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a  b  s  t  r  a  c  t

Though  it is  by  far the  most  commonly  used  likelihood  for composition  data  (proportions  at  length  or
age)  in  fisheries  stock  assessment  models,  the  multinomial  is poorly  suited  for  this  task.  It  has  two  salient
weaknesses:  it can  not  replicate  the  correlations  found  in  these  data;  and  it is  not  self-weighting  (i.e.,
the  parameters  that  weight  the  composition  data  can  not  be estimated  inside  the model).  This latter
weakness  derives  from  the  fact that  the  multinomial  likelihood,  being  designed  for  discrete  data  but
used  for  continuous  data, is improper  (i.e.,  its  integral  over  all permissible  data  values  is  not  constant).
All other  likelihoods  commonly  used  for composition  data share  at least  one  of  these  weaknesses  but
there  is one  – the  logistic-normal  – which  can  be extended  to  avoid  both.  Some,  like the multivariate
normal, are  misused  because  their structure  ignores  the  defining  properties  of  composition  data:  that
they  lie between  0  and  1, and  sum  to 1. A  collection  of  72 composition  data  sets  from  28  stock  assessments
originating  from  nine  different  computer  programs  was  used  to evaluate  the  extended  logistic-normal,
together  with  the  Dirichlet  likelihood,  which  is self-weighting  but  does  not  allow  positive  correlations
(and  so  may  be  useful  for composition  data  with  small  correlations).  The  logistic-normal  appears  very
promising,  especially  for  unsexed  length  compositions.  The  next  step  in  evaluating  the  extended  logistic-
normal  likelihood  will  be to code  it into  stock  assessment  programs,  and  some  of  the  technical  problems
associated  with  this step  are  discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The provision of scientific advice for the management of major
fisheries involves the analysis of all available data in what are
called stock assessment models. These models estimate the likely
exploitation history of the fish stock (how many fish there were of
each age in each year, and what proportion of these were caught)
in order to answer management questions about productivity and
sustainability. In addition to annual catches, the main two  types of
data analysed by these models are abundance indices (from surveys
or fishery catch rates) and compositions, which describe the dis-
tribution of lengths or ages in catches (from surveys or fisheries)
in each year. The latter type is important in estimating mortality
rates and year-to-year variations in the strength of recruitment
to the population. In modern assessment models, estimation is
likelihood-based (Maunder and Punt, 2013). That is to say, for each
data set analysed by the model there is a mathematical expression,
called a likelihood, which measures how consistent that data set
is with any potential exploitation history. It does that by provid-
ing a statistical description of the assumed error structure of the
data set (the likely difference between the data values and those
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expected by the model). The choice of likelihoods in a model is
important because changing likelihoods can substantially change
key model outputs. This happens in part because a change of likeli-
hoods will change the relative weights assigned to individual data
sets, and also to individual data points within a data set (see text
associated with Fig. 1 of Francis, 2011, for an example of how data
weighting can change model outputs). Moreover, valid statistical
inferences from these models (e.g., confidence intervals for esti-
mates, or use of AIC (Akaike, 1974) to decide between competing
versions of the model) require the use of appropriate likelihoods
(Deriso et al., 2007).

This paper addresses the question of what is the best likeli-
hood to use for composition data in stock assessment models. The
history of this usage is relatively brief. Before computers became
sufficiently powerful to fit models with many parameters, early
assessment methods (such as Virtual Population Analysis (e.g.,
Pope, 1972; Shepherd, 1999)) needed no likelihoods for compo-
sitions because these data were assumed to be without error. In
the early years of statistical stock assessment models these data
were fitted by least squares in log space (e.g., Deriso et al., 1985;
Kimura, 1989). This implied that the error structure was  such that
all proportions at age (or length) had the same coefficient of vari-
ation (c.v.). Crone and Sampson (1998) showed that this was  not
true: c.v.s declined with increasing proportions, as is characteristic
of the multinomial distribution (for which the c.v. of a proportion

0165-7836/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.fishres.2013.12.015



Author's personal copy

R.I.C.C. Francis / Fisheries Research 151 (2014) 70– 84 71

with expected value p and sample size N is [(1 − p)/(pN)]0.5). In
recent years, the multinomial has become by far the most common
likelihood used for composition data. For example, Stock Synthesis
(Methot and Wetzel, 2013), which is arguably the most widely used
general-purpose statistical stock assessment program, provides no
other likelihood for composition data.

There are two well known problems with the use of the multi-
nomial likelihood for fishery composition data: overdispersion and
correlation (Hrafnkelsson and Stefánsson, 2004). Both arise from
the fact that the raw data from which a single composition is calcu-
lated do not, as is assumed by the multinomial distribution, consist
of a single simple random sample from the catch which is to be
characterised by that composition (usually the annual catch from a
fishery, or the total catch from a survey). Rather, they are random
samples from many individual tows or sets. It is widely recog-
nised that these data show what Pennington and Vølstad (1994)
called intra-haul correlation – fish caught in the same tow or set
are more like each other (in length or age) than fish from differ-
ent tows or sets. As a consequence, to obtain appropriate c.v.s for
composition data, the sample size parameter, N, in the multino-
mial likelihood must be set much smaller than the actual sample
size (this addresses the overdispersion problem). Many different
ways have been used to make this correction for overdispersion
(e.g., Crone and Sampson (1998) constructed an empirical relation-
ship between the corrected sample size and the number of trips
sampled [see their Fig. 4]; McAllister and Ianelli (1997) devised an
algorithm to correct initial sample sizes using the output from a
run of the stock assessment model [see eqs. (2.5) and (2.6) in their
appendix 2]). The problem of correlation is harder to deal with.
The intra-haul correlation induces correlations between the indi-
vidual proportions in a composition (e.g., the proportion of fish of
length 20 cm in a composition is correlated with the proportion
of length 21 cm). These correlations are often substantial, partic-
ularly for length compositions (e.g., Hrafnkelsson and Stefánsson,
2004, Fig. 4; Miller and Skalski, 2006, Figs. 2–6). Pennington and
Vølstad (1994) provided a striking demonstration of the effect of
these correlations. They calculated, from fish caught in a trawl
survey, the standard error (s.e.) of the estimated mean length
of fish in the survey area, and defined the effective sample size
for the length composition from that survey as being the sam-
ple size that would be required to produce that s.e. if we were
able to take a simple random sample from the total survey catch.
These effective sample sizes (which I shall call Pennington sam-
ple sizes, denoted NPenn) can be surprisingly small. For example,
for haddock length compositions from a series of trawl surveys on
Georges Bank, Pennington and Vølstad calculated a median effec-
tive sample size of 21 (range 3–152), which was about half the
number of tows that caught haddock (median 41, range 22–124)
and much less than the number of fish measured (median 845,
range 157–12 208). In the stock assessment setting, the problem
is that these substantial correlations, both positive and negative,
are inconsistent with the multinomial likelihood, for which cor-
relations are usually small and always negative (the correlation
between multinomial proportions with expected values pb, pc in
bins b and c is −[pbpc/{(1 − pb)(1 − pc)}]0.5). Thus it is not possible
with the multinomial likelihood to include realistic correlations for
composition data.

Francis (2011) pointed out that the effect of correlations is to
reduce the amount of information in composition data, and thus
the weight that should be given to them. He suggested that there
were three ways to deal with these correlations: (1) ignore them
(the common response); (2) discard the multinomial in favour of a
likelihood which allows substantial correlations; or (3) reduce the
multinomial sample size to compensate for the correlations. He said
that option 1 was unsatisfactory because it tended to over-weight
the composition data sets, which can cause poor fits to abundance

data. Since he was  unaware of a likelihood suitable for option 2,
he recommended option 3, and proposed a method to implement
it using Pennington sample sizes. In this paper I pursue option 2.
I will list the properties ideally found in a composition likelihood
and show that though none of the currently used likelihoods has
all of these properties there is one (the logistic-normal) which can
be extended to do so. I will then analyse composition data from a
wide range of stock assessments to see to what extent they support
this extended likelihood (R functions used in these analyses are
provided as Supplementary Data). Before starting on this path I
need to discuss different types of error.

2. Types of error

It might seem that the obvious place to look, when seeking
a likelihood which will faithfully represent the error structure of
composition data, is in the results from recent studies which have
analysed the raw data contributing to a composition (e.g., Kvist
et al., 2001; Rindorf and Lewy, 2001; Hirst et al., 2004; and oth-
ers mentioned above). This is only partly true. We  can’t use these
results directly because they concern a type of error which differs
from that which we are addressing. To understand the difference,
consider an individual composition proportion that may  of interest
in a stock assessment (say the proportion at age 2 in the catch from
the longline fishery in 2012). As Francis (2011) has noted, there are
three different versions of that proportion: (i) the value we observe,
O; (ii) the true (real world) value, T; and (iii) the value expected by
our stock assessment model, E. The studies just mentioned tell us
about the observation error, which is the difference between O and
T. However, the error we wish to represent in our composition like-
lihood is (O − E). Francis called this the total error because it is the
sum of the observation error, (O − T), and (T − E), which he called the
process error (this arises because the many simplifying assumptions
that are needed to make the model tractable mean that the stock
assessment model is only an approximation to the truth). Thus the
variance, or c.v., of the total error must be greater than that of the
observation error. We  could treat the observation error as being a
reasonable approximation to the total error only if we knew that
the process error was small compared to the observation error. My
experience is that this is unlikely to be true for composition data,
and I offer an example to illustrate the point.

The data for this example come from the 2012 assessment
of hoki (Macruronus novaezelandiae) in New Zealand (McKenzie,
2013). This assessment modelled two  stocks of hoki which have
separate spawning grounds but a common nursery ground. The
main composition data sets used were proportions at age from the
fisheries on the spawning grounds, HOKwc and HOKcs, and a sur-
vey on the nursery ground, HOKcr. By bootstrapping the raw data
(length samples, and ages for age-length keys) we can calculate the
s.e. of mean age for each composition, and thus the associated Pen-
nington sample size. These sample sizes, which characterise the
size of the observation error for each data set, varied from year
to year, but their median values were of a similar order to (for
HOKwc) or less than (for HOKcs and HOKcr) the number of otoliths
sampled, and much less than the number of lengths (Table 1). We
can also calculate NPenn values for the total error from the model
residuals (i.e., O − E) as described by Francis (2011) (see method
TA1.8 in his appendix A). This was done both for the base model
(labelled 1.3 in the assessment), in which the composition data
were sexed (i.e., they consisted of proportions by age and sex),
and also for an alternative model (labelled 1.4) which used exactly
the same composition data but without sex. The total-error sam-
ple sizes were markedly smaller than those for observation error,
particularly for the two  fishery data sets (Table 1). Thus the pro-
cess error is not negligible for these data sets. One obvious source
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Table 1
Various sample sizes calculated for three age composition data sets used in the 2012 assessment of hoki (M. novaezelandiae). Columns 3–5 are medians of values calculated
by  year for each data set, and contain the numbers of otoliths and fish lengths sampled, Notolith and Nlength, and the Pennington sample sizes, NPenn, for observation error.
Columns 6–7 are the Pennington sample sizes for total error, calculated from two alternative models: one in which the composition data were sexed, and the other in which
they  were not.

Median numbers from observations NPenn for total error

Data set Type Notolith Nlength NPenn Sexed Unsexed

HOKwc Fishery 753 53 061 937 20 27
HOKcs Fishery 763 10 527 261 69 69
HOKcr Survey 649 19 172 116 83 52

of process error is the assumption that selectivities did not vary
between years. The fact that process error was smaller for HOKcr
could be because this assumption is likely to be closer to the truth
for a survey than for fisheries. Assumptions about natural mortality
are another source of process error for composition data. Natural
mortality was assumed to be time-invariant in both models; in the
alternative model it was also assumed to be independent of age.

3. Composition likelihoods: notation, desirable properties
and examples

For a given composition data set, let Oby denote the observed
proportion in bin b (for b = 1, . . .,  B) and year y (for y = 1, . . .,Y), where
the bins are either age or length classes, and let Eby denote the
corresponding expected value from the assessment model. Since
these are compositions, they must sum to 1 in each year (i.e.,
�bOby = �bEby = 1 for all y). I will sometimes use vector notation,
denoting the composition for year y as Oy, and its expected value
as Ey; when referring to a single composition, I may, for simplicity,
drop the subscript y.

A composition likelihood is a mathematical formula which may
be thought of as measuring how consistent the model’s expected
values, Eby, are with the observations, Oby. The bigger the calculated
likelihood is, the more consistent the expected values are with the
observations (i.e., the better the model fits the data). By conven-
tion, assessment models calculate the negative logarithm of the
likelihood, NLL, rather than the likelihood, so the smaller the NLL,
the better the fit to the data. Technically, the Eby are parameters
of the likelihood, which are always estimated in the model. Each
likelihood will also have other parameters, which I will call weight-
ing parameters,  and which may  be fixed (and adjusted) outside the
model, or estimated inside it. For example, with the multinomial
likelihood the NLL is given by

∑
ylog

(
Ny!

)
+

∑
bylog

[(
NyOby

)
!
]

−∑
by

(
NyObylog Eby

)
, where the weighting parameters, the Ny, are

called the multinomial sample sizes for each year.
What properties are desirable for a composition likelihood? I

shall list four. One obvious one, given the above discussion, is that
it must allow substantial correlations. Another is that it should be
self-weighting, by which I mean that we should be able to estimate
the weighting parameters within the model. Not all likelihoods
are self-weighting, and for those that are not we  have two ways
of dealing with the weighting parameters: fix them outside the
model; or iteratively adjust them. The first approach is not advis-
able because the values we use should be appropriate for the total
error in the composition data, and we have no way of knowing
about the extent of that error without running the model and exam-
ining the residuals. The second approach is that commonly used
with the multinomial likelihood in Stock Synthesis (Methot and
Wetzel, 2013), which outputs information that can be used to iter-
atively adjust the values of Ny. This approach is workable, though
inconvenient (because, at least theoretically, we  need to adjust
the sample sizes every time we make some change to the model
assumptions or inputs). Also, there is some doubt about which is
the correct algorithm to use to adjust the Ny (see the results of four

alternative algorithms in the example in Table 4 of Francis, 2011).
Self-weighting likelihoods are much more convenient, and avoid
uncertainty about weighting algorithms. Another desirable prop-
erty is that a composition likelihood should be proper.  That is, for
any given values of its parameters, its integral over all permissible
values of the observations must be independent of the parameter
values (this definition is a slightly less strict than the usual one,
which requires that the integral equal 1). This property is relevant,
though not essential, simply because a likelihood can not be cor-
rectly self-weighting unless it is proper; an improper likelihood
will cause bias in estimates of weighting parameters. In principle,
we can make any likelihood proper by adding (to the NLL) a term
derived from the integral of the likelihood. However, this will be
practicable only if that integral has a closed form. Finally, it is desir-
able that our likelihoods be parsimonious (i.e., have few weighting
parameters). This is worth mentioning because some researchers
have constructed models with large numbers of parameters for
the observation error in composition data (e.g., Hrafnkelsson and
Stefánsson, 2004; Miller and Skalski, 2006). These models are quite
appropriate in the settings in which they were constructed because
there was  a lot of data (i.e., all the raw data that are used to construct
the composition) from which to estimate the many parameters.
They are not appropriate for a stock assessment model, which is
fitted to the compositions, rather than the raw data from which
they are constructed, and thus does not allow the estimation of
many weighting parameters.

3.1. Which likelihoods have these desirable properties?

So, how do likelihoods that have been used for composition data
perform with regard to these desirable properties? I will discuss
seven likelihoods (Table 2). First, the multinomial. As noted above,
it does not allow for substantial correlations, but it is certainly par-
simonious (with just one weighting parameter per composition,
Ny). The fact that it is not proper may  surprise some readers. Since
the multinomial distribution appears in all standard statistics texts
one might expect its likelihood to be proper. The point to notice
is that it appears in these texts as a discrete distribution, defined
only for observed proportions that are multiples of 1/N, and that
its likelihood is proper when restricted to these values. In a stock
assessment setting we  use it as a continuous distribution, allowing
the observed proportions to take any value between 0 and 1. The
integral of the multinomial likelihood over this continuous domain
does not have a closed form, but it is easy to show, by approx-
imation, that it decreases as N increases, which is why attempts
to estimate N within the model fail (the estimates always tend to
zero). The multivariate normal likelihood was adapted for use with
composition data – first in the modal analysis program MULTIFAN
(Fournier et al., 1990), and subsequently in the stock assessment
program MULTIFAN-CL (Fournier et al., 1998) – by reparameteri-
sation (replacing the usual variance parameters with sample sizes,
Ny, in such a way  that the variances are the same as for the multi-
nomial – see Eq. (A17) in the Appendix) and robustification. This
likelihood has proved very useful in tuna stock assessments, which

cf
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Table 2
Some likelihoods that have been used for composition data, and their performance with respect to four desirable properties. The entries ‘Possibly’ and ‘Usually’ mean that the
performance depends on how the likelihoods are implemented: ‘Possibly’ indicates that substantial correlations are possible, but not in current implementations; ‘Usually’
means that the likelihood is parsimonious in current implementations, but may  not always be. ‘Partially’ indicates that the likelihood is not proper or self-weighting relative
to  all weighting parameters.

Likelihood Substantial correlations? Self- weighting? Proper? Parsimonious?

Multinomial No No No Yes
Multivariate normal Possibly No No Usually
Multivariate lognormal Possibly No No Usually
Logistic-normal Possibly Yes Yes Usually
Dirichlet No Yes Yes Yes
Dirichlet-multinomial No Partially Partially Yes
Logistic-multinomial Possibly Partially Partially Usually

are characterised by large quantities of noisy length composition
data. However, its use illustrates a point made by Aitchison (2003).
Writing about a broad range of types of statistical inference from
general composition data (not just fishery proportions at age or
length in stock assessment models), he noted that many published
analyses of composition data lack rigour because they use general-
purpose statistical tools (e.g., ANOVA) which ignore the special
properties of these data (i.e., that they are non-negative proportions
that must sum to one). This criticism applies to the multivariate
normal likelihood (as used in stock assessment models), which does
not constrain observations to be between 0 and 1, and to sum to 1.
When these constraints are applied, the integral of the likelihood
depends on the Ny, and so is neither proper nor correctly self-
weighting. As used in MULTIFAN-CL, it is parsimonious (having the
same parameters as the multinomial), but allows no correlations
at all. It would be easy to modify it to allow substantial correla-
tions, but care would need to be taken to do this in a parsimonious
way (the most general multivariate normal likelihood would have
0.5YB(B − 1) weighting parameters). The multivariate lognormal
likelihood (e.g., Punt and Kennedy, 1997; Bull et al., 2012) has, with
regard to our four desirable properties, exactly the same strengths
and weaknesses as the multivariate normal. These strengths and
weaknesses are unchanged in alternative versions of the normal
and lognormal likelihoods, preferred by some researchers, in which
variances depend on Oby rather than Eby (see, e.g., methods Fobs and
PKobs in Table 1 of Maunder, 2011).

The first use of a stock assessment composition likelihood
that was designed for continuous composition data (and was
thus both proper and correctly self-weighting) was  of the logistic-
normal likelihood in a theoretical state-space model by Schnute
and Richards (1995). (They called their likelihood “multivariate
logistic”, but Aitchison (2003), who developed much of the theory
surrounding this distribution, calls it the (additive) logistic-
normal). This likelihood is implemented in the (non-state-space)
stock assessment program iSCAM (Martell, 2011; Martell et al.,
2011). A logistic-normal distribution is formed by applying a
logistic transformation to a multivariate normal vector. Specifi-
cally, a composition O is logistic-normal with parameters {E, C}
if Ob = exp (Xb)/

∑
b′exp (Xb′),  where X is multivariate normal

with mean log(E) and covariance matrix C (here I am following
the approach of Schnute and Haigh (2007), which differs slightly
from that of Aitchison (2003), but is better suited to the stock
assessment setting – see Appendix for details). Note that the
logistic transformation forces the Ob to be positive proportions
summing to 1. In the just-cited stock assessment applications
of this distribution the covariance matrix C took its simplest
possible form with V(Xb) = �2 for all b, and all covariances set to
0. This version of the logistic-normal is certainly parsimonious
(it has only one weighting parameter, �) but does not allow for
substantial positive correlations. A simple and parsimonious way
to introduce correlations is to set Cor(Xb, Xc) = ACk(|b − c|), where b
and c are bin numbers and ACk is the auto-correlation function of

a k-th order autoregressive process, AR(k) (Brockwell and Davis,
1991; Chatfield, 2004). With this approach, all entries on the same
diagonal of the correlation matrix are the same. For example, with
an AR(1) process we  need one additional weighting parameter, ϕ,
and AC1(l) = ϕl (see Appendix for correlations for an AR(2) process).
Note that this equation describes correlations in X, and not in
the composition O. In particular, when ϕ > 0, all correlations in X
will be positive, but correlations in O may  be both positive and
negative (as will be shown below). The logistic-normal does not
allow zero proportions, which is a limitation for stock assessment
applications, but not usually, I think, a serious one (see below).

Another likelihood that was designed for continuous composi-
tion data (and is thus both proper and correctly self-weighting)
is the Dirichlet, which was first used for fishery composition
data by Williams and Quinn (1998), and has since been used
in stock assessments (e.g., Chassot et al., 2009). Its derivation
is analogous to that of the logistic-normal in that it involves
the application of a transformation which forces the resulting
vector to be a composition: a composition O is Dirichlet with
parameters {E, ˛0} if Ob = Xb/

∑
b′Xb′ , where the Xb are indepen-

dent gamma  variates with shape parameters ˛0Eb, and common
scale parameter ˛0 (which means that the likelihood is given
by NLL = −Ylog(�(˛0)) + �by[log(�(˛0Eby)) − (˛0Eby − 1)log(Oby)]).
The Dirichlet is parsimonious (with the single weighting
parameter ˛0) but does not allow substantial correlations (it
has exactly the same correlation structure as a multinomial,
i.e., the correlation between proportions in bins b and c is[
−EbEc/

{
(1 − Eb) (1 − Ec)

}]0.5
). (Note that the Dirichlet param-

eters E and ˛0 used here can be transformed to the more
conventional single vector parameter �, by setting ˛b = Eb˛0, which
means that ˛0 = �b˛b). Like the logistic-normal, the Dirichlet does
not allow zero proportions.

Another likelihood that has sometimes been used in stock
assessments is that for the Dirichlet-multinomial compound distri-
bution (e.g., Gazey et al., 2008; Hillary, 2011). A composition O is
Dirichlet-multinomial with parameters {E, ˛0, N} if it has a multino-
mial distribution with parameters {E′, N}, where E′ is Dirichlet with
parameters {E, ˛0}. Like the multinomial, it does not allow substan-
tial correlations, and is a discrete distribution applied to continuous
observations. Since its integral over all permissible observations
depends on N, but not ˛0, it is partially self-weighting (i.e., we
can estimate ˛0 within the model, as long as we fix N). Thus, in
respect of our four desirable properties, it performs better than the
multinomial, but not as well as the Dirichlet. Another compound
likelihood worth mentioning, though I’m not aware of its being used
in a stock assessment, is the logistic-normal-multinomial. This was
used by Hrafnkelsson and Stefánsson (2004) in estimating obser-
vation error for survey length compositions (though they called it
a Gaussian-multinomial and used it for numbers, rather than pro-
portions, at length). In a stock assessment setting this likelihood
could allow substantial correlations but, as with the Dirichlet-
multinomial, it would be only partially self-weighting.
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Table 3
Details of the 72 stock assessment composition data set that were used to evaluate the logistic-normal and Dirichlet likelihoodsa.

Assessment program Number of assessments Composition type

Age Length Likelihood used

Stock Synthesis (Methot and Wetzel, 2013) 6 1 15 Multinomial
CASAL  (Bull et al., 2012) 4 11 1 Multinomial

1  1 Multivariate lognormal

MULTIFAN-CL (Fournier et al., 1998) 3 7 Multivariate normal
BAM  (Craig, 2012) 2 3 2 Multinomial

1  2 Multivariate normal

ASAP  (Legault and Restrepo, 1999) 3 12 Multinomial
iSCAM  (Martell, 2011) 5 12 Logistic-normal
Ad  hocb 3 2 3 Multinomial

28  44 28

a More information about these data sets is provided in the Supplementary Data.
b Programs written specifically for a single species or stock assessment.

Amongst the likelihoods considered here, the logistic-normal
is the clear winner in terms of performance with respect to our
four desirable properties (Table 2). In the next section this like-
lihood will be further evaluated using composition data from a
wide range of stock assessments. The Dirichlet likelihood will be
included in the evaluation because it performs almost as well, and
may  be appropriate for composition data where correlations are
not large. The other likelihoods in Table 2 are excluded because the
AIC, used to compare goodness of fit of different likelihoods, would
be compromised by the fact that they are not proper.

4. Evaluation of the logistic-normal and Dirichlet
likelihoods

For this evaluation I assembled a collection of 72 composition
data sets from 28 stock assessments originating from nine differ-
ent computer programs (Table 3). 44 data sets were for age, and
28 for length. Most assessments used the multinomial likelihood,
but there were reasonable numbers from the multivariate normal
and logistic-normal, and one multivariate lognormal. The intention
was to maximise diversity amongst the data sets, with the hope
that any general conclusions from this study would apply to most
stock assessments. The greatest weakness in this respect was  that
only seven data sets were sexed (i.e., the compositions were pro-
portions by age (or length) and sex). In two of the sexed data sets
– for New Zealand rock lobster – the concept of sex was extended
to three categories: male, immature female, and mature female.
Each data set comprised observed and expected proportions, and
assumed sample sizes by year (i.e., Oby, Eby, and Ny). All data sets
covered at least 15 y, and most were longer than 20 y, up to a max-
imum of 124 y (for simplicity I refer to the time steps as years, but
in a few assessments the time step was a quarter). Many of the
assessments applied some sort of robustification for the composi-
tions, modifying the likelihood (as in MULTIFAN-CL – see Fournier
et al., 1998) and/or the data (e.g., Stock Synthesis optionally adds a
user-provided small number [10−4 by default] to all observed and
expected proportions and then renormalizes the data to sum to
1 in each year; in iSCAM, bins with proportions less than a user-
specified minimum (default 0.02) are amalgamated with adjacent
bins). Data sets in which the data modification affected more than
a third of observed proportions were excluded.

Two modifications were made to these data sets. The first
was to suppress zeroes (because these are not allowed by either
the logistic-normal or Dirichlet likelihoods), which was  neces-
sary in 54 data sets. This was done by compressing the tails of
the compositions into plus and/or minus groups (i.e., replac-
ing the vector (O1,. . .,OB) by

(
O′
lo
, O′

lo+1, . . .,  O′
hi−1, O′

hi

)
, where

lo ≥ 1, O
′
lo

=
∑lo

b=1Ob, hi ≤ B, and O
′
hi

=
∑B

b=hiOb, and making an

analogous replacement for E). For each data set, the same plus
and/or minus groups were used for all years to simplify the analysis
of correlation structure. In some data sets this caused an excessive
reduction in the number of bins because there were some years
(typically with small assumed sample sizes) in which there were
many zeroes. To avoid this excessive reduction, years with sample
sizes less than some threshold were excluded (the threshold varied
between data sets and was set arbitrarily to find what seemed the
best trade-off between the number of years and the number of
post-zero-suppression bins in the data set). The second modifica-
tion involved increasing the small constant used to robustify two
data sets from each of two  assessments. In one assessment, where
observed zeroes had been replaced by 10−12, this was replaced
by 10−5; in the other, where 10−7 had been added to all observed
and expected proportions (and then the data were normalised to
sum to 1), this was replaced by 10−4. These larger robustifying
constants seemed more appropriate because they were closer to
the smallest non-zero proportion before robustification (1.5 × 10−5

for the first assessment and 2.5 × 10−4 for the second). In all four
data sets, changing the robustifying constant strongly affected the
fits to the logistic-normal and Dirichlet likelihoods (see below).

Each data set was fitted to four alternative likelihoods: the
Dirichlet, and three versions of the logistic-normal which I denote
LN1, LN2, and LN3, with the integer in these labels referring to
the number of weighting parameters. LN1 is the logistic-normal
used in iSCAM, with the single weighting parameter �, and LN2
and LN3 are the new extensions described above (see Section 3.1)
in which the correlation structure of X derives from an AR(1)
or AR(2) process, respectively (the weighting parameters are {�,
ϕ} for LN2, and {�, ϕ1, ϕ2} for LN3). In this fitting (done in R
(R Core Team, 2013), using the nonlinear minimization function
nlm, and function ARMAacf to calculate the LN3 correlations),
only the weighting parameters were estimated (i.e., the likeli-
hood parameters Eby were taken to be those estimated in the
original assessments). Between-year weighting of the data was
achieved by setting ˛0y = ˛0

[
Ny/meany′

(
Ny′

)]
for the Dirichlet,

or �y = �
[
meany′

(
Ny′

)
/Ny

]0.5
for the logistic-normal (the corre-

lation parameters for LN2 and LN3 were assumed to be the same for
all years). The goodness of fit to the four likelihoods was compared
using AIC (Akaike, 1974). Some properties of the fitted distributions
(predicted correlations in Section 4.1, and bias in Section 4.3) were
investigated using simulated data. For each combination of data set
and fitted distribution, I generated 1000 simulated sets of observa-
tions of the same size (denoted Sbyi for i = 1,. . .,  1000), using the
associated likelihood and parameters (see R function Simcomp in
the Supplementary Data).

Three quarters of the data sets (55/72) preferred (i.e., were bet-
ter fitted by) one of the correlated logistic-normal likelihoods (LN2
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Table 4
Number of data sets, by type (length or age, unsexed or sexed), which preferred (i.e.,
were better fitted by) each likelihooda.

Length data Age data

Likelihood Unsexed Sexed Unsexed Sexed All

Dirichlet 0 0 14 3 17
LN1 0 0 0 0 0
LN2  or LN3 26 2 25 2 55

a More information about the fits to these data sets is provided in the Supplemen-
tary Data.

or LN3), with the remainder preferring the Dirichlet (Table 4) (LN2
and LN3 are grouped in this table because the difference in their
AICs was usually small). The preference for the logistic-normal was
strongest for the length data (28/28), less strong for the unsexed
age data (25/39), and unclear for the sexed age data (2/5). When
all the sexed data were converted to unsexed, preference for the
logistic-normal increased from 4/7 to 6/7. When the preference for
the logistic-normal was  quantified as a difference of AICs it was
typically much stronger for the length than for the age data (Fig. 1).
This was perhaps because correlations were usually stronger in the
length data than in the age data (Fig. 2), which is reflected in esti-
mates of the correlation parameter ϕ (for fits to LN2), which were
typically higher for the length data (median 0.81) than the age
data (median 0.49). As mentioned above, changing their robusti-
fying constants strongly affected fits to four data sets. When these
constants were changed back to the original values the range of AIC
differences for the four data sets changed from +22 to +1952 (i.e.,
all favouring the logistic-normal) to −3123 to −692 (all strongly
favouring the Dirichlet). The effect can also be seen in the LN3
estimates of �, which increased from a range of 1.1–1.9 to 3.4–4.8.

One hypothesis to explain why some age data sets preferred the
Dirichlet is that the correlations in these data sets could be small
enough to have little effect. To investigate this hypothesis we  need
a measure of the overall effect of the correlations in a data set. One
such measure is the ratio Nindiv/NPenn, where Nindiv is an estimate
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Fig. 1. Strength of the preference of each length or age data set for the
logistic-normal likelihood. The preference is represented by a difference of AICs:
[AICDirichlet − min(AICLN1, AICLN2, AICLN3)].
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Fig. 2. Mean lag-1 and lag-2 residual correlations for each unsexed data set. Each
plotted point represents a single data set, with the plotting symbol identifying data
type (length or age) and preference (logistic-normal (LN) or Dirichlet). The mean
lag-k  residual correlation was calculated as meanb[Cory(Oby − Eby , Ob + k,y − Eb + k,y)].

of the effective sample size based on individual residuals (i.e.,
Oby − Eby), as opposed to the mean age or length residuals which
are used to calculate NPenn. A large value of this ratio would suggest
that the correlations have a strong effect, whereas a value near
1 would indicate that the effect is small. If the hypothesis were
correct then this ratio would typically be higher in age data sets
preferring the logistic-normal, and lower in those preferring the
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Fig. 3. The ratio Nindiv/NPenn (a measure of the overall strength of correlations)
plotted against NPenn for each unsexed data set. Each plotted point represents a
single data set, with the plotting symbol identifying data type (length or age)
and preference (logistic-normal (LN) or Dirichlet). One extreme outlier (NPenn = 2.4,
Nindiv/NPenn = 0.026) was omitted to improve plotting clarity.
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Fig. 4. Comparison of the actual residual correlations (top panels) in four data sets with those predicted by the LN3 (middle panels) or Dirichlet (bottom panels) distributions
fitted  to them. The correlation between bin numbers b and c was  calculated as the correlation across years of (Oby − Eby) with (Ocy − Ecy). Bubble areas are proportional to the
absolute correlations (empty bubbles for positive, filled bubbles for negative). In each panel, bubble sizes are adjusted so that side-by-side bubbles with correlation 1 would
just  touch. The four data sets were chosen as examples of two where the LN3 replicated the actual correlations reasonably well (HERsg2 and HOKcr4, left panels), and two
where  it didn’t (HERhg2 and HOKwc4, right panels).

Dirichlet. Several ways of calculating Nindiv have been proposed.
Of three listed by Francis (2011) (methods TA1.1, TA1.2, and TA1.3
in his Table A1), I used the last. The ratio was typically higher for
the length data (as expected), but it didn’t clearly separate the age
data sets that preferred the Dirichlet from those that preferred
the logistic-normal, and so did not support the hypothesis (Fig. 3).
(The same was true when the plot was repeated using methods
TA1.1 or TA1.2 instead of TA1.3).

4.1. How well are correlations replicated?

It is of interest to ask how well the actual correlations in the data
were reproduced by the fitted distributions. A visual evaluation of
plots comparing actual and predicted correlations showed that the
logistic-normal sometimes performed well, and sometimes less so,
whereas the Dirichlet performance was usually poor, because of its
inability to produce positive correlations (Fig. 4) (the predicted cor-
relations for LN3 were estimated from the simulated data because
there is no closed form equation for these correlations; the same
procedure was used for the Dirichlet for reasons of comparability).
The logistic-normal was preferred for three of the four data sets in
Fig. 4: all but HERsg2.

Of course we  should not expect to get a perfect match between
actual and predicted correlations in Fig. 4 because the expected
proportions (Eby) are not those that would be produced had the

likelihoods been fitted within the stock assessment model. Also,
the plotted ‘actual’ correlations are only approximate because the
sizes of the samples from which they were calculated (the number
of years in each data set) are quite small (41 for the HER data; 21
and 24 for the HOK data). For example, with uncorrelated normal
data the standard error in correlations estimated from samples is
about 0.16 for n = 41, and 0.22 for n = 21. Further, it is very likely
that the true correlations will vary from year to year. This certainly
seems to be the case for the observation-error correlations from
the HOKcr4 data set (Fig. 5).

I  looked more closely at the comparison between actual and
predicted correlations for the 12 herring data sets that came from
assessments using the LN1 likelihood. Concentrating on the four
data sets that most strongly preferred the Dirichlet likelihood, I
found that the consistency between predicted and actual correla-
tions was  usually greater, and never less, for the LN3 than for the
Dirichlet (Fig. 6).

4.2. The problem of sex

Sex is a substantial complication when seeking an appropri-
ate correlation structure for a composition likelihood. The simple
autoregressive correlation structure used in the LN2 and LN3 like-
lihoods is not adequate for sexed data because it depends on bin
numbers, and so is affected by the order of the bins. For an unsexed
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Fig. 5. Observation-error correlations (estimated by bootstrap resampling [n = 300] of the raw data) for selected years from the HOKcr4 data set (from a series of surveys).
Bubble plotting conventions as in Fig. 4.

composition this produces the same correlation structure whether
the bins are ordered by increasing or decreasing age (or length).
However, different plausible ordering of the bins for sexed data
produce different correlation structures. For the sexed data sets in
this study the bins were ordered by sex (males then females or,
for the rock lobster data, males, immature females, then mature
females), and within sex by increasing age or length. Changing the
order of the sexes changes the autoregressive correlation structure,
as does deciding to order first by length or age, and within that by
sex. Also, the order used in this study leads to an asymmetry: for
example, the correlation between male 3-year olds and female 5-
year olds differs from that between male 5-year olds and female
3-year olds.

The difficulty of finding an appropriate correlation structure for
sexed data is underlined by the fact that some exploratory plots
found striking heterogeneity amongst our very small sample of
five sexed age data sets. For example, looking at between-sex cor-
relations, those for lag-0 and lag-1 were very different for three
data sets (those for species HOK), but similar for the others (Fig. 7).

Another plot was intended to explore the possibility that correla-
tions might depend only on the difference in ages. This would mean
that within- and between-sex correlations for the same pair of ages
would be similar, which seemed to be true for two  of the data sets
(HOKcr3 and HOKwc3), but not the other three (Fig. 8).

There are other difficulties. The correlations we are interested
in (e.g., Figs. 7 and 8) are of the observations O (or, strictly speaking,
of the residuals, O − E), but the autoregressive correlations speci-
fied for LN2 or LN3 apply to the multivariate normal X, which is
logistically transformed to O. Another difficulty is that correlation
structures that appear conceptually appealing may  not always be
statistically valid. Consider, for example, the structure mentioned
in the previous paragraph, which we  might implement by set-
ting the correlation (for X) between bins for ages a and b equal to
AC2(|a − b| + 1), independent of the sex associated with these bins
(we need the ‘+1’ here to allow for between-sex correlations when
a = b). It turns out that there are pairs of parameters ϕ1, ϕ2, which
are valid for an AR(2) process but which produce a matrix of cor-
relations which is not statistically valid (i.e., not positive definite).
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Fig. 6. Actual correlations (x-axis) plotted against those predicted from fitted distributions (y-axis) using the LN3 (upper panels) or Dirichlet (lower panels) distributions for
the  four of the 12 herring data sets (which came from an assessment using the LN1 likelihood) which most strongly preferred the Dirichlet.
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Fig. 7. Between-sex residual correlations plotted against lag (difference in ages) for the five sexed age composition data sets. For each plotted point the y-value is the
correlation between the proportions of males at some age a and the proportions of females at some age b and the x-value is |a − b|. The data sets are from the sexed model of
the  hoki assessment presented in Table 1 and the 2011 New Zealand assessment of Chatham Rise ling (Genypterus blacodes) (tr = trawl fishery, srv = trawl survey).

Further, whether a particular pair of parameter values will produce
a valid correlation matrix depends on the number of age (or length)
bins.

4.3. Two types of bias

The logistic-normal differs from the Dirichlet (and multinomial)
in an important way that seems, at least at first, a great disad-
vantage. For the Dirichlet with parameters (E, ˛0), the statistical
expectation of an observation in bin b is Eb, but this is not true for

a logistic-normal with parameters (E, �) (although it is approxi-
mately true for small �, as Schnute and Haigh (2007) noted). Since
there is no closed form equation for the expected values from a
logistic-normal (Aitchison, 2003) I used the simulated data to illus-
trate how big a problem this property of the logistic-normal might
be. For this I chose four unsexed data sets whose estimated val-
ues of � (for LN1) covered a wide range: two  age data sets with
lower values – HERprd3 (� = 0.43) and GMCaind1 (0.67) – and two
length data sets with higher values – PAUcs (0.81) and SKJ5 (1.03).
The ratios, meani(Sbyi)/Eby, were taken as estimates of the degree of
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Fig. 8. Comparison, for the five sexed age composition data sets of Fig. 7, of within- and between-sex residual correlations for the same pair of ages. For each ordered pair
of  distinct ages, a and b, two  points are plotted: CMa, Mb (x-axis) against CMa , Fb (y-axis) (plotting symbol ‘m’); and CFa, Fb (x-axis) against CFa, Mb (y-axis) (plotting symbol ‘f’),
where  CXa,Yb denotes the correlation between the residuals of proportions at sex X and age a and those at sex Y and age b.
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Fig. 9. Bias, estimated from simulated data based on four data sets (HERprd3, GMCaind1, PAUcs, and SKJ5), associated with the parameter Eby for Dirichlet (upper panels)
and  LN1 (lower panels) likelihoods. The y-axis represents meani(Sbyi)/Eby , so an even scatter of points about the horizontal y = 1 line indicates no bias. The four data sets are
ordered by increasing � (as estimated in the fit to the LN1 likelihood) – see values above plot.

bias associated with the expected value (values close to 1 indicate
little bias), and these ratios were calculated from the simulated data
sets associated with both the LN1 and Dirichlet distributions. Plots
of the ratios against Eby show no bias for the Dirichlet (note that
the points are scattered evenly about the y = 1 line), but a bias for
the LN1 distribution which was greater in the data sets with higher
� (Fig. 9). For LN1, simulated values tended to be higher than Eby
when Eby was small, and lower when it was large.

Aitchison (2003) maintained that this bias in the logistic-normal
is of no concern. He suggested that, because composition data are
only relative (having to sum to 1), what is important is their ratios
(Ob/Oc), rather than their actual values (Ob). This makes sense in
a stock assessment context. In terms of the quantities we wish to
estimate from compositions (mainly mortality rates, relative year-
class strengths, and selectivity) we can learn very little by simply
observing the catch proportion at age 5, say, in each year (i.e.,
O5y), whereas the ratios O5y/O6y are much more informative about
these quantities of interest. Moreover, because ratios of composi-
tion proportions typically cover a very wide range of values (several
orders of magnitude would be common for fishery compositions)

Aitchison suggested it is sensible to consider them in log space.
In this domain, the logistic-normal is unbiased (i.e., the statisti-
cal expectation of log(Ob/Oc) is equal to log(Eb/Ec), as proved by
Aitchison), but the Dirichlet is biased. To demonstrate this I calcu-
lated, from the same simulated data as used for Fig. 9, the difference
meani[log(Sbyi/Scyi)] − log(Eby/Ecy) as a measure of bias. For the LN1
data this measure was  scattered evenly around 0, indicating no bias,
whereas for the Dirichlet it showed a strong increasing trend as the
ratio Eby/Ecy increased (Fig. 10).

To understand how these biases might affect output from an
assessment we need to remember that, compared to this simula-
tion experiment, the order of things is reversed in an assessment.
Here, we start with known values of Eby and generate simulated
observations; in an assessment we  start with known observations
and estimate the Eby. What the present results suggest for stock
assessments is that, for the logistic-normal, the estimated Eby will
tend to be more extreme than the observations, Oby (e.g., values
of b and y for which Oby is small will tend to have estimates, Eby,
that are even smaller). This will not be true for the Dirichlet, but
for this distribution the estimated ratios Eby/Ecy will tend to be less

Fig. 10. Bias, estimated from simulated data based on four data sets (HERprd3, GMCaind1, PAUcs, and SKJ5), associated with log(Eby/Ecy) for Dirichlet (upper panels) and LN1
(lower  panels) likelihoods. The y-axis represents meani[log(Sbyi/Scyi)] − log(Eby/Ecy), so an even scatter of points about the horizontal y = 0 line indicates no bias. The four data
sets  are ordered by increasing � (as estimated in the fit to the LN1 likelihood) – see values above plot.
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extreme than the corresponding observed ratios, Oby/Ocy, so the
range of estimated year-class strengths will tend to be narrower
than is consistent with the observation (but this will not be true for
the logistic-normal). Thus, in choosing between these two likeli-
hoods we need to decide which is the more important type of bias.
Aitchison (2003) argued that the latter bias matters more, so the
logistic-normal is preferable (at least with regard to bias). Of course,
things are not quite as clear cut at these results might suggest. Our
conclusion that the logistic-normal likelihood will not produce bias
in log(Eby/Ecy) (and that the Dirichlet will not produce bias in Eby)
is conditional on the composition error distribution being exactly
as assumed by the likelihood.

5. Conclusions/Discussion

I hope I have shown that there is a need to replace the multi-
nomial as the likelihood of choice for composition data in stock
assessment models. Though it has the advantage of simplicity, it is
simply wrong for the task at hand. When used in a stock assessment
model it is improper (because it is a discrete likelihood being used
for continuous data), and thus can’t be self-weighting, and it fails to
mimic  the correlations common in composition data. Use of clearly
inappropriate likelihoods compromises statistical inferences from
the assessment model (e.g., confidence intervals, or AIC for model
selection). Two common alternatives to the multinomial – the mul-
tivariate normal and lognormal – are not much better. They could
possibly be made to produce appropriate correlation structures, but
because they ignore the defining property of compositions (that
they are sets of non-negative numbers summing to 1), they are
also improper, and to use them for these data is like using a chisel
to drive a screw. This is something we should do only when there
is no more appropriate tool available. Aitchison (2003), who  com-
plained about the misuse of standard statistical techniques with
composition data, has provided a tool – the logistic-normal – that
shows great potential for this task, at least for unsexed composi-
tions. It is designed specifically for continuous composition data
(unlike the other likelihoods just mentioned), and so is proper
and self-weighting, and seems to be able to produce appropriate
correlation structures with few parameters (at least for unsexed
data).

The only other likelihood in Table 2 that offers any promise is
the Dirichlet. Like the logistic-normal, it was designed for compo-
sition data, so it is proper and self-weighting. Its great weakness
is its inflexibility with regard to correlations. It may  find a use for
composition data sets where correlations are small, but it would
be much more useful if it could be generalized so as to incorpo-
rate additional parameters which allowed substantial correlations.
Unfortunately such generalizations do not yet seem to be available
(see chapter 13 of Aitchison, 2003).

The analyses presented above are only the first step in evaluat-
ing the logistic-normal for use in stock assessments. Their power is
that they were applied to a wide range of length and age composi-
tion data from many assessments and computer programs. Thus we
might expect that conclusions from these analyses would be appli-
cable to most assessments and data sets. However, their weakness
is that they were applied after the assessments, rather than as a
part of them. The fits we obtained, estimating only the weighting
parameters, may  be very different from those that would have been
obtained had we done the fitting within the various assessment
models (but that, of course, would have been a very substantial task,
involving redoing 28 stock assessments in nine different computer
programs).

The next step will be to code the logistic-normal likelihood into
stock assessment programs and see how it performs. In the hope
of encouraging other researchers to join me  in this task I close by

discussing some of the technical matters associated with it (with
more details in the Appendix).

5.1. Using the logistic-normal in stock assessments

There are three matters that need to be addressed to enable a
thorough evaluation of the logistic-normal as a composition like-
lihood in stock assessments models: zeroes, robustification, and
sexed data.

There are many ways of dealing with zeroes in composition data,
but perhaps the simplest would be a judicious mixture of tail com-
pression (see Section 4) and replacement by a small number, ε (after
which, each composition should be normalized to sum to 1). If we
think of some zeroes as arising by happenstance (i.e., these obser-
vations could, by chance, have been non-zero), and others as being
definitive (i.e., they would never be non-zero), then our aim would
be to remove definitive zeroes by tail compression, and replace hap-
penstance zeroes by ε. Both these techniques (or something similar)
are already commonly used (as a form of robustification) with the
multinomial likelihood. The tail compression can (and probably
should) be done independently for each year in the data set (this
was not done above so as to allow simpler examination of corre-
lation structures). It doesn’t seem sensible to replace more than a
small percentage (perhaps 5% or less) of zeroes by ε (this percentage
exceeded 50% in several data sets considered for, but excluded from,
the above analyses). A reasonable choice for ε would be something a
bit smaller than the smallest remaining non-zero proportion; when
zeroes arise from rounding, then it would seem sensible to set ε to
the maximum rounding error (e.g., when rounding proportions to
three decimal places set ε = 0.0005). Another method of removing
zeroes is to amalgamate bins with zero proportions with adjacent
bins. This seems reasonable when the zero bins are randomly scat-
tered through the composition data, but could be problematical
when these zeroes are associated with one or more exceptionally
weak year classes (Martell, 2011).

The choice of a value for the above small number, ε, is sometimes
rather subjective and so it is often advisable to test how robust an
assessment is to changes in this value. Aitchison (2003) suggested
a more objective approach for the situation in which the zeroes
may  be thought of arising from rounding: replace each zero by
ε = ı(n0 + 1)(B − n0)/B2 and subtract ın0(n0 + 1)/B2 from each non-
zero value, where n0 is the number of zeroes in the composition
and ı is the maximum rounding error (e.g., 0.0005 if proportions are
rounded to three decimal places). The logic behind this is that if we
think of each composition as a point in B-dimensional space, then
rounding generates a region of uncertainty about that point, and
Aitchison’s procedure replaces each zero-containing composition
with the point at the geometric centre of its region of uncertainty.
Note that with this procedure ε will not generally be the same
for each composition in a data set (because n0 will usually vary
between compositions).

Rather than removing zeroes, we could adjust the likelihood
to allow them. Aitchison (2003) suggested assuming that O + � is
logistic-normal, where � is a small number which may  be fixed or
estimated [this is analogous to a common method of allowing for
zeroes in a univariate lognormal distribution (Aitchison and Brown,
1957)]. With this assumption it would be sensible to similarly
adjust the role of the parameter E [i.e., assume that the multivariate
normal X, for which O + � = exp(X)/�bexp(Xb), has mean log(E + �)].
More complicated adjustments are possible. For example we  could
assume that each Ob has independent probability f(Eb) of being
zero (where f is some simple increasing function whose parameters
could be estimated) and the distribution of the non-zero part of O
is logistic-normal. Though such models may  sometimes be called
for I suspect that zeroes in compositions are usually more sensibly



Author's personal copy

R.I.C.C. Francis / Fisheries Research 151 (2014) 70– 84 81

treated as a nuisance to be obviated, rather than a phenomenon to
be modelled.

There are two factors which together make it important to
robustify composition likelihoods. First, composition data include
many more individual data points than do abundance data (the
other common data type in stock assessments). This means that
the signal in the latter data can easily be swamped by that in the
former. Second, the real world is much more heterogeneous than
the simplistic world of our stock assessment models. This means
that it is common to find, amongst the large number of individ-
ual composition data points, a few that are strong outliers (i.e.,
they appear highly improbable compared to the majority of data
points), as noted by Fournier et al. (1990). Thus there is a need
to modify composition likelihoods to make them robust to these
outliers (i.e., to reduce the influence of these outliers on the fit of
the model to other data). (Such modification may  make the like-
lihood theoretically improper, and thus (probably slightly) bias
estimates of weighting parameters, but this disadvantage will usu-
ally be strongly outweighed by the gain from reducing sensitivity to
outliers.) How we should modify a likelihood to make it more robust
depends strongly on its mathematical form. I avoided such modifi-
cations in the above evaluation of the logistic-normal and Dirichlet
likelihoods because it was not possible to do this in a balanced
way (i.e., to achieve the same level of robustification in both likeli-
hoods). How best to robustify the logistic-normal remains an open
question. It might seem straightforward to adapt the approach of
Fournier et al. (1998), but my  attempt to do this was not successful
(see Appendix).

Perhaps the biggest challenge for the logistic-normal is to deal
with sexed compositions. Note that this challenge is not restricted
to the logistic-normal; it applies to any likelihood as soon as we
try to introduce realistic correlations. Two approaches are pos-
sible. The first is to find a two-dimensional way of introducing
correlations (as opposed to the simple one-dimensional autore-
gressive approach used above). As noted above, the sexed data
sets considered in this study were too few to suggest an obvious
solution. A second approach would be to separate sexed compo-
sitions into two data sets – one for the age or length structure,
and the other for the sex structure – and to provide a likeli-
hood for each. This requires the assumption that the sampling
error for the two data sets be statistically independent, which is
probably untrue, but may  be an acceptable approximation to the
truth.

Finally, researchers are urged to take advantage of the flexi-
bility of the logistic-normal. If the forms given above (LN1, LN2,
LN3) are inadequate for your data, then consider devising new
forms (see, e.g., LN3m in the Appendix). In all forms of the
logistic-normal considered above, all components of the multi-
variate normal vector X have the same standard deviation, �, but
this assumption might usefully be relaxed for some data sets (e.g.,
by making � a linear function of bin number). I have assumed
that between-year weighting is defined very simply by setting

�y = �
[
meany′

(
Ny′

)
/Ny

]0.5
, but other approaches are possible

(e.g., �y =
[
�2

1

(
meany′

(
Ny′

)
/Ny

)
+ �2

2

]0.5
, where �1 and �2 are

estimable parameters relating to observation and process error,
respectively). Should it be considered desirable to investigate the
effect of down-weighting logistic-normal composition data (e.g.,
to see whether this might allow better fits to abundance data,
following Francis, 2011) this can be achieved simply by multi-
plying � (or �1 and �2 for the extension just discussed) by 2
(or some other number greater than 1). Note, however, that the
weight assigned to a LN2 or LN3 data set depends on both �
and the other weighting parameter(s) (so, e.g., two LN2 likeli-
hoods with (� = 0.5, ϕ = 0.8) and (� = 0.5, ϕ = 0.9) imply different data
weights).
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Appendix A. Technical details of the logistic-normal
distribution

In this appendix I provide some technical details that may
be useful in implementing the logistic-normal likelihood in stock
assessment programs.

In addition to the notation defined above I will denote the arith-
metic and geometric means of a vector X by X̄ and X̃ , respectively
(so X̄ =

(
1/B

)
˙bXb and X̃ = [˘bXb]

1/B). The symbols �b and ˘b
denote sums and products over the range b = 1,. . .,B; whereas ˙−

b
and ˘−

b
are for the range b = 1, . . .,(B − 1). IB is the B × B identity

matrix, and JB is the B × B matrix with all entries 1.

A.1. Three characterizations of the logistic-normal

There are three related ways to approach the logistic-normal. In
the approach used by Schnute and Haigh (2007), but generalised
to allow for correlations, a composition O has a logistic-normal
distribution with parameters (E, C), if

Ob = exp (Xb)∑
b′exp (Xb′)

for b = 1, ..., B (A1)

where X is multivariate normal with mean log(E) and covariance
matrix C. Note that O, E, and X are all vectors of length B and C is a
B × B matrix (in the simple form used by Schnute and Haigh [which
I have called LN1], C = �2IB).

Aitchison (2003) used a different approach: starting with a
multivariate normal vector Y of length (B − 1) with mean � and
covariance matrix V, he defined

Ob =
{

exp (Yb)/
[
1 +

∑−
b′ exp (Yb′ )

]
for b = 1, ..., B–1

1 − ∑−
b′Ob′ for b = B

(A2)

We can derive Eq. (A2) from Eq. (A1) by setting Yb = Xb − XB for
b = 1,. . .,B − 1, and then replacing Xb in Eq. (A1) by Yb + XB (note that
the term exp(XB) cancels from numerator and denominator). We
can also express � and V in terms of E and C: �b = log(Eb/EB) and

V = K C KT (A3)

where K is the (B − 1) × B matrix formed by adding a vector of −1s
to the right side of IB − 1, and T denotes the matrix transpose.

An advantage of Eq. (A2) is that it is a one-to-one transformation,
unlike Eq. (A1), and so has an inverse transformation

Yb = log
(
Ob
OB

)
(A4)

The third way to characterise our logistic-normal composition
O uses the multivariate normal vector Z, which is of length B and
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defined by Z = X − X̄ . If we replace Xb in Eq. (A1) by Zb + X̄ we  find

Ob = exp (Zb)∑
b′exp (Zb′ )

for b = 1, ..., B (A5)

By taking the product over b on both sides of Eq. (A5) we  can
show that Õ = 1/

∑
b′ exp (Zb′ ) (using the fact that �bZb = 1), and

substituting this back into Eq. (A5) and solving for Zb produces the
inverse transformation

Zb = log
(
Ob
Õ

)
(A6)

Z has mean log(E/Ẽ), and Aitchison (2003) has shown that its
covariance matrix � may  be calculated as

� = FTH−1VH−1F (A7)

where F is the (B − 1) × B matrix formed by adding a vector of 1s to
the right side of IB − 1, and H = IB − 1 + JB − 1.

The three characterizations of the logistic-normal (using X, Y,
and Z) are useful in different settings. For stock assessments, the
Schnute and Haigh (2007) approach (using X) is convenient for
its parameterisation (because we want the distribution of our
B-dimensional composition, O, to have amongst its parameters
the B-dimensional vector E of expected values, rather than the
(B − 1)-dimensional �). However, it is convenient to use Y for the
likelihood, and Z for standardised residuals.

A.2. The likelihood

The logistic-normal negative log-likelihood may  be written as

NLL = 0.5 (B − 1) log (2	)+
∑

b
log (Ob) + 0.5log

∣∣V∣∣ + 0.5wTV−1w

(A8)

where the vector w,  of length (B − 1), is defined by
wb = Yb − �b = log(Ob/OB) − log(Eb/EB). This form of the likeli-
hood is taken from equation (C.6) of Schnute and Haigh (2007),
who went on to show that, for the simple case of the LN1 distri-
bution, |V| = B�2(B − 1) and V−1 = �−2[IB − 1 − (1/B)JB − 1] (see their
equations (C.10) and (C.11)).

So far we have considered only a single composition (i.e., one
year’s data). In fitting the distributions LN1–LN3 to multi-year data
we allowed � to depend on year, defining �y = �Wy, where Wy =[
meany′

(
Ny′

)
/Ny

]0.5
, but made the other weighting parameters

(ϕ for LN2; ϕ1 and ϕ2 for LN3) independent of year. For the more
general logistic-normal distribution, in which C can be any valid
covariance matrix, this is equivalent to defining Cy = W2

y C, which
means that Vy = W2

yV. With this assumption it is straightforward to
show that the negative log-likelihood for a multi-year composition
data set becomes

NLL = 0.5Y (B − 1) log (2	) +
∑

bylog
(
Oby

)
+ 0.5Y log

∣∣V∣∣+

(B − 1)
∑

ylog
(
Wy

)
+ 0.5

∑
y

(wT
yV-1wy)

W2
y

(A9)

where the vector wy, of length (B − 1), is defined by
wby = Yby − �by = log(Oby/OBy) − log(Eby/EBy). To evaluate this
likelihood for any of LN1, LN2, or LN3, we first construct the
covariance matrix C from the weighting parameters, calculate V
from C using equation Eq. (A3), and then calculate |V| and V−1.

In special cases, like LN1–LN3, where we can write C = �2Č,

where Č is the correlation matrix defined by the other weighting
parameters (ϕ for LN2; ϕ1 and ϕ2 for LN3), it may  be useful to

rewrite Eq. (A9) as

NLL = 0.5Y (B − 1) log (2	) + ∑
bylog

(
Oby

)
+ (B − 1)Y log (�) +

0.5Y log
∣∣V̌∣∣ + (B − 1)

∑
ylog

(
Wy

)
+ 0.5�−2

∑
y

(
wT
y V̌

−1
wy

)
W2
y

(A10)

where V̌= KČKT, because this allows us to treat � as a nuisance
parameter in the stock assessment (as catchability parameters
often are) which can be estimated directly (given values for all
other parameters) as

�̂ =

⎡⎢⎢⎣
∑

y

(
wT
y V̌

−1
wy

)
/W2

y

(B − 1)Y

⎤⎥⎥⎦
0.5

(A11)

So far I have assumed that all compositions have the same num-
ber of bins (B), which may  not be the case if tail compression to
suppress zeroes is applied separately by year. For that eventuality,
we need to add a subscript y to B and the various matrices, and
change Eqs. (A10) and (A11) to

NLL = 0.5log (2	)
∑

y

(
By − 1

)
+
∑

by
log

(
Oby

)
+ log (�)

∑
y

(
By − 1

)
+

0.5
∑

y
log

∣∣∣V̌y

∣∣∣ +
∑

y
(By − 1) log(Wy) + 0.5�−2

∑
y
wTy V̌

−1

y wy/W2
y

(A12)

and

�̂ =

⎡⎣∑
ywT

y V̌
−1

y wy/W2
y∑

y

(
By − 1

)
⎤⎦0.5

(A13)

A.3. Standardised residuals

A useful diagnostic in evaluating the fit of any likelihood to a
composition data set is to plot standardised residuals (i.e., residuals
which will have mean 0 and standard deviation 1 if the likelihood
correctly describes the error structure of the data). Since wy is nor-
mally distributed with mean 0 and standard deviation WyV0.5

bb
, an

obvious form for standardised residuals for a logistic-normal like-
lihood is

sby = wby

WyV0.5
bb

=
log

(
Oby/OBy

)
− log

(
Eby/EBy

)
WyV0.5

bb

(A14)

This form has two  disadvantages: it is asymmetric (all ratios
being formed with the last bin), and it does not provide a residual
for every data point (because Eq. (A14) is not defined for b = B). Both
these disadvantages are avoided if we  use a similar approach, but
based on Z rather than Y:

sby =
Zby − E

(
Zby

)
Wy
 0.5

bb

=
log

(
Oby/Õ

)
− log

(
Eby/Ẽ

)
Wy
 0.5

bb

(A15)

(both types of standardised residuals are calculated by R function
Sres.logistnorm in the Supplementary Data; the latter, which is rec-
ommended, are calculated by default; the former are calculated if
argument centred = F).

A.4. Robustifying the logistic-normal likelihood

To illustrate the difficulty of robustifying the logistic-normal I
will describe an apparently logical approach (adapted from that of
Fournier et al. (1998) for the multivariate normal) which, nonethe-
less, does not work (with it, the estimate of � always tends to its
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Highlight

cf
Sticky Note
'2' should be a superscript here



Author's personal copy

R.I.C.C. Francis / Fisheries Research 151 (2014) 70– 84 83

lower bound). With this approach we replace the last term in Eq.
(A8) by

−0.5
∑−

b
log

{
exp [−ubwb] + 0.01

}
(A16)

where u = wTV−1.
To understand how this approach is analogous to the robusti-

fication of the multivariate normal likelihood devised by Fournier
et al. (1998), we need to consider both the parallels between the
forms of the two likelihoods, and the rationale underlying the orig-
inal robustification. For a single composition, the Fournier et al.
(1998) negative log-likelihood, before robustification, may  be writ-
ten as

NLL = 0.5Blog (2	) + 0.5
∑

b
log

[
�b
N

]
+

∑
b

[
(Ob − Eb)

2

2�b/N

]
(A17)

where �b/N = Eb(1 − Eb)/N is the assumed variance of Ob (I have
changed the original notation and regrouped some terms in order
to emphasise similarities between this and the logistic-normal like-
lihood). Because the logistic-normal derives from the multivariate
normal, each term in Eq. (A17) has a corresponding term in Eq. (A8):
clearly the first terms correspond; also the second and third terms
of Eq. (A17) correspond to the third and fourth terms, respectively,
of Eq. (A8). The correspondence between the last terms in the two
equations becomes more apparent in the special case when there
are no correlations in V, in which case the last term in Eq. (A8) could
be written as

∑−
b

[
(Yb − �b)

2/ (2vb)
]
, where the vb are the diago-

nal terms in V−1 [recall that wb = (Yb − �b)]. There is no term in Eq.
(A17) corresponding to

∑
blog (Ob) (which is the Jacobian of the

transformation Eq. (A4)), but that term needn’t concern us because
it is effectively a constant (i.e., it includes no likelihood parameters).
Thus

∑
b log(�b/N) is analogous to log|V|, and wb is analogous to

(Ob − Eb).
Now, the first robustification step of Fournier et al. (1998)

was to replace �b by (�b + 0.1/B) to avoid this term becoming
very small when Eb is very small. This step is not needed with
the logistic-normal because |V| depends only on the weight-
ing parameters, and so does not change when Eb becomes very
small. The second step was to replace the third term in Eq. (A17)
by −

∑
blog

{
exp

[
−(Ob − Eb)

2/
(

2�b/N
)]

+ 0.01
}

, which ensures
that the influence of an observation Ob decreases rapidly as its
distance from Eb grows greater than three standard deviations.
The analogous modification for the logistic-normal is that given
in Eq. (A17) (note that the last term in Eq. (A8) can be written as
0.5

∑−
b ubwb). The final robustification concerned N, which does not

appear in the single-composition form of the logistic-normal likeli-
hood, but it does feature – in Wy – in the multi-year form, Eq. (A9).
Fournier et al. (1998) replaced N by min(N, 1000) (which implies
that all sample sizes greater than 1000 have the same precision).
This is a sensible change to make if N represents the number of fish
sampled because, as Pennington and Vølstad (1994) showed, effec-
tive sample sizes are much smaller than this. However, we  may  not
need this change nowadays because most researchers are already
using values of Ny that are much less than the actual sample size.
The other point to note is that the Ny in the logistic-normal deter-
mine only the relative weighting assigned to each year, whereas
the N in the likelihood of Fournier et al. (1998) helps to determine
the absolute weighting.

A.5. Parameterizing LN3

LN3 uses the correlation structure of an AR(2) process, which has
parameters ϕ1, ϕ2 and the correlation at lag k, �k, can be calculated
recursively by setting �1 = ϕ1/ϕ2 and �k = ϕ1�k − 1 + ϕ2�k − 2 (note
that �0 = 1 by definition). Since an AR(2) process is stable only if its

parameters lie within the triangle defined by −1 ≤ ϕ2 < 1 − |ϕ1|, it is
sensible to reparameterize the LN3 to stop an estimation algorithm
considering points outside that triangle. This can be done by replac-
ing the parameters (ϕ1, ϕ2) by (ϕ1,  ), where ϕ2 = −1 + (2 − |ϕ1|)  ,
and imposing bounds of (−2, 2) and (0, 1) on ϕ1 and  , respectively.
[For LN2 we need only impose bounds (−1, 1) on ϕ].

A.6. LN3m

Another promising variant of the logistic-normal, discovered
after the present paper was in review, is LN3m, which was preferred
over LN3 by 52/72 of the data sets of Table 3. This uses the correla-
tion structure of an ARMA(1,1) process (first-order autoregressive,
first-order moving average), and has three weighting parameters:
�, ϕ (for the autoregressive part), and   (for the moving aver-
age part). The correlation at lag k, �k, can be calculated using
�1 = ϕ +  /[1 + (ϕ +  )2/(1 − ϕ2)] and �k = ϕk − 1�1 (these equations,
and those above for LN3, were derived from the more general “First
Method” of calculating autocovariance functions for ARMA pro-
cesses in Section 3.3 of Brockwell and Davis, 1991). This requires
that −1 < ϕ < 1, but   is not bounded.

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.fishres.2013.
12.015.
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