

} 
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Appendix C. Model fit diagnostic plots (Log-N Poissonabun & cam & trap). 

 

 

Figure C1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure C2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure C3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure C4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 
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Appendix D. Model fit diagnostic plots (Log-N Poissonabun & trap). 

 

 

Figure D1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure D2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure D3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure D4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 
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Appendix E. Model fit diagnostic plots (Log-N Poissonabun &cam). 

 

 

Figure E1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure E2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95 
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Figure E3. Residual plots of the observed and predicted Pearson residual value for each 

model-fit reference site. The left column represents count data that are equal to zero, while 

the right column represents count data that are greater than zero. 
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Figure E4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 
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Appendix F. Model fit diagnostic plots (Log-N Poissoncam & trap). 

 

 

Figure F1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure F2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure F3. Residual plots of the observed and predicted Pearson residual value for each 

model-fit reference site. The left column represents count data that are equal to zero, while 

the right column represents count data that are greater than zero. 
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Figure F4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 
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Appendix G. Model fit diagnostic plots (Log-N Poissonabun). 

 

 

Figure G1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure G2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure G3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure G4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 
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Appendix H. Model fit diagnostic plots (Log-N Poissontrap). 

 

 

Figure H1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure H2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure H3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure H4. The predicted annual relative abundance of the vermilion snapper meta-

population. The gray region represents 95% Bayesian credible intervals. The dotted line 

represents the estimated linear trend. 

  



51 

 

Appendix I. Model fit diagnostic plots (Log-N Poissoncam). 

 

 

Figure I1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure I2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure I3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure I4. The predicted annual relative abundance of the vermilion snapper meta-population. 

The gray region represents 95% Bayesian credible intervals. The dotted line represents the 

estimated linear trend. 
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Appendix J. Model fit diagnostic plots (Log-N Poisson). 

 

 

Figure J1. The Bayesian p-values for model-fit references sites with non-zero counts.  
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Figure J2. The model probability of correctly predicting a count equal to zero when the true 

count is zero. The horizontal red line represents a probability of 0.95.  
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Figure J3. Residual plots of the observed and predicted Pearson residual for each model-fit 

reference site. The left column represents count data that are equal to zero, while the right 

column represents count data that are greater than zero. 
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Figure J4. The predicted annual relative abundance of the vermilion snapper meta-population. 

The gray region represents 95% Bayesian credible intervals. The dotted line represents the 

estimated linear trend. 
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Appendix K. 95% Bayesian credible interval estimates for the three top models (Models 

1-3 in Table 3). 

 
Figure K1. 95% Bayesian credible interval estimates for the three top models (Models 1-3 in 

Table 3). The shaded regions represent covariates whose statistical significance varies among 

models. Models 1, 2, and 3 are defined in Table 3 of the main document. 
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