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Abstract.—The Beverton–Holt length-based mortality estimator has received widespread use primarily due

to its applicability in data-limited situations. The mean length of animals that are fully vulnerable to the

sampling gear can be used to estimate total mortality from basic growth parameters and a known length at first

capture. This method requires equilibrium conditions because the mean length of a population will change

only gradually after a change in mortality. In this study, we derive the transitional behavior of the mean length

statistic for use in nonequilibrium conditions. We investigate conditions affecting the reliability of the

Beverton–Holt results and then develop a new procedure that allows a series of mortality rates to be estimated

from mean length data representing nonequilibrium conditions in multiple years. We then examine an

assessment of goosefish Lophius americanus that was criticized for its use of the Beverton–Holt estimator

under nonequilibrium conditions. Using data from the 1963–2002 National Marine Fisheries Service annual

fall groundfish surveys off the northeastern United States and assuming a single change in total mortality, we

used the maximum likelihood method to estimate that the total mortality of goosefish in the southern

assessment region increased from 0.31 to 0.60 per year in 1977. Estimates of the new mortality rate made

three or more years after the change were relatively stable and only ranged from 0.55 to 0.71 per year, while

estimates from the standard Beverton–Holt approach ranged from 0.37 to 1.1 per year. The results for

goosefish in the northern assessment region showed that total mortality changed from 0.14 to 0.29 per year in

1978 and then to 0.55 per year in 1987. The new nonequilibrium estimator allows a change in mortality to be

characterized reliably several years faster than would occur with the use of the Beverton–Holt estimator.

Baranov (1918, cited in Ricker 1975) was apparently

the first to deduce that the equilibrium mean length in

a fish population is inversely related to the mortality

rate experienced by the population. Beverton and Holt

(1956, 1957) observed the same thing for a more

realistic situation in which length is an asymptotic,

rather than linear, function of time. They also derived

an expression for estimating the total instantaneous

mortality rate (Z) from the mean length (L̄).

The Beverton–Holt mortality estimator has received

widespread use, especially in data-limited situations,

because the only required information is the von

Bertalanffy growth parameters (K and L
‘

), the so-

called length of first capture (L
c
, i.e., the smallest size

at which animals are fully vulnerable to the fishery and

to the sampling gear), and the mean length of animals

larger than L
c
.

The Beverton–Holt mortality estimator is based on

the assumption of equilibrium conditions. Hilborn and

Walters (1992:426) presented a graph that showed the

transitional behavior of a similar estimator when the

population experiences a change in total mortality to

a higher level. Essentially, if the mortality estimator is

applied continually to mean length data over time, the

resulting estimates will show a gradual increase over

time and will approach the true (new) value as the new

equilibrium condition is approached. Hilborn and

Walters (1992) used this example merely to illustrate

the pitfalls of applying analytical techniques based on

assumptions of equilibrium to situations in which the

assumption is not met. They did not present any

expression to describe the transitional behavior of the

estimator, and they obtained their results by simulation.

In this study, we derive the transitional behavior of

the mean length statistic for use in nonequilibrium

conditions. We investigate conditions affecting the

reliability of the Beverton–Holt results and then

develop a new procedure that allows a series of

mortality rates to be estimated from mean length data

representing nonequilibrium conditions from multiple

years. We then examine an assessment of northeast

U.S. goosefish Lophius americanus, which was

criticized for its use of the Beverton–Holt estimator

under nonequilibrium conditions. Data from the 1963–

2002 National Marine Fisheries Service (NMFS)

annual fall groundfish surveys off the northeastern

United States were analyzed by use of the maximum

likelihood method to estimate the years in which

changes in mortality occurred and to reconstruct the

mortality history.
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The Beverton–Holt Estimator

Assume deterministic asymptotic growth, as de-

scribed by the von Bertalanffy equation

Lt ¼ L‘ 1� exp½�Kðt � t0Þ�f g; ð1Þ

where L
t
is the length at age t and L

‘
, K, and t

0
are the

parameters. Also assume that the instantaneous total

mortality rate is constant over time and over age for all

ages greater than t
c
, where t

c
is the age at which animals

are fully vulnerable to the fishery and to the sampling

gear. Denote this mortality rate as Z per year. Further,

assume that recruitment is continuous over time at

a constant rate (R). The mean length of those animals

above the length L
c

corresponding to the age t
c

is

L ¼

Z ‘

tc

NtLtdt

Z ‘

tc

Ntdt

; ð2Þ

where L
t

is given by equation (1) and N
t
¼ R�

exp[�Z(t � t
c
)]. When the integrations in equation (2)

are performed and the results are simplified,

L ¼ L‘ 1� Z

Z þ K
exp �Kðtc � t0Þ½ �

� �
: ð3Þ

Equation (3) is easily solved for the mortality rate.

Thus,

Z ¼ KðL‘ � LÞ
L� Lc

: ð4Þ

Note that the parameter t
0

has been eliminated from the

solution through algebraic manipulation using equation

(1).

This method is based on six assumptions:

1. asymptotic growth with known parameters K and

L
‘
, which are constant over time;

2. no individual variability in growth;

3. constant and continuous recruitment over time;

4. the mortality rate is constant with age for all ages

greater than t
c
;

5. the mortality rate is constant over time; and

6. the population is in equilibrium (i.e., enough time

has passed after any change in mortality that mean

length now reflects the new mortality level).

Some of these assumptions will be considered

further in the Discussion.

Transitional Behavior

We now deal with the situation in which assumption

6 is violated. Suppose the mean length in a population

is determined d years after a permanent change in total

mortality from Z
1

to Z
2

per year. Let age g¼ t
c
þd. The

mean length in the population d years after the change

in mortality is

L ¼
Z g

tc

R � exp½�Z2ðt � tcÞ�Ltdt

�

þ
Z ‘

g

R � expð�Z2dÞ � exp½�Z1ðt � gÞ�Ltdt

�

4

Z g

tc

R � exp½�Z2ðt � tcÞ�dt

�

þ
Z ‘

g

R � expð�Z2dÞ � exp½�Z1ðt � gÞ�dt

�
:

ð5Þ

In the numerator and the denominator, the first integral

represents fish recruited after the change in mortality;

these animals have experienced just the mortality rate

Z
2
. The second integral represents fish that were

recruited before the change in mortality; these fish have

experienced both the old and the new mortality rates.

After integration and simplification (see Appendix

1), we obtain

L ¼ L‘ � Z1Z2ðL‘ � LcÞ

3

�
Z1 þ K þ ðZ2 � Z1Þexp½�ðZ2 þ KÞd�

�
4

�
ðZ1 þ KÞðZ2 þ KÞ½Z1 þ ðZ2 � Z1Þexpð�Z2dÞ�

�
:

ð6Þ

Note that when d equals 0, equation (6) provides the

equilibrium mean length for the case where Z is equal to

Z
1
, as expected. As d approaches infinity, equation (6)

provides results approaching the equilibrium mean

length when Z is equal to Z
2
, as expected. When Z

1

equals Z
2
, equation (6) gives the same result as equation

(3). In Appendix 2, we generalize equations (5) and (6)

to allow for multiple changes in mortality rate over time.

For any amount of elapsed time after a known

change in mortality, we can determine the mean length

in the population; by inserting this value into equation

(4), we can determine how the Beverton–Holt estimator

responds. We examined the effect of the von

Bertalanffy parameter K on the estimates for the case

where Z increased suddenly from 0.4 to 1.0 per year

(Figure 1). The estimates approached the new equilib-

rium value faster when K was higher. Thus, after 3

years, the estimate reflected 76% of the increase in Z

when K was equal to 0.1 per year, 83% of the increase

when K was equal to 0.5 per year, and 87% when K

was equal to 1.0 per year. Changing the value of L
‘

while holding K and L
c

constant had no effect on the

rate at which the estimator approached equilibrium.

The time required to reach equilibrium is also
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dependent on the magnitude and direction of the

change in mortality (Table 1). The time required to

reach equilibrium is greatest when fishing pressure has

been significantly reduced to near-virgin levels. In this

scenario, only growth over time can restore the original

population structure and affect the mean length. On the

other hand, the response to increases in fishing pressure

occurs more rapidly, as the removal of the larger, older

animals has an immediate effect on the mean length of

the population.

Estimation in Nonequilibrium Situations

Estimation of mortality rates in nonequilibrium

situations can be accomplished by selecting the year

of change and the values of Z
1

and Z
2

that cause

predicted mean lengths from equation (6) to best match

a time series of estimated mean lengths. We used the

method of maximum likelihood estimation. The

probability density function of a normally distributed

sample mean (x̄) for a sample size of m is

f ðx; l;r2Þ ¼
ffiffiffiffi
m
p
ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p � e�

m
2r2�ðx�lÞ2 : ð7Þ

The product likelihood function (K) for n years of

observed mean lengths results in, by substitution with

FIGURE 1.—Response of the Beverton–Holt mortality estimator to a change in the total mortality rate (Z) from 0.4 to 1.0 per

year when the von Bertalanffy growth coefficient (K) is 0.1 (dotted line), 0.5 (solid line), and 1.0 per year (dashed line) and when

L
‘

is 129.2 cm and L
c

(the smallest size at which animals are fully vulnerable to the fishery and to the sampling gear) is 30 cm.

These conditions approximate the situation for goosefish. After 3 years, the estimates approach the new value of Z if K is large.

With a low K, an additional year is necessary.

TABLE 1.—Lag time (years) for the mean length of

individuals that are fully vulnerable to the fishery and sampling

gear to approach equilibrium and provide an estimate of

mortality (Z) within 10% of the new level after a change in

mortality from Z
1

to Z
2
. In this example, growth parameters for

goosefish in the southern management region (Middle Atlantic

Bight) of the northeastern United States were used in the

calculations (K¼ 0.1198 per year, L
‘
¼ 129.2 cm, and L

c
¼ 30

cm, where K ¼ growth parameter, L
‘
¼ maximum attainable

length, and L
c
¼ minimum length at which fish are fully

vulnerable to the gear). Note that the natural mortality of

goosefish is believed to be around 0.2 per year, so the first row

and first column do not appear to be possible. The value in bold

italics (Z
1
¼0.4, Z

2
¼1.0) is the example used in Figure 1.

Z
2

Z
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 16 14 12 11 10 9 8 7 7
0.2 23 9 9 8 8 7 7 6 6
0.3 26 11 6 6 6 6 6 6 5
0.4 27 13 7 4 5 5 5 5 5
0.5 28 14 8 4 3 4 4 4 4
0.6 28 15 9 6 3 2 3 4 4
0.7 29 15 10 7 5 2 2 3 3
0.8 29 15 10 7 5 4 2 2 2
0.9 29 16 10 8 6 4 3 2 2
1.0 29 16 10 8 6 5 4 3 2
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equation (6): l ¼ E(L̄) and r2 ¼ Var(L), which is the

variance of lengths that are greater than L
c
. Thus,

K ¼ P
n

y¼1

myffiffiffiffiffiffiffiffiffiffiffi
2pr2
p � e�

my

2r2�ðLy�Lpred;yÞ2 ; ð8Þ

where m
y

is the number of fish greater than size L
c

measured in year y, L̄
y

is the observed mean length in

year y, and L
pred,y

is the mean length computed with

equation (6) or, more generally, from equation (A.2.1).

The log likelihood is proportional to

logeðKÞ}� n � ðlogerÞ �
1

2r2

�
Xn

y¼1

my � ðLy � Lpred;yÞ2: ð9Þ

Equation (9) was maximized and confidence intervals

were generated for each variable using the PROC NLP

procedure in version 8 of the Statistical Analysis

System (SAS Institute 1999). The year in which the

mortality change occurred was specified, and Z
1
, Z

2
,

and the variance (r2) were estimated. If the year in

which a change in mortality occurs is unknown, the

model can be fitted separately for each year in which

the change is possible. The year of change that

maximizes the likelihood provides the maximum

likelihood estimates. Alternatively, the year of change

can be estimated along with the other parameters.

Application to the Assessment of Goosefish

Length frequency data from the NMFS annual fall

groundfish trawl surveys were obtained for two defined

management zones. Although this survey was not

designed specifically for the purpose of sampling

goosefish, and sample sizes are relatively low, changes

in the mean length of goosefish have been observed

over the 40-year time series. The survey is described in

detail by the Northeast Fisheries Science Center

(NEFSC 2002). In the NMFS assessment of goosefish

in the northeastern United States, estimates of mortality

from the Beverton–Holt length-based method applied

to the NMFS survey data have been used to describe

the historical pattern in fishing mortality rates (NEFSC

2002). As in the NMFS assessment, we analyzed data

from the Middle Atlantic Bight (southern management

region) and from the Gulf of Maine, southern New

England, and Georges Bank (northern management

region) separately.

Analysis of Southern Management Region Data

Consider the mean length data recorded in the

NMFS annual fall groundfish survey in the southern

FIGURE 2.—Observed mean lengths of goosefish from the 1963–2002 National Marine Fisheries Service annual groundfish

surveys in the southern management region (Middle Atlantic Bight) and predicted values from the transitional length statistic

derived in this paper.
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management region from 1963 to 2002 (Figure 2).

Records of goosefish landings began to increase in the

southern management region fishery in the late 1970s,

and the first step in our analysis was to determine

whether the data reflected a change in Z. The model

was fitted repeatedly, each time specifying a different

year of the time series as the year in which the change

in mortality occurred, and the objective function values

were evaluated (Figure 3). The objective function was

maximized by specifying the year of change to be

1977, which is consistent with the landings data

presented in the 34th Stock Assessment Workshop

(NEFSC 2002). Mortality was estimated to have

changed from 0.31 to 0.60 per year in 1977. We also

estimated the year of change directly in the maximi-

zation procedure. The parameter estimates were very

similar to those obtained by fixing the year of change

(Table 2). The slight discrepancy is explained by the

year of change being a continuous variable in the

simultaneous estimation scheme and a discrete variable

in the grid search (the estimates were 1977.2 years and

1977, respectively, for the year of change). In Table 2,

it is seen that Z
1

was estimated quite precisely, while Z
2

was less so. Estimated correlations of the parameter

estimates were highest between the two estimated

mortality rates and the year of change (0.23 and 0.38

for Z
1

and Z
2
, respectively), and all other correlations

were less than 0.04.

The predictive power of the transitional form of the

length-based estimator was then evaluated by con-

structing estimates from data as if an assessment had

been done in each year. In other words, estimates of Z
1

and Z
2

were made for each year by the use of data only

up to that year, assuming that the year of change was

FIGURE 3.—Estimated goosefish mortality rates (Z) in the southern management region (Middle Atlantic Bight) and values of
the objective function as functions of the specified year in which mortality changed from Z

1
to Z

2
. The objective function is

maximized by specifying the year of change to be 1977.

TABLE 2.—Results for goosefish from the southern management region (Middle Atlantic Bight) when the first level of fishing

mortality (Z
1
), the second level of fishing mortality, and the year of change are estimated simultaneously; CI ¼ confidence

interval.

Variable Estimate SE t-valuea 95% profile likelihood CI

SD 37.44 4.29 8.72 30.37–47.74
Z

1
0.33 0.02 17.94 0.29–0.37

Z
2

0.58 0.06 9.62 0.48–0.72
Year of change 1977.23 1.00 1973.55 1,975.26–1,979.19

aAll t-values are significant at the 0.0001 level.
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known to be 1977 (Figure 4). The estimates from the

transitional form based only on data through 1980 (3

years after the change in mortality) were near 0.7 per

year and became very stable at approximately 0.6 per

year by 1984. Estimates from the classic annual

Beverton–Holt estimator were highly variable and

ranged from 0.2 to 1.14 per year (for 1977 and 1999,

respectively).

The results from the transitional model were also

consistent with the mean values of the annual

Beverton–Holt estimator summarized over different

periods of the entire time series (Z ¼ 0.32, 0.75, and

0.65 per year for 1970–1979, 1991–1995, and 1996–

2000, respectively). Estimates from the transitional

model, however, were stable in each of the years

without the need to average over a number of years or

wait for future years to smooth the variability in the

data. Note that the stability in estimates was achieved

even though the annual groundfish survey was not

specifically designed for goosefish and despite the fact

that sample sizes were very low (the number of fish

measured in an annual survey ranged from 14 to 196),

leading to a high degree of variability in mean length

estimates. Furthermore, sample sizes prior to 1977

were generally larger than those after 1977, which

partially explains the smaller standard error for Z
1

than

for Z
2
.

Analysis of Northern Management Region Data

Data from the northern management area required

a slightly more complex analysis. The model initially

assumed a single change in mortality, and the best fit

indicated that the change occurred in 1982 (Figure 5,

top). However, an examination of the results showed

that the residuals were positive from 1986 to 1993 and

mostly negative from 1994 to 2002. This pattern in the

residuals indicated that our data did not fit the model

well and that additional changes in mortality were

likely. Thus, the model was modified to incorporate

a second change in mortality. All possible combina-

tions of first and second years of change were tried, and

a two-dimensional grid search of the change years

showed that changes most likely occurred in 1978 and

1987 (Figure 6). The data appeared to fit the model

well, and there was no discernable pattern in the

residuals (Figure 5, bottom). The model was refitted,

and the 2 years of change were estimated simulta-

neously with the mortality rates and SD (Table 3).

FIGURE 4.—Estimates of goosefish mortality rates (Z) in the southern management region (Middle Atlantic Bight) in various

years. Estimates based on a single year’s data (Beverton–Holt method) are not very stable. Estimates of Z
1

determined from mean

lengths were stable, and estimates of Z
2

were stable if data up to at least 1980 were used. The year of change was specified to be

1977 for all estimates made with this method.
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FIGURE 5.—The upper panel shows the results of estimating the mortality rate from goosefish mean length data collected in the
northern management region (the Gulf of Maine, southern New England, and Georges Bank) when a change in mortality (from Z

1
to

Z
2
) in a single year is estimated. Note the pattern in the residuals at the far right, suggesting that mortality may have changed more

than once. Dots represent observed mean lengths and the solid line represents the mean lengths predicted by the new nonequilibrium
model. The lower panel shows the results when a model with two changes in mortality (from Z

1
to Z

2
and from Z

2
to Z

3
) was fitted to

the same data.

482 GEDAMKE AND HOENIG



Parameter estimates were again extremely close to

those obtained from the grid search. Estimated

correlations of the parameter estimates were less than

0.6 in all cases, and for 11 of the 15 parameter pairs the

correlations were less than 0.2.

Model Sensitivity

To test the model’s sensitivity to input parameters,

we created a simulated data set with a known change in

mortality from 0.3 to 0.6 per year in 1977 using growth

parameters from goosefish in the southern management

FIGURE 6.—Contour plot of objective function values to determine the 2 years in which the goosefish mortality rate Z changed

in the northern management region (the Gulf of Maine, southern New England, and Georges Bank). The objective function was

maximized (indicated by the dotted line) by an initial change in 1978 and a second change in 1987.

TABLE 3.—Results for goosefish from the northern management region (Gulf of Maine, Southern New

England, and Georges Bank) when three different levels of mortality (Z
1
, Z

2
, and Z

3
) and the two years of

change are estimated simultaneously; CI¼ confidence interval.

Variable Estimate SE t-valuea 95% profile likelihood CI

SD 22.93 2.63 8.72 18.61–29.25
Z

1
0.14 ,0.01 28.46 0.13–0.15

Z
2

0.30 0.03 8.83 0.24–0.38
Z

3
0.56 0.05 10.78 0.47–0.69

Year of first change 1978.21 0.91 2,167.74 1975.96–1980.26
Years until next changeb 9.58 (1987.79) 1.33 7.19 6.37–12.85 (1984.58–1991.06)

aAll t-values are significant at the 0.0001 level.
bYear indicated in parentheses.
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region (K ¼ 0.1198 per year, L
‘
¼ 129.2 cm) and

a known L
c

of 30 cm. The model was then fitted under

the assumption that estimates of K and L
‘

were

misspecified by 10–20%. Since estimates of K and L
‘

are generally inversely correlated, we also tested

scenarios in which K and L
‘

were mis-specified in

opposite directions. Estimates of the change in

mortality were most sensitive to the mis-specification

of L
‘

and approximately half as sensitive to the mis-

specification of K (Table 4). Model results were

relatively stable when estimates of K and L
‘

were

varied inversely with estimates of Z
1

ranging from 0.23

to 0.33 per year and estimates of Z
2

ranging from 0.51

to 0.63 per year.

Discussion

Fishery managers are continually faced with the

challenge of matching methods and data sets such that

all the critical assumptions can be met. The method

presented in this paper is attractive because it requires

minimal data that are commonly available and it does

not require the assumption that catch rate is pro-

portional to abundance. It advances a frequently used

technique by removing an equilibrium assumption that

is typically difficult to meet in real-world situations.

This allows for the broader application of a mean

length analysis approach and allows the use of an entire

time series of data, resulting in increased information.

The approach may in some cases represent the best

opportunity to reconstruct the mortality history of

a stock. In addition, the transitional form of the model

allows mortality estimates to be made within a few

years of a change rather than having to wait for the

mean lengths to stabilize at their new equilibrium level.

In other words, as soon as a decline in mean lengths is

detected, our model can be applied and the trajectory of

decline can be used to estimate the new Z and

determine how mean lengths will change over time.

Estimates of multiple mortality rates and the years of

change appear to have the desirable property of having

only a low to moderate correlation.

In our goosefish example, it appears that the

population was in equilibrium at the start of our time

series. This is not a requirement of the model. A

population that is undergoing a change in mean length

at the start of a time series can also be successfully

analyzed because an initial change in mortality that

occurs prior to the start of the time series can be

estimated in the model. However, this requires the

shape of the trajectory of mean length over time to be

well defined. If this is not the case, then it may be

possible to set Z
1

equal to the natural mortality rate in

situations where observations are initiated shortly after

the start of the fishery.

The method presented here is not fully efficient

because, in theory, there is information contained in the

variability of length measurements within a year (i.e.,

the sample variance) that is not used in the estimation

of mortality rates and change points. That is, under

high mortality, there are few large fish and thus the

variance in length decreases with increasing mortality

rate. An expression for the variance of length measure-

ments as a function of the mortality and growth

parameters and the years of change could be derived

and incorporated in the likelihood function. This would

be appropriate if the sampling design consisted of

simple random sampling of lengths. However, such

a sampling scheme is uncommon, and sampling almost

always involves some form of cluster sampling (e.g.,

a boat catches clusters of animals from trawl hauls, pot

hauls, etc.). Thus, the sample variance of lengths will

not be a simple function of the population variance of

lengths.

Choice of Cutoff L
c

This method is predicated on the assumption of

knife-edge selection in the fishery at a size L
c
. Thus, all

fish smaller than L
c

experience only natural mortality,

and all fish larger than L
c

experience a total mortality

rate of Z. One can thus sample the commercial catch to

estimate the mean length of those animals above the

size L
c
. If the fishery does not have knife-edge

selection, then there is a problem. One can define L
c

to be the size of full vulnerability to the commercial

gear and compute the mean length of fish larger than

L
c
. However, this means that fish smaller than L

c
will

experience some fishing mortality, and thus changes in

fishing effort may affect the number of fish reaching

the size L
c
. As a practical matter, this will be important

TABLE 4.—Sensitivity of goosefish mortality (Z) estimates

to over- or underestimation of actual K (growth parameter)

and L
‘

(maximum attainable length). A simulated data set was

used with a known change in Z from 0.3 (Z
1
) to 0.6 (Z

2
) based

on growth parameters from the goosefish southern manage-

ment region (Middle Atlantic Bight) (K¼0.1198 pear year, L
‘

¼ 129.2 cm).

K estimate L
‘

estimate Z
1

Z
2

Actual Actual 0.30 0.60
Actual 10% low 0.25 0.52
Actual 10% high 0.35 0.68
10% high Actual 0.33 0.65
10% low Actual 0.27 0.55
10% high 10% low 0.27 0.56
10% low 10% high 0.32 0.62
Actual 20% high 0.41 0.77
Actual 20% low 0.19 0.43
20% high Actual 0.36 0.71
20% low Actual 0.24 0.49
20% low 20% high 0.33 0.63
20% high 20% low 0.23 0.51
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if selectivity increases gradually with length. However,

for steep selection curves, this may not be a problem.

Often, length composition data will be available

from research surveys. If the size of full vulnerability to

the survey gear is less than or equal to the size of full

vulnerability L
c

in the fishery, one can simply compute

the mean of those fish in the survey above the size L
c
.

In practice, length frequency data are often collected in

bins (i.e., as a histogram). The lower limit to one bin is

defined to be the cut-off L
c
. The mean length in the

sample (above the cutoff L
c
) is then computed by

treating all fish in a bin as being the size at the

midpoint of the size range that defines the bin.

We also note that with historical data sets,

sometimes only the mean length of the catch is

available and one cannot construct size-frequency

histograms. The size at first capture L
c

may only be

known approximately, and there may be some animals

below the size L
c

that are included in the mean length

statistic. If it can be assumed that the selection pattern

has remained stable over time, then the method

presented in this paper may still be used to study the

history of mortality; the results will reflect trends in

mortality over time, but estimates of absolute mortality

rate will be biased.

Assumption of Constant Recruitment

The method in this paper is based on the assumption

of constant recruitment. In reality, recruitment is likely

to vary from year to year. This will not cause a bias, but it

may lead to autocorrelated errors in a time series of

estimates. To study this, we created an extreme case in

which there was a complete failure of recruitment in 1

year and we observed the effect over time (Figure 7).

The failure of recruitment in an incoming year-class at

first raises the population mean length, thus resulting in

an underestimate of total mortality. Later, as that missing

year-class reaches an age at which there should be large

animals, the mean size of the population declines,

resulting in an overestimate of mortality rate. In practice,

complete year-class failure is rare; to the extent that

recruitment variability is random (rather than showing

a trend over time), one can expect some cancellation of

errors arising from variable recruitment. Thus, re-

cruitment variability should not negate the use of this

method, although the reader would be well advised to

consider the possibility of a trend in mean length arising

from a particularly large or small year-class.

Generalizing the Approach

It may be that observations are available for mean

weight but not mean length. This can be accommodat-

ed by deriving an expression for mean weight by

replacing L
t

in the derivations with the age-specific

weight W
t
, that is,

Wt ¼ aLb
t ; ð10Þ

where a and b are constants defining the shape of the

power function. When the exponent b is exactly 3, an

analytical solution can be obtained for the mean

weight. Otherwise, the mean weights can be calculated

by numerical methods.

In some circumstances, it may be preferable to

model reproduction as occurring in an annual pulse

rather than continuously over the course of the year.

FIGURE 7.—Response of the Beverton–Holt length-based mortality (Z) estimator to a violation of the assumption of constant

recruitment in goosefish. A complete reproductive failure under two different levels of fishing mortality is simulated in year 3.

Life history parameters for goosefish in the southern management region (Middle Atlantic Bight) were used for this example.
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This can be accomplished by replacing the integrals in

the derivations with sums over the discrete age-classes.

A more difficult assumption to deal with is that

recruitment is constant over the time series being

analyzed. If recruitment varies directly with the stock

size, then the model in its current form will un-

derestimate the magnitude of any change in mortality.
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International pour l’Exploration de la Mer 140:67–83.

Beverton, R. J. H., and S. J. Holt. 1957. On the dynamics of

exploited fish populations. Fishery Investigations Series

II, Marine Fisheries, Great Britain Ministry of Agricul-

ture, Fisheries and Food 19.

Hilborn, R., and C. J. Walters. 1992. Quantitative fisheries

stock assessment: choice, dynamics, and uncertainty.

Chapman and Hall, New York.

NEFSC (Northeast Fisheries Science Center). 2002. Report of

the 34th Northeast Regional Stock Assessment Work-

shop (34th SAW): Stock Assessment Review Committee

(SARC) consensus summary of assessments. National

Marine Fisheries Service, Reference Document 02-06,

Woods Hole, Massachusetts.

Ricker, W. E. 1975. Computation and interpretation of

biological statistics of fish populations. Fisheries Re-

search Board of Canada Bulletin 191.

SAS Institute. 1999. SAS/STAT user’s guide, version 8. SAS

Institute, Cary, North Carolina.

Appendix 1: Derivation of the Mean Length d Years after a Change in the Mortality Rate

As indicated in the main text, the mean length in the

population d years after a change in mortality is

L ¼
Z g

tc

R � exp½�Z2ðt � tcÞ�Ltdt

�

þ
Z ‘

g

R � expð�Z2dÞ � exp½�Z1ðt � gÞ�Ltdt

�

4

Z g

tc

R � exp½�Z2ðt � tcÞ�dt

�

þ
Z ‘

g

R � expð�Z2dÞ � exp½�Z1ðt � gÞ�dt

�
;

ðA:1:1Þ

where the notation is as defined in the main text. The

denominator (DEN) is

DEN ¼ 1� expð�Z2dÞ
Z2

þ expð�Z2dÞ
Z1

¼ Z1 þ ðZ2 � Z1Þexpð�Z2dÞ
Z1Z2

: ðA:1:2Þ

The numerator (NUM) is

NUM

¼ L‘

�
1� expð�Z2dÞ

Z2

� exp½�Kðtc � t0Þ� � exp½�Z2d � Kðg� t0Þ�
Z2 þ K

þ expð�Z2dÞ
Z1

� exp½�Z2d � Kðg� t0Þ�
Z1 þ K

�
:

(A.1.3)

We would like to get rid of t
0

in the numerator. Solving

the von Bertalanffy growth equation for t
0
, we obtain

t0 ¼ tc þ
logeð1� Lc=L‘Þ

K
: ðA:1:4Þ

Substituting this into NUM and simplifying gives

NUM ¼ L‘½1� expð�Z2dÞ�
Z2

� L‘ � Lc

Z2 þ K

þ ðL‘ � LgÞexpð�Z2dÞ
Z2 þ K

þ L‘expð�Z2dÞ
Z1

� ðL‘ � LgÞexpð�Z2dÞ
Z1 þ K

;

ðA:1:5Þ

where L
g

is defined to be the length at age g (¼ t
c
þ d).

Now the only problem is that we have the parameter

L
g
, which we would prefer to express as a function of

L
c
. The difference between L

g
and L

c
is

Lg � Lc ¼ L‘b � expð�KtcÞ � L‘b � expð�KgÞ;
ðA:1:6Þ

where b¼ exp(Kt
0
). Solving for L

g
and simplifying, we

obtain
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Lg ¼ L‘ � ðL‘ � LcÞexpð�KdÞ: ðA:1:7Þ

Substituting this into NUM gives

Z1L‘ þ ðZ2 � Z1ÞL‘expð�Z2dÞ
Z1Z2

� ðL‘ � LcÞ 1� exp½�ðZ2 þ KÞd�f g
Z2 þ K

�ðL‘ � LcÞ 1� exp½�ðZ2 þ KÞd�f g
Z1 þ K

:

ðA:1:8Þ

Finally, dividing NUM by DEN gives equation (6) in

the main text.

Appendix 2. Derivation of the Mean Length after Multiple Changes in the Mortality Rate

Here, we present a general expression for the mean

length for situations in which there have been k
changes in the mortality rate over time. We define the

variable d
i
to be the time elapsed between the ith and (i

þ 1)th change in mortality for i¼ 1, . . ., k� 1, and we

define d
k

to be the time from the last change in

mortality to the point when the mean length was

observed. In other words, d
i

measures the duration of

the period when Z
iþ1

affected the population. The mean

length is

L ¼

Xkþ1

i¼1

ai

Z ci

ki

exp½�Zkþ2�iðt � kiÞ�Ltdt

Xkþ1

i¼1

ai

Z ci

ki

exp½�Zkþ2�iðt � kiÞ�dt

ðA:2:1Þ

where

k1 ¼ tc

ki ¼ tc þ
Xk

j¼k�iþ2

dj for i ¼ 2; . . . ; k þ 1

ci ¼ tc þ
Xk

j¼k�iþ1

dj for i � k

ckþ1 ¼ ‘

a1 ¼ 1

ai ¼ expð�
Xi�1

j¼1

Zkþ2�jdkþ1�jÞ for i ¼ 2; . . . ; k þ 1

Lt ¼ L‘½1� e�Kðt�t0Þ�:

The denominator (DEN) is

DEN ¼
Xkþ1

i¼1

aið1� e�Zkþ2�idkþ1�iÞ
Zkþ2�i

: ðA:2:2Þ

The numerator (NUM) is

NUM ¼ L‘

�
DEN�

Xkþ1

i¼1

1� Lc

L‘

� �
risi

Zkþ2�i þ K

�
; ðA:2:3Þ

where

r1 ¼ 1

ri ¼ exp

�Xi�1

j¼1

� ðZkþ2�j þ KÞdkþ1�j

�

for i ¼ 2; . . . ; k þ 1

si ¼ 1� e�ðZkþ2�iþKÞdkþ1�i

for i ¼ 1; . . . ; k
skþ1 ¼ 1:
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