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a  b  s  t  r  a  c  t

Theoretical  considerations  and  applied  examples  suggest  that  stock  assessments  are  highly  sensitive  to
the  weighting  of  different  data  sources  whenever  data  sources  conflict  regarding  parameter  estimates.
Previous  iterative  reweighting  approaches  to weighting  compositional  data  are  generally  ad  hoc,  do
not  propagate  uncertainty  about  data-weighting  when  calculating  uncertainty  intervals,  and  often  are
not re-adjusted  when  conducting  sensitivity  or retrospective  analyses.  We  therefore  incorporate  the
Dirichlet-multinomial  distribution  into  Stock  Synthesis,  and  propose  it as  a model-based  method  for
estimating  effective  sample  size.  This  distribution  incorporates  one  additional  parameter  per  fleet  (with
the  option  of mirroring  its value  among  fleets),  and  we  show  that  this  parameter  governs  the ratio  of
nominal  (“input”)  and  effective  (“output”)  sample  size. We  demonstrate  this  approach  using  data  for
Pacific  hake,  where  the  Dirichlet-multinomial  distribution  and  an  iterative  reweighting  approach  previ-
ously  developed  by  McAllister  and  Ianelli  (1997)  give  similar  results.  We  also  use simulation  testing  to
verdispersion
ength composition
ge composition

explore  the  estimation  properties  of this  new  estimator,  and  show  that  it provides  approximately  unbi-
ased  estimates  of  variance  inflation  when  compositional  samples  capture  clusters  of individuals  with
similar  ages/lengths.  We conclude  by  recommending  further  research  to  develop  computationally  effi-
cient estimators  of  effective  sample  size  that are based  on  alternative,  a priori  consideration  of  sampling
theory  and  population  biology.

Published  by  Elsevier  B.V.
. Introduction

Stock assessment models are quantitative tools that are used
o provide a scientific basis for the management of marine fishes
Walters and Martell, 2004). Assessment models increasingly incor-
orate biological assumptions regarding the population dynamics
f fished species, and population dynamics parameters are esti-
ated by fitting the assessment model to available data (Maunder

nd Punt, 2013). Fitting population models to available data is
ypically done using likelihood-based statistics, and the proper
stimation of confidence and forecast intervals therefore generally

equires accounting for heteroskedastic and correlated residuals as
aused by unmodeled biological or measurement process (Thorson
nd Minto, 2015). Theoretical considerations and applied examples

∗ Corresponding author.
E-mail address: James.Thorson@noaa.gov (J.T. Thorson).

ttp://dx.doi.org/10.1016/j.fishres.2016.06.005
165-7836/Published by Elsevier B.V.
suggest that integrated statistical stock assessments are sensitive
to the weighting of different data sources whenever sources con-
flict regarding parameter estimates. Consequently, estimates of
stock status and productivity are often highly dependent upon the
weighting of different data sources (Francis, 2011).

Stock assessment models frequently are fitted to sampling
data that are informative about the proportion of the vulnerable
population belonging to different observable categories. Common
categories include the proportion of survey or fishery catch that is
associated with different ages, lengths, and/or sexes. Most often,
compositional sampling is assumed to follow a multinomial distri-
bution, e.g., drawing 10 marbles with replacement from an urn that
contains 15 red, 45 blue, and 40 green marbles. The multinomial
distribution is derived from the assumption that a given composi-
tional sample represents independent sampling with replacement

from a fixed and known number of individuals (i.e., 10 marbles),
where each individual is from one of several possible categories,
and where there is a true “fixed” probability pc associated with

dx.doi.org/10.1016/j.fishres.2016.06.005
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2016.06.005&domain=pdf
mailto:James.Thorson@noaa.gov
dx.doi.org/10.1016/j.fishres.2016.06.005
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ach category c (i.e., pc = 0.15, 0.45, and 0.40 for red, blue, and green
arbles). Each sample will not perfectly represent the true distri-

ution, e.g., a single sample of 10 marbles might yield 1 red, 4 blue,
nd 5 green (i.e., where the observed proportion is 0.1, 0.4, and
.5), and another sample might yield 2 red, 3 blue, and 5 green
an observed proportion of 0.2, 0.3, and 0.5). The multinomial dis-
ribution implies that the sampling variance (i.e., variation if the
ampling process was replicated) is a function of both the true
robability and sample size, Var (pobs) = p (1  − p) /n, where n is the
umber sampled and p is the true probability for each category.
hus, as n increases, the coefficient of variation for the proportion
n each category decreases by 1/

√
n.

In practice, compositional data for fish populations arise from
 process of sampling fish (e.g., non-extractive visual samples or
y capturing and measuring fishes), and this sampling process is
ore complicated than the process implied by a multinomial dis-

ribution. In particular, compositional data are likely to have greater
ariance than predicted by a multinomial distribution based on
he number of individual fish that are sampled (termed “overdis-
ersion”). In general, overdispersion arises whenever individuals
ithin a sample are not statistically independent. This assump-

ion of statistical independence (i.e., underlying the multinomial
istribution) is often violated, e.g., when fish schooling behavior

eads to a single age being over-represented in each individual
ample (McAllister and Ianelli, 1997), or when juvenile or adult
sh have an affinity for a particular depth range leading to pro-
ortions that vary spatially (Kristensen et al., 2014) and between
ampling tows (Crone and Sampson, 1997). In practice, composi-
ional data are processed to transform raw compositional sampling
ata into an aggregated estimate of the proportion in each category

n a given year for the entire modeled population. The resulting
stimates of the proportion in each category for each year is some-
imes termed “expanded compositional data” when the process
ses a simple design-based estimator, whereas we prefer the term
standardized compositional data” in recognition that the process
ometimes involves complicated statistical methods to estimate
nput sample sizes or account for missing data (Shelton et al., 2012;
horson, 2014). Compositional standardization results in an esti-
ate of “input” sample size for the compositional data in a given

ear, where estimates of input sample size are frequently a function
f both (i) the number of tows and (ii) the total number of sam-
led fish (Crone and Sampson, 1997; Stewart and Hamel, 2014).
ompositional standardization can also estimate the covariance
mong categories (e.g., Miller and Skalski, 2006), although this is
ot always done.

The multinomial distribution is often used in the likelihood
unction that is maximized to estimate parameters in an integrated
ssessment model. In this usage, the multinomial distribution is
sed to approximate the probability that the standardized pro-
ortions in each category arose from the fish population given
roposed values for estimated parameters. We  define the “input
ample size” as the sample size calculated during compositional
tandardization (or assumed at a fixed value a priori), and this
nput sample size is often used when evaluating the multinomial
ikelihood of estimated parameters. In this usage, input sam-
le size controls the weighting of compositional data relative to
ther data sources included in the likelihood function. However,
odel misspecification may  cause this input sample size to be

n inappropriate measure of data weighting. As a thought exper-
ment, imagine that all participants in a fishery falsify fish sizes
n their catch. These data would have no information about the
ize-composition of the population, and a stock assessment model

ould have optimal performance if it assigned zero weight to these
ata. As a less extreme example, age-composition data are often
btained by laboratory examination of fish samples (otoliths or
pines), and these laboratory methods sometimes mis-identify the
earch 192 (2017) 84–93 85

age of a given fish. Ageing error will cause age-composition data to
be a blurred measure of the true age-composition such that age-
composition data are less informative than if ageing error were
absent (Coggins and Quinn, 1998). However, if the stock assessment
model incorporates double-reading and ageing-error methods to
correct for the ageing error (Methot and Wetzel, 2013; Punt et al.,
2008), these data might be more informative about population age
structure.

The previous example highlights that the optimal weight of
composition data depends upon the specification of the model,
where model misspecification (e.g., neglecting the impact of ageing
error) results in a lower optimal weight for available compositional
data. This conclusion implies that compositional weighting can be
informed by inspecting the goodness-of-fit between the composi-
tional data and estimated proportions from the assessment model,
and consequently decreasing the sample size for data that gener-
ally do not match. This process was suggested by McAllister and
Ianelli (1997), who  proposed iteratively estimating the “effective
sample size” for compositional data from a given fleet via the match
between predicted and observed compositional data. However,
iterative reweighting approaches require the following steps: (1)
fit the assessment model to available data; (2) extract estimates of
compositional proportions; (3) calculate the effective sample size;
(4) input the new effective sample size; (5) iterate steps 1–4 a fixed
number of times, or until subsequent iterations cause little change
in the estimate of effective sample size. Decreasing the effective
sample size has an identical impact to multiplying the multinomial
likelihood function by the same percent change (Francis, 2011),
such that this process is essentially reweighting the compositional
data during each iteration of the algorithm. This iterative reweight-
ing algorithm has several drawbacks, including that it is infeasible
to repeat for every sensitivity run, it is difficult to explore when
parameter estimation is slow (e.g., when using Bayesian estima-
tion via Markov-chain Monte Carlo), it is difficult to incorporate
into simulation designs, it is potentially influential when estimat-
ing likelihood profiles for stock assessment parameters, and it does
not propagate uncertainty about data weighting into estimates of
parameter uncertainty.

In the following, we  seek to develop a method to estimate
effective sample size during parameter estimation. If this were
done by estimating a new parameter that governs the ratio
of input and effective sample size, then uncertainty about the
data-weighting parameter could be estimated using conventional
methods (Magnusson et al., 2013), and its uncertainty could be
propagated and evaluated during stock projections. We  therefore
specifically seek a method to estimate effective sample size as a
model parameter. For this purpose, we implement the Dirichlet-
multinomial distribution for compositional data in the likelihood
function of an integrated assessment model. We  show that using
the Dirichlet-multinomial distribution involves estimating a new
parameter, and can be parameterized such that it estimates a
simple relationship between input and effective sample size. We
incorporate this new distribution into the Stock Synthesis stock
assessment software, which is widely used in the United States
and internationally (Methot and Wetzel, 2013). The Dirichlet-
multinomial is now available as a feature in Stock Synthesis when
calculating the probability of age- or length-composition samples
from the entire population (“marginal” age- or length-composition
data), or the probability of age-composition samples from a given
length category (“conditional age-at-length data”). We  then use a
case study and simulation experiment to show that the Dirichlet-
multinomial distribution provides estimates of effective sample

size that are similar to iterative reweighting methods, but without
requiring multiple iterations of running the assessment model.
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. Methods

.1. Introducing the Dirichlet-multinomial distribution

Many stock assessment models use the multinomial distribution
or fitting compositional data while calculating the likelihood of

odel parameters:

(
�| �̃, n

)
= Multinomial

(
�̃|�, n

)
= � (n + 1)∏amax

a=1 � (n�̃a + 1)

amax∏
a=1

�a
n�̃a

(1)

here �̃ is the proportion at age in the available data such that
amax

a=1

�̃a = 1 (we use vector-matrix notation where vectors are bold,

hile elements of a vector are italicized with a subscript), � is

he estimated proportion at age (such that
amax∑
a=1

�a = 1), n is the

otal number of samples in the available data (which is restricted
o any non-negative real number), amax is the maximum age in

vailable data, and Multinomial(
∼
�|�,n) is defined as the multino-

ial probability mass function (we present theory using notation
or age-composition data, but note that the theory is applicable to
ength-composition data as well). However, using the multinomial
istribution for compositional data involves the assumption that
he true proportion at age � is constant for all age-composition
amples, but schooling or spatial behaviors may  in fact cause the
true” age-composition (i.e., its average if the sample was  repli-
ated at that place and time) to vary among samples. Variability in

 proportion can be approximated using a Dirichlet distribution:

(�i|�) = Dirichlet(�i|�) (2)

here Dirichlet (�) is the probability density function for the
irichlet distribution and � is a vector of amax parameters

restricted to be positive) that govern the mean and variance of
his distribution. Now imagine that, for each age-composition sam-
le, we take a random draw �∗∼Dirichlet (�) from a Dirichlet
istribution, and then take a draw from a multinomial distribu-
ion �∼Multinomial (�∗, n) with mean proportion �∗ from the
irichlet draw. In this case, the observed proportion �̃ follows a
ompound “Dirichlet-multinomial” distribution with a probability
ensity function:

(
�̃|�, n

)
=

∫
Multinomial

(
�̃|�∗, n

)
Dirichlet(�∗|�)d�∗ (3)

here the marginal probability density function for data �̃ is com-
uted via integrating across the “unobservable” average proportion
∗ for that sample (Thorson and Minto, 2015).

Fortunately, the likelihood function for the Dirichlet-
ultinomial distribution can be computed using interpretable

arameters without recourse to numerical integration:

(
�, ˇ| �̃, n

)
= � (n + 1)∏amax

a=1 � (n�̃a + 1)

�
(

ˇ
)

�
(

n + ˇ
) amax∏

a=1

�
(

n�̃a + ˇ�a

)
�

(
ˇ�a

)
(4)

here  ̌ is a new parameter representing the overdispersion
aused by the Dirichlet distribution. Here, we use the gamma  func-
ion, rather than the conventional factorial function, so that the
irichlet-multinomial is defined for all non-negative sample sizes
, such that it reduces to the conventional Dirichlet-multinomial

istribution whenever input sample size is a whole number. The
rst term �(n+1)∏amax

a=1
�(n�̃a+1)

does not depend upon the parameters,

ut ensures that the value of the Dirichlet-multinomial function
earch 192 (2017) 84–93

L
(

�, ˇ| �̃, n
)

converges on the value of the conventional multi-

nomial function L
(

�| �̃, n
)

as  ̌ → ∞,  such that the multinomial
distribution is a special case of the Dirichlet-multinomial dis-
tribution. Similar to the multinomial, the Dirichlet-multinomial
likelihood can be computed even for cases with zero observations
(i.e., where �̃a = 0 for some a), and this is not true of other proposed
methods to account for overdispersion (e.g., Francis, 2014).

2.2. Computing the effective sample size

We  define the effective sample size neff of a distribution g for
compositional data c∼g (�) as the sample size of a multinomial
distribution c∗∼Multinomial

(
�, neff

)
that has the same variance

on average across categories (i.e.,
amax∑
a=1

Var (ca) =
amax∑
a=1

Var (c∗
a)). The

variance of a single element from a multinomial distribution is:

Var (ca|n, �) = n�a (1 − �a) (5)

where n is the sample size. Defining observed proportion �̃a = ca/n,
we see that:

Var (�̃a|n, �) = �a (1 − �a)
n

(6)

i.e., variance decreases as the reciprocal of sample size.
We  next return to the Dirichlet distribution, �̃∼Dirichlet

(
ˇ�

)
,

where ˛a = ˇ�a and �a is the true proportion at age. The Dirichlet
distribution has variance:

Var
(

�̃a|ˇ, �
)

=
˛a

(
 ̌ − ˛a

)
ˇ2

(∑amax

a=1 ˛a + 1
) =

ˇ�a

(
 ̌ − ˇ�a

)
ˇ2

(
 ̌ + 1

)

= �a (1 − �a)
 ̌ + 1

(7)

such that  ̌ + 1 is the effective sample size of the Dirichlet distri-
bution:

Finally, the variance of the observed proportion at age for a
Dirichlet-multinomial distribution is:

Var
(

�̃a|n, ˇ, �
)

= �a (1 − �a)
n

(
n + ˇ

1 + ˇ

)
(8)

such that the variance (and also the covariance) is equal to the
variance (and covariance) for the multinomial distribution multi-
plied by (n + ˇ)/

(
1 + ˇ

)
(Eq. (15)–(16) in Mosimann, 1962). We

therefore calculate the estimated effective sample size neff of a
Dirichlet-multinomial distribution as:

neff = n + nˇ

n + ˇ
(9)

where this formula is similar to an approximation obtained by
summing the variance of the Dirichlet and multinomial dis-
tributions (i.e., the sum of multinomial sampling variance and
Dirichlet-distributed overdispersion). This formula illustrates that
the Dirichlet-multinomial distribution has equal overdispersion for
all bins (e.g., sizes or ages). In some cases, overdispersion may  vary
substantially among bins (Miller and Skalski, 2006), presumably
due to spatial variation in population densities associated with
each bin (Kristensen et al., 2014; Thorson, 2014), and we suggest
that future research explore the impact of varying overdispersion
on the performance of assessment models using the Dirichlet-
multinomial likelihood.
2.3. Two potential parameterizations

Given the Dirichlet-multinomial distribution and the closed-
form computation of its effective sample size, we propose two



J.T. Thorson et al. / Fisheries Research 192 (2017) 84–93 87

F arama
D  repre

a
l
e
i
h
B
r

2

D
p
n
f

L

w

n

w

s
b
i
t
(
s
i
c
p
a

2

n
(

n

t
p
o

ig. 1. Input sample size (x-axis) and effective sample size (neff ; y-axis) for two  p
irichlet-multinomial parameter specific to each parameterization. The dashed line

lternative parameterizations that may  be useful in practice for
ength- and age-composition samples in stock assessment mod-
ls. These parameterizations differ in terms of the function relating
nput and effective sample size (Fig. 1), and correspond to different
ypotheses regarding the mechanisms underlying overdispersion.
oth use the input sample size to distinguish among years that have
elatively more or less information about the true proportion.

.3.1. Parameterization #1 – linear version
As a default, we recommend a re-parameterization of the

irichlet-multinomial distribution, wherein the variance-inflation
arameter  ̌ is replaced by a linear function of input sample size
, i.e.,  ̌ = �n.  This results in the following probability distribution
unction:

(
�, �| �̃, n

)
= � (n + 1)∏amax

a=1 � (n�̃a + 1)

�
(

�n
)

�
(

n + �n
) amax∏

a=1

�
(

n�̃a + �N�a

)
�

(
�n�a

)
(10)

hich has effective sample size:

eff = 1 + �n

1 + �
= 1

1 + �
+ n

�

1 + �
(11)

here we see that effective sample size is a linear function of input

ample size with intercept
(

1 + �
)−1

and slope �
(

1 + �
)−1

. If �
ecomes large (� � n) then neff → n such that there is no variance

nflation in this case, and if � is small (� � n) while n is large (n � 1)
hen � is approximately the ratio of effective and input sample size
� → neff /n). We  recommend using the “linear effective sample
ize” parameterization, given that previous methods for weight-
ng compositional data have generally multiplied the likelihood of
ompositional data by a fixed quantity � < 1 (Francis 2011), and this
arameterization has similar behavior when sample sizes are high
nd samples are strongly overdispersed (n � 1 and � � n).

.3.2. Parameterization #2 – saturating version
As a potential alternative, analysts may  instead use the origi-

al parameterization of the Dirichlet-multinomial distribution (Eq.
4)), which has effective sample size:

eff = n + nˇ

n + ˇ
(12)
This parameterization can revert to the multinomial distribu-
ion with sufficiently large ˇ, i.e., neff = n when  ̌ � n. However, it
rovides an upper bound on effective sample size with lower values
f ˆ̌ , i.e., neff → 1 +  ̌ when n � ˇ. Therefore, this parameterization
terizations of the Dirichlet-multinomial distribution across varying values for the
sents the 1:1 line where input sample size is the same as neff .

could be useful when analysts seek to estimate an upper bound on
the effective sample size for any year.

We have implemented both parameterizations of the Dirichlet-
multinomial distribution in Stock Synthesis (version 3.30; public
release planned for Aug 2016, and please contact for a beta
version). In the following, we focus exclusively on the linear
parameterization (version #1). However, we  recommend future
research comparing the performance of these two parameteri-
zations using real-world data, and developing more-complicated
two-parameter forms for the Dirichlet-multinomial distribution
that could combine the characteristics of both versions. In par-
ticular, the saturating parameterization resembles an “additive”
influence of process errors while the linear parameterization is
more similar to the “multiplicative” influence of process errors
(Francis, this issue), and we  hypothesize that a two-parameter form
could be used to distinguish between additive and multiplicative
forms of process error. In the following, we also restrict ourselves
to the case where the variance-inflation parameter is constant for
all years, but note that future studies can estimate different levels
of variance inflation for each year, or for different blocks of years.

2.4. Case study: Pacific hake

To demonstrate this new data-weighting method, we compare
its performance with that of other data-weighting methods when
applied to a recent stock assessment for Pacific hake, Merluccius
productus (Taylor et al., 2015). Pacific hake is a semi-pelagic school-
ing species of commercial importance to fisheries off of the US
West Coast and Western Canada. Recent management is conducted
following procedures determined by an international agreement
between the United States and Canada, and are informed by annual
stock assessments implemented using Stock Synthesis. Data used
in the 2015 stock assessment includes (1) catches from 1966 to
2014, (2) fishery age–composition samples from 1975–2014, (3) an
index of abundance from ten acoustic surveys conducted between
1995 and 2013, (4) survey age-composition samples associated
with each acoustic survey, (5) cohort-specific definitions of ageing
error that specify improved ageing accuracy with larger cohorts,
and (6) “empirical” weight-at-age data calculated from all fisheries
and the acoustic survey for years 1975–2014, which are assumed
to be known without error (Taylor et al., 2015).

Four assessment models were fitted to data for Pacific hake,
where each model used a different approach to data-weighting

for the fishery age-composition data: (i) unweighted (i.e., treat-
ing input sample size as effective sample size), (ii) tuned using an
iterative approach, (iii) estimated using the Dirichlet-multinomial
distribution, and (iv) weight of zero. Option (ii) is the approach
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Table 1
Parameters used to generate simulated data sets (the “operating model”) and during
model fitting (the “estimation model”). A modified version of the 2015 Pacific hake
assessment model with 134 estimated parameters is used as both the operating and
estimation model (the model uses empirical weight-at-age techniques, and there-
fore  does not estimate individual growth parameters). Survey and fishery selectivity
values are not listed but follow the non-parametric form used in Taylor et al. (2015),
but  without variation over time.

Name Operating
model

Estimation model

True
value

Estimated or
fixed?

Number of
estimated
parameters

Natural mortality rate 0.217 Estimated 1
Expected recruits at

unfished level (natural
logarithm)

14.470 Estimated 1

Beverton-Holt steepness 0.850 Estimated 1
log-standard deviation of

recruitment deviations
0.900 Fixed –

Additional variance for
accoustic survey index

0.313 Estimated 1

Accoustic survey
selectivity at age

– Estimated 4

Fishery selectivity at age – Estimated 5
Recruitment deviations – Estimated 72
8 J.T. Thorson et al. / Fisher

ommonly used in West Coast assessments, including the Pacific
ake assessment (Taylor et al., 2015), and involved fitting the model
o available data, computing the ratio of the harmonic mean of
early effective sample size (as computed by Stock Synthesis) to
he arithmetic mean of yearly input sample size for fishery age-
omposition data, multiplying this value by the “weighting factor”
or the fishery age-composition data used during parameter esti-

ation, and then inputing this value as the new weighting factor.
e use the harmonic mean of effective sample sizes, rather than

he arithmetic mean, following recent research (Punt, 2017) and
ommon practice for West Coast assessments (e.g., Taylor et al.,
015). This process was repeated two times and the third fit to data
as used as the final estimate of parameters. The initial weighting

actor was set to one and all additional weighting factors had an
pper bound of one to ensure that effective sample size was  never
reater than the original input sample size. In the following, we
efer to this as the McAllister-Ianelli iterative reweighting method,
lthough we note that this algorithm has evolved since its origi-
al version in McAllister and Ianelli (1997). Option (iv) specifies
hat the stock assessment was fitted only to abundance indices
nd survey age-composition data, and represents the extreme
ase of “zero” weight assigned to fishery compositional data. To
chieve convergence in this option, we turned off parameters
epresenting variation in fishery selectivity over time, and fixed
arameters representing average fishery selectivity at their esti-
ates from option (ii). Fishery compositional data are the only

ource of information regarding age-structure prior to 1975, so
e assume that this option will result in large differences in esti-
ates during early years. Preliminary exploration showed that the

nput sample size is approximately equal to effective sample size
or survey age-composition data (i.e., the iterative approach results
n a ratio of 0.94, and the Dirichlet-multinomial results in a ratio
pproaching 1.00, i.e., � increases indefinitely). We  therefore chose
o not re-weight the survey age-composition data (i.e., we  did not
stimate the Dirichlet-multinomial parameter for the survey age-
omposition data, nor did we tune them). We inspected model fit
or the fishery age-composition samples using Pearson residuals:

a,t = �̃a,t − �a,t√
�a,t(1−�a,t)

neff,t

(13)

here ra,t is the Pearson residual for age a and year t, �̃a,t is the
roportion in the observed data for that age and year, �a,t is the
xpected proportion, and neff,t =

(
1 + nt�

)
/
(

1 + �
)

is the estimate
f effective sample size using the linear parameterization where nt

s the input sample size for year t. We  expect that a well-fitted
odel will have (1) no consistent patterns in residuals for consec-

tive ages in a given year, (2) no pattern in residuals for consecutive
ears for a given age, and (3) no pattern in residuals among fleets.

.5. Simulation testing

The performance of the Dirichlet-multinomial distribution
mplemented in Stock Synthesis was explored using simulated
ata (Table 1). To do so, we simplified the Pacific hake estimation
odel in five ways: (1) changed fishery selectivity to be stationary

ver time (i.e., removed time-varying selectivity parameters), (2)
hanged all fishery age-composition sample sizes to a single fixed
alue per year, (3) changed all survey age-composition sample sizes
o 100 samples per year, (4) changed age-specific ageing error to be
tationary over time and equal to the baseline ageing-error matrix,
nd (5) changed to using an “explicit-F” parameterization, wherein

nstantaneous, fully-selected fishing mortality in each year is esti-

ated as a fixed effect. We  made changes (1) and (4) because fishery
electivity and ageing error in the original assessment are related
o realized cohort size, and our simulation is randomly generat-
Instantaneous fishing
mortality rates

– Estimated 49

ing new time series of relative cohort size. We made change (5) so
that the simulated fishing intensity is plausible given the simulated
vector of recruitment deviations for each simulation replicate, and
changes (2) and (3) to simplify interpretation of results (e.g., so that
time series estimates are not influenced by annual variation in sam-
ple sizes). We then ran the modified Pacific hake assessment model
on available data, extracted estimated parameters, and used these
estimates as the “true” values during the simulation experiment
(while confirming that estimated stock status and productivity was
generally similar to that in the case study).

We then generated new, simulated data sets using the Stock
Synthesis parametric bootstrap simulator. For each simulation
replicate, we  simulated a new vector of recruitment deviations
with a standard deviation of recruitment deviations (�R) set at 0.9,
and also simulate a new deterministic pattern for fishing mortal-
ity, where instantaneous fishing mortality F for fully-selected ages
increases linearly from F = 0.01 in the first year (1966) to F = 0.30
in the final year (2013). The bootstrap simulator then calculated
the population abundance-at-age resulting from the input vector
of recruitment deviations and fishing mortality, and simulates an
abundance index and age-composition samples from their speci-
fied distributions (i.e., using a lognormal distribution with the input
log-standard deviation for the abundance index and a multinomial
distribution with the input sample size for the age-composition
samples).

The simulation experiment involves a factorial design with three
simulation scenarios, five levels of an inflation factor, and three
estimation models. For each combination, we ran 100 simula-
tion replicates, for a total of 3 × 5 × 3 × 100 = 4500 total estimation
model runs. We  define three simulation scenarios, where we
generate age-composition samples ct in each year t from a multi-
nomial distribution i.e., ct∼Multinomial (�, ntrue), and where the
“true” sample size varies among scenarios (ntrue = 25, 100, or 400).
Given this age-composition sample, we  then provide the estima-
tion model with an input sample size of ninput = �simntrue, such that
the �sim =

{
1, 2, 5, 25, 100

}
“observed” age-composition sample is
inflated by inflation factor �sim, with value
We  then use estimation methods (i), (ii), and (iii) defined in the

section titled Case study: Pacfic hake (see above).



J.T. Thorson et al. / Fisheries Research 192 (2017) 84–93 89

Fig. 2. Comparison of spawning output relative to average unfished levels (top-left), spawning output (SPB; top-right), exploitation fraction (catch divided by estimated
b ndance; bottom-right) for the Pacific hake assessment given four alternative methods of
w  (red); (ii) unweighted (green), (ii) iteratively tuned (black); or (iii) Dirichlet-multinomial
d tes (solid line) and +/− 1 standard error (shaded region).
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Fig. 3. Pearson residuals for age-composition data from the fishery (top panel) and
survey (bottom panel) using the Dirichlet-multinomial to estimate overdispersion
(and hence data weighting) for the fishery simultaneously with other model parame-
iomass  for individuals aged 3 and older; bottom-left), and recruitment (age-0 abu
eighting the age-composition data: (i) weight of zero for the age-composition data
istribution (blue), where for each model we  show the maximum likelihood estima

.6. Simulation model evaluation

Estimation procedures were evaluated by comparing estimated
arameters and derived quantities of interest to management to
heir true values as defined in the operating model. Estimation
rror was quantified using relative error (RE =

(
P̂ − P

)
/P,  where

ˆ
 and P are estimated and true parameter values respectively).
esults were recorded for converged models, where convergence
as defined as obtaining a gradient less than 0.1, and we also record

he proportion of non-convergence for each estimation model and
imulation scenario.

. Results

.1. Case study application: Pacific hake

Comparing four alternative methods for weighting composi-
ional data in the Pacific hake assessment (Fig. 2) shows that
stimates of relative spawning output and fishing intensity are
enerally bracketed by the two naïve approaches, i.e., either treat-
ng input sample size as effective sample size (“unweighted”)
r removing fishery age-composition data entirely (“no fishery
ges”). However, spawning output is higher for the tuned and
irichlet-multinomial models than the unweighted model because

he unweighted model estimates lower unfished recruitment. In
articular, removing fishery age data results in a higher estimate

f average unfished spawning output and lower spawning output
stimates from the mid-1980s onward, as well as large differences
n abundance trends prior to 1975. Meanwhile treating input sam-
le size as the effective sample size results in estimates of strong

ters, where each panel shows a circle with area proportional to the Pearson residual
(see Eq. (13) for calculation), and with sign indicated by shading (grey: positive
residual; white: negative residual).
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ig. 4. Estimated Dirichlet-multinomial variance inflation parameter (top row) and
zation #1) of the Dirichlet-Multinomial distribution implemented in Stock Synthe
00  samples per year) and four levels of variance inflation (wherein the input samp

ear-class strength in 1980 and 1999. By contrast, the default iter-
tive and new Dirichlet-multinomial weighting methods result in
imilar estimates of spawning output, with the exception of early
ears (prior to 1980) when the Dirichlet-multinomial estimator
esults in somewhat elevated estimates of spawning output relative
o the iterative method. Similarly, the iterative and Dirichlet-

ultinomial estimates of fishing intensity are more similar than
he other weighting methods, particularly for early years (prior to
970). Inspection of Pearson residuals when using the Dirichlet-
ultinomial likelihood to estimate overdispersion (Fig. 3) shows

ittle evidence for correlated residuals among ages within a year,
mong years within an age, or among fleets (except perhaps for
he negative residual for individuals in the oldest age category).
owever, cohorts born during 1977, 1980, and 1984 generally
ave small, positive residuals. This pattern arises in part because
he recruitment penalty (i.e., penalizing recruitment deviations
owards zero) encourages less variation in cohort strength than the
ge-composition data suggest for these years.

.2. Simulation experiment

Estimates of the Dirichlet-multinomial parameter are different
mong the different scenarios and levels of the inflation factor
Fig. 4, panel a). However, estimates of effective sample size are
enerally similar for all levels of the inflation factor for a given sce-
ario (Fig. 4, panel b). In general, the estimated effective sample size
losely matches the true sample size for all scenarios and levels of
he inflation factor. However, we detect a small positive bias in the

stimates of effective sample size when the true sample size is 400
i.e., median effective sample size estimate is close to 450), and a
egative bias when true sample size is 25 and variance inflation is
igh (�sim > 25).
tive sample size (Neff , bottom row) from the “linear” parameterization (parameter-
own for three “true sample sizes” (1st column: 25; 2nd column: 100; 3rd column:
e provided to Stock Synthesis is 2, 5, 25, or 100 times the true sample size).

Comparison of parameter estimates from the unweighted multi-
nomial, iterative reweighting algorithm, and the linear parame-
terization of the Dirichlet-multinomial distribution shows that the
iterative reweighting and Dirichlet-multinomial approaches have
similar precision and accuracy when estimating natural mortality
and average unfished recruitment for all levels of the inflation fac-
tor (Fig. 5). By contrast, the unweighted model has substantially
degraded estimates of natural mortality and unfished recruitment
for any inflation factor other than 1. We note that the Dirichlet-
multinomial algorithm has a small fraction (2 of 100) of replicates
that do not converge for some levels of the variance inflation
(�sim = 100, see Fig. 5). We  therefore conclude that the Dirichlet-
multinomial method has similar estimation performance to the
previous iterative reweighting approach.

4. Discussion

In this study, we implemented two  parameterizations of the
Dirichlet-multinomial distribution in the Stock Synthesis soft-
ware that is widely used to conduct stock assessments in the US
and internationally. We  then compared the Dirichlet-multinomial
distribution with a version of the McAllister-Ianelli iterative
reweighting approach that is commonly used for US West Coast
groundfish stock assessments. We believe that the Dirichlet-
multinomial approach is superior to this iterative reweighting
approach for several reasons.

1. Slow or inconsistent exploration of alternative models: Iterative

reweighting methods require fitting a stock assessment model to
data to calculate effective sample sizes, and then re-estimating
the model with revised input sample sizes. This iterative tuning
procedure either slows exploration of alternative models (due
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Fig. 5. Relative error in parameter estimates across estimation methods (rows; “tuned”: using the ratio estimator of the harmonic mean to input sample size; “unweighted”:
conventional multinomial treating input as effective sample size; “DM”: linear-parameterization of the Dirichlet-multinomial distribution) and levels of the inflation factor
for  the fishery age-composition data in the operating model (columns). Each panel depicts the relative error in maximum likelihood estimates of natural mortality rate (M,
y-axis)  and average unfished recruitment (ln(R 0),  x-axis), where colors are used to distinguish estimates. We only show results for estimation models where the maximum
fi  pane
m rgenc
w

2

3

4

nal  gradient was  <0.1 (the number of replicates across models is indicated in each
odels), and confirm that results are qualitatively similar if using a different conve
as  not used when the inflation factor was one.

to the need for re-tuning after each model change) or causes
inconsistent exploration of alternative models (where analysts
neglect to re-tune for every sensitivity run, and therefore com-
pare between runs that are not tuned in a consistent manner).

. Failure to account for uncertainty in data weighting:  Iterative
reweighting methods provide no obvious method for prop-
agating uncertainty about data-weighting. By contrast, the
Dirichlet-multinomial approach represents data-weighting via
an estimated parameter, and the uncertainty in this parameter
can be captured via standard statistical methods (e.g., likelihood
profiles, asymptotic confidence intervals, or Bayesian posteriors
(Magnusson et al., 2013)).

. Clear standards for convergence: Iterative reweighting meth-
ods require subjective decisions regarding when to stop tuning
the sample size, what order to tune multiple fleets, and how
to combine data-weighting information from multiple fleets.
These subjective decisions are rarely documented and different
decisions by different analysts may  cause substantial differ-
ences in ultimate estimates of stock status and productivity
in assessments where data weighting is an important axis of
uncertainty (e.g., US West Coast sablefish). By contrast, the
Dirichlet-multinomial method allows for a single, unambigu-
ous definition of convergence (i.e., via maximizing the model
likelihood function), which can be independently replicated by
different authors and does not require further documentation.
If estimates of the parameter governing effective sample size
using the Dirichlet-multinomial likelihood do not converge, we
suggest that the analyst could perform one model run using
the iterative reweighting approach (to get an initial value for
the Dirichlet-multinomial parameter), and then proceed to fully

estimate that parameter in a final model run.

. Interpretable estimates of effective sample size: Analysts have
previously suggested alternative model-based methods for esti-
l, where 300 implies that all 100 replicates converged for each of three estimation
e threshold. The lower left panel is not plotted because the DM estimation method

mating effective sample size. For example, an analyst might use
a Dirichlet distribution, which performed relatively well in pre-
vious simulation testing (Hulson et al., 2011; Maunder, 2011),
rather than the Dirichlet-multinomial distribution used here.
However, the Dirichlet distribution can have effective sample
size that ranges from 0 to infinity, i.e., it can exceed the input
sample size (Hulson et al., 2011; Maunder, 2011; Schnute and
Haigh, 2007). By contrast, the Dirichlet-multinomial distribu-
tion ensures that the effective sample size can never be greater
than the input sample size. We believe that restricting the effec-
tive sample size to be less than or equal to input sample size
is useful when analysts have properly estimated the variance
of standardized compositional data (Stewart and Hamel, 2014;
Thorson, 2014), as we  and others have recommended in gen-
eral. When analysts have not estimated the input sample sizes
for standardized compositional data, the Dirichlet distribution
might be a suitable approach for estimating an effective sample
size greater than the input sample size. We  hypothesize that
the Dirichlet distribution will be less numerically stable than
the Dirichlet-multinomial distribution (see e.g., Maunder, 2011),
because the Dirichlet distribution may  lead to model estimates
with implausibly high weight for compositional data.

These benefits of the Dirichlet-multinomial distribution relative
to iterative reweighting approaches should facilitate the develop-
ment, exploration, testing, and review of stock assessment models
in real-world applications.
The Dirichlet-multinomial distribution assumes a fixed, nega-
tive correlation in residuals among categories in a given year and
fleet. Residuals in real-world assessments might have a more com-
plicated pattern of correlation for two  general reasons:
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. Covariation in sampling data – Many circumstances may  cause
individual samples of compositional data in natural populations
to represent a disproportionately large number of juvenile or
adult fishes. For example, when fishes aggregate in groups with
similar age or size the age of each individual from that school
will be highly correlated. This correlation also occurs when fishes
partition available habitat by size or age, such that each sample
will occur in a habitat preferred by a particular age or size cat-
egory. Correlations among size or age measurements for each
sample will cause the standardized estimate of proportions by
category (inputted as data into assessment models) to also be
correlated. This covariation can be estimated by proper analysis
of raw compositional data (Hrafnkelsson and Stefánsson, 2004;
Miller and Skalski, 2006).

. Model mis-specification – Alternatively, model residuals (i.e., the
difference between compositional data and model predictions
of proportions for each category) may  be correlated among cat-
egories when the population dynamics model is mis-specified
(e.g., by assuming the wrong value for natural mortality rate, or
not accounting for error in reading fish otoliths Maunder (2011)).
Unmodeled processes (e.g., spatial variation in fishing intensity)
will generally result in residuals for compositional data that are
correlated among categories (e.g., between age-1 and age-2 sam-
ples in a given year), years (e.g., between adjacent years for age-2
individuals), sexes (between males, females, and unsexed indi-
viduals for a given age and year), and fleets (between survey and
fishery compositional data for a given age and year). For exam-
ple, positive correlations among years for a given age are likely
to arise whenever unmodeled processes have a similar effect on
individuals of that age. Potential causes of correlated residuals
for compositional data include time-varying or non-parametric
fishery selectivity, time-varying growth, and time-varying rates
of natural mortality.

We acknowledge that covariation arising from the process
f sampling compositional data (mechanism #1 listed above) is
ot adequately captured by the Dirichlet-multinomial likelihood

unction, and that alternative functions have been developed to
imultaneously model correlations and overdispersion in com-
ositional data. One example is the logistic-normal function,
hich Francis (2014) proposed as a general replacement for the
ultinomial distribution. However, Francis (2014) only explored

orrelations among categories (inter-class correlation), and did not
ttempt to account for correlations in a given category among years
r fleets. We  therefore encourage further research regarding like-
ihood functions that can use information regarding correlations
aused by sampling while still estimating a reduction in effective
ample size (to account for model mis-specification).

We  hypothesize that correlations arising from model mis-
pecification (mechanism #2 listed above) will generally include
orrelations among fleets, ages, years, and sexes, and are best dealt
ith by using adding random effects to account for important forms

f model mis-specification. Mixed-effects estimation is useful to
licit the correlation among data that is induced by unobserved
rocesses (Thorson and Minto, 2015); therefore, mixed effects are

 natural tool for modeling correlations in compositional data
hat are caused by model mis-specification. Mixed-effect methods
ave already been developed for time-varying selectivity, natural
ortality, and individual growth, and are increasingly feasible for

ge-structured population models using maximum likelihood or
ayesian estimation methods (Kristensen et al., 2014; Mäntyniemi
t al., 2013; Nielsen and Berg, 2014; Thorson et al., 2015). We  there-

ore recommend future research to explore whether accounting
or these processes can adequately approximate the correlations
n model residuals for compositional data, or whether it is also
ecessary to explicitly incorporate covariation caused by sampling.
earch 192 (2017) 84–93

As with any new method, we also encourage simulation
testing using a variety of operating models, forms of model
mis-specification, and harvest control rules (Hulson et al., 2011;
Maunder, 2011; Punt, 2017). Different forms of spatial struc-
ture or cohort-specific selectivity will generally result in different
forms of correlation among years, categories, fleets, and sexes, and
therefore will likely result in better or worse performance of the
Dirichlet-multinomial distribution (given its inability to account
for correlated residuals). We  hope that future studies comparing
the performance of the Dirichlet-multinomial likelihood relative
to generalized likelihood functions that account for among-bin
correlation (e.g., Francis, 2011) will include a variety of forms of
model misspecification. Until these studies are conducted, we do
not believe there is sufficient evidence to have a strong opinion
regarding the full trade-off between either (1) modeling corre-
lations via time-varying biological and fishery parameters or (2)
modeling correlations via a generalized likelihood function.

5. Conclusions

In this paper, we have shown that the Dirichlet-multinomial
distribution can be used to generate model-based estimates of
effective sample size for age- and length-compositional data in
stock assessment models. Using a real-world stock assessment
for Pacific hake, we  showed that the Dirichlet-multinomial distri-
bution provides similar estimates of effective sample size to the
McAllister-Ianelli approach to iterative reweighting using the har-
monic mean. We also provide a simulation experiment to verify that
it provides approximately unbiased estimates of effective sample
size given that the model is otherwise specified correctly. We  con-
clude that the Dirichlet-multinomial distribution is a reasonable
method to estimate the magnitude of overdispersion in compo-
sitional data, and recommend future research combining it with
mixed-effects estimates of time-varying selectivity and individual
growth to account for correlated residuals among categories, years,
and fleets.
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