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Using demographic methods to construct
Bayesian priors for the intrinsic rate of increase in
the Schaefer model and implications for stock
rebuilding

M.K. McAllister, E.K. Pikitch, and E.A. Babcock

Abstract: Even though Bayesian methods can provide statistically rigorous assessments of the biological status of fish-
eries resources, uninformative data (e.g., declining catch rate series with little variation in fishing effort) can produce
highly imprecise parameter estimates. This can be counteracted with the use of informative Bayesian prior distributions
(priors) for model parameters. We develop priors for the intrinsic rate of increase (r) in the Schaefer surplus production
model using demographic methods and illustrate the utility of this with an application to large coastal sharks in the
Atlantic. In 1996, a U.S. stock assessment obtained a point estimate forr of 0.26. For such long-lived and low-fecund
organisms, this could potentially be too high. Yet it was used to predict that within about 10 years, a 50% reduction in
the 1995 catch level should result in >50% chance of increasing the population to the abundance required to produce
maximum sustainable yield. In contrast, a Bayesian assessment that used demographic analysis to construct a prior for
r with a median of 0.07 and coefficient of variation (CV) of 0.7 indicated that within 30 years, this policy would have
only a very small chance of increasing the population to maximum sustainable yield.

Résumé: Bien que les techniques bayésiennes puissent fournir des estimations statistiquement rigoureuses du statut
biologique des ressources halieuthiques, des données pauvres en information (e.g., un série de taux de capture associée
à un effort de pêche peu variable) peuvent produire des estimations de paramètres très imprécises. Ce problème peut
être contrecarré par l’utilisation de distributions bayésiennes a priori (priors) pour les paramètres du modèle. Nous
avons développé des distributions a priori pour le taux intrinsèque de croissance (r) dans le modèle de production
excédentaire de Schaefer à l’aide de méthodes démographiques et nous illustrons l’utilité de cette approche en
l’appliquant aux grands requins côtiers de l’Atlantique. En 1996, une évaluation de stock faite aux États-Unis a donné
une estimation ponctuelle der de 0,26. Pour des organismes à grande longévité et à faible fécondité, cette valeur est
potentiellement trop élevée. Néanmoins, elle a servi à prédire que, dans à peu près 10 ans, une réduction de 50% dans
le taux de capture de 1995 aurait pour conséquence une probabilité de >50% de faire croître la population suffisam-
ment pour atteindre le niveau de rendement maximal soutenu. En revanche, une estimation de type bayésien qui a
utilisé une analyse démographique pour établir une distribution a priori der avec une médiane de 0,07 et un coefficient
de variation de 0,7 indique qu’une telle politique de capture n’aurait, au bout de 30 ans, qu’une très faible probabilité
de permettre à la population d’atteindre le rendement maximal soutenu.

[Traduit par la Rédaction] Perspectives 1890

Introduction

Bayesian estimation has been advocated as a statistically
rigorous approach to account for and reduce uncertainties
arising from data analysis (Gelman et al. 1995; Punt and

Hilborn 1997; McAllister and Kirkwood 1998a). However,
when these methods are used to model uncertainty, particu-
larly in fisheries stock assessment, model predictions can
still be highly imprecise and biased (Adkison and Peterman
1996). This is often because data for individual fish stocks
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are uninformative about key population dynamics model pa-
rameters, for example, the maximum population growth rate,
r, which can determine the rate of population recovery fol-
lowing severe depletion and a reduction in harvesting
(Liermann and Hilborn 1997; Myers et al. 1997).

Estimation uncertainty can be reduced with the applica-
tion of informative Bayesian prior probability density func-
tions (pdfs) for model parameters (McAllister et al. 1994).
Hierarchical modeling methods have recently been devel-
oped to help construct these priors (Gelman et al. 1995;
Liermann and Hilborn 1997). Myers et al. (1997, 1999), for
example, provided a hierarchical modeling approach that
was applied by Millar and Meyer (2000) to construct a prior
pdf for r that incorporates stock and recruit data sets, esti-
mates of the age at maturity, and the rate of natural mortality
in adults. These methods, however, require data sets from
several other similar (e.g., conspecific or congeneric) popu-
lations. In many instances, for example, for most shark pop-
ulations, such data sets are not available. We formulate in
this paper an alternative approach to constructing a prior for
r that uses demographic methods, which do not require data
from other populations (Krebs 1985; Begon et al. 1996;
Ebert 1999). We illustrate this approach with an application
to demographic and catch and catch rate data for large
coastal sharks (LCSs) off the U.S. Atlantic coast.

This paper is organized as follows. First, we formulate a
demographic approach to constructing a prior distribution
for r. Second, we illustrate the utility of this approach with
an application to data for LCSs. Bayesian posterior estimates
of stock status and potential for recovery to the maximum
sustainable yield level (MSYL) are assessed with and with-
out the informative prior forr.

Using demographic analysis to construct a prior
probability distribution for the intrinsic rate of increase

Demographic theory provides two conceptually interrelated
definitions of the intrinsic rate of natural increase (Krebs
1985, pp. 182–184). The first is the observed rate of increase
per individual per unit time,ro, for a population in its natural
environment. Thero varies continuously from – to + in re-
sponse to changes in food availability, age distribution, and
environmental conditions, among other things. The second is
the innate capacity for increase,rm. This is the maximum per
capita rate of increase attained under some particular set of
abiotic conditions when the quantities of food, space, and
animals in the population are kept to an optimum and other
species are entirely excluded from the situation. In other
words, this is the maximum population growth rate owing to
optimal biological conditions at a given set of abiotic condi-
tions. This quantity is often used as a reference point for
comparisons with observed rates of increase in nature.
Demographic theory also specifies that under constantly
maintained abiotic and optimal biological conditions, a pop-
ulation would reach a stable age structure and increase in
numbers according to the differential equation

(1)
d
d

m
N
t
= r N

These formulations parallel analogous ones associated with
the age-aggregated logistic population dynamics model. In

this model, the intrinsic rate of increase,rL, is defined as the
maximum per capita rate of increase. Thus,rL and rm are
analogous, except thatrL is realized without any assump-
tions about age structure as abundance approaches zero,
when density-dependent effects that reduce the rate of popu-
lation growth are assumed to be at a minimum:
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The realized per capita rate of increase,rr , in the logistic
model (eq. 17) varies with population abundance and is
thereby analogous toro in demographic theory. Therefore, it
would appear that under suitable conditions (defined below),
an approximation of the quantityrm with the use of demo-
graphic methods could potentially be used as an approxima-
tion of rL in the logistic model.

Despite the conceptual overlap between logistic modeling
and demographic analysis, the methodologies employed by
each to estimate their parameters have remained separate.
For example, in fisheries stock assessment, logistic models
are typically fitted to abundance data to estimaterL (hereaf-
ter referred to asr), and despite the availability of demo-
graphic data, no use has been made of demographic methods
to facilitate this estimation. Demographic methods to ap-
proximaterm are often overlooked in stock assessments or
treated separately from the model fitting approach (Cortes
1998; Smith et al. 1998). In this paper, we illustrate the util-
ity of demographic methods in helping to improve the accu-
racy of estimates ofr for population modeling. Below, we
review a few of the simpler demographic methods to approx-
imate rm and then provide some guidelines for the construc-
tion of a prior for r.

Demographic methods to approximaterm
The simplest demographic methods for approximatingro

andrm rely on estimates of “vital rates” such as fecundity at
age and survival rate at age (from natural causes of death)
(Krebs 1985; Begon et al. 1996). Estimates of these quanti-
ties are occasionally available for exploited populations. In
such instances, demographic methods (Krebs 1985; Begon et
al. 1996) can be applied to approximaterm. It is important
for practitioners to note when in the population’s exploita-
tion history the vital rates were estimated. To obtain approx-
imations of rm, the values for survival rate and fecundity
should be obtained when density-dependent processes are
least likely to be operating, for example, at abundances low
relative to carrying capacity. Alternatively, if estimates are
available when the population is moderately exploited, then
it could be assumed that the abundance was near the MSYL.
The realized rate of increase,rr, of the population would
then be less than the maximum possible value and would
need to be increased by up to a factor of 2 if it were to be
used as an approximation ofr in the logistic model.

If the population is heavily exploited, it is unlikely that
the population’s age distribution will be stable, as required
by some demographic methods. However, this should not
bias demographic approximations ofrm provided that they
do not obtain the survival rate at age directly from the ob-
served age distribution, as in some cohort life table methods
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(Begon et al. 1996). There are at least three simple demo-
graphic methods that could be used to approximaterm.

Generation time method
The simplest method derives from the following approxi-

mation (Krebs 1985; Begon et al. 1996):

(3) R r G» 1exp( )m

whereR is the expected lifetime contribution of female off-
spring from a single female organism andG is the approxi-
mated mean generation time. TheG may also be interpreted
as the weighted average age of reproductive females with
weighting by the expected births at age after the survival
rate at age of reproductive females has been accounted for
(see eq. 8). TheR can be obtained by

(4) R l mx x
x

=
=
å

0

A

whereA is the maximum possible age of a female,lx is the
expected survivorship of females from age 0 to agex, andmx
is the expected number of age-0 female offspring per indi-
vidual female or fecundity at agex. The rm can thus be ob-
tained by dividing the natural logarithm of the expected
lifetime contribution of female offspring from a single fe-
male organism,R, by the mean generation time:
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The components of this equation can be obtained as follows.
The lx is computed by

(6) l Sx i
i

x

=
=

-

Õ
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1

whereSi is the survival rate at agei and l0 is 1. Themx can
be expressed as a function of the expected fecundity per in-
dividual female, sex ratios, and the age at maturity:

(7) m sg fx x x=

wheregx is the expected proportion of individuals mature at
agex and fx is the fecundity of those mature at agex. The
arithmetic mean generation time,Ga, which is typically ap-
plied, is approximated by

(8) G
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with each agex weighted by the expected contribution of
offspring at that age. Note that eq. 5 does not give the “true”
value of rm. The shape of thexlxmx versusx distribution in-
fluences how close the approximation ofrm from eq. 5 ap-
proaches the true value ofrm. If that distribution is not
normal, this method does not work well (see Ebert (1999,
pp. 17–18) for a discussion). Extensive simulations using the
shark data below showed that this method and extensions to

it (e.g., using the geometric and harmonic means instead of
the arithmetic mean) were highly inaccurate and that the
other two methods below should be used instead.

Leslie matrix method
A second approach to approximatingr projects a Leslie

population matrix over several time steps until the popula-
tion age structure (proportion at age) has stabilized (Krebs
1985). The intrinsic rate of increase can then be computed
from the ratio of abundance between one time step and the
previous. The initial vector of female numbers at age can be
initialized by

(9) N lx x,0 1000=

The number of age-0 female individuals for the next time
step is given by

(10) N m Nt x x t
x

0 1
0

, ,+
=

= å
A

The number of female individuals of agex in the next step
for ages 1 toA (assuming senescence at ageA) is given by

(11) N S Nx t x x t, ,+ - -=1 1 1

Trial and error is required to identify when the age structure
has stabilized. This usually does not take many time steps,
and stabilization can be monitored by computing the average
percent change in the proportion at age between each time
step:
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When this average percentage becomes very small, say
<0.0001%, the age structure can be considered to be stable.
Once age structure is stabilized,rm can then be approxi-
mated from

(14) r
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While this approach works well, the “classical” way to ap-
proximaterm through Leslie or other matrices is using ma-
trix algebra wherel = emr is the dominant eigenvalue of the
transition matrix (Ebert 1999; Quinn and Deriso 1999).
However, both the eigenvalue and matrix projection ap-
proaches are practically identical. We computedl for the
basecase for sandbar sharks (Carcharhinus plumbeus) below
and, as expected, obtained results practically identical to
those obtained using the matrix projection method. We pres-
ent the simpler matrix projection approach rather than the
eigenvalue one to make the methodology more accessible to
a wider audience.
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Euler–Lotka method
Thirdly, rm can be approximated from the following equa-

tion (Lotka 1907):

(15a) e m- =
=
å r xl mx x
x

1
0

A

Note that this is a discrete approximation of an integral over
ages 0 to¥:

(15b) e d-
¥

ò =r xm l m xx x

0

1

The rm cannot be solved analytically from this equation; it
must be solved numerically using a computer. The initial
guess forr can be that obtained by the first method above.

Steps for using demographic methods to construct a
prior distribution for r in the logistic model

A prior distribution for r in the logistic model can be ob-
tained from the following steps. (1) Formulate prior distribu-
tions for the rate of survival (Sx) or natural mortality at age
(Mx) of female individuals and fecundity at age (mx) of
female offspring. (2) Randomly draw a vector of values from
the prior distributions forSx or Mx andmx. Using one of the
demographic methods described above, compute the value
for rm. (3) Repeat step 2 many times (e.g.,³1000). (4) Elim-
inate all values forrm that are less than a predefined
minimum possible value (e.g.,rm < 0.01, see below).
(5) Construct a frequency distribution of the resulting values
for rm. (6) Construct a parametric density function such as
the beta or lognormal distribution based on the empirical
distribution generated in steps 1 to 5. This parametric den-
sity function for rm can be used as the prior forr in the lo-
gistic model. The formulation of a parametric density
function is not absolutely necessary. One could instead work
directly with the discrete frequency distribution obtained.
While the above steps appear to be straightforward, we have
several recommendations regarding them.

Use of the different demographic methods
Of the three demographic methods for approximatingrm,

the generation time method (using the arithmetic mean gen-
eration time) is the simplest. It is also the least accurate but
often provides values similar to those of the other methods.
The inaccuracy results mainly because the arithmetic mean
generation time (eq. 8) is a biased approximation of mean
generation time; thus, other approximations ofG are consid-
ered. In contrast, the Leslie projection and Euler–Lotka
methods provide much more accurate approximations ofrm
than the first method. We therefore recommend that these
latter two methods for approximatingrm be applied and the
results compared. To start, code up each of the methods in a
spreadsheet and attempt to obtain comparable results with
the same input parameters. We prefer the Leslie projection
method because it provides a nearly exact numerical ap-
proach for approximation, providing that the simulated age
structure has stabilized. In contrast, the Lotka method
(eq. 15) is a discrete approximation of an integral over ages
between 0 and¥ (Lotka 1907). In particular, there may be

inaccuracies in the approximation if survival rates are high
and the maximum age is not very large.

Formulation of distributions for survival rates and
fecundities

Becauser in the logistic model is the rate of increase in
abundance when density-dependent effects are nonexistent,
the estimates of survival rate, fecundity, and proportion ma-
ture at age,Sx, fx, andgx (eqs. 6 and 7), used should only be
those expected to occur at very low population size when
density-dependent effects that can reduce survival rate and
fecundity at larger population abundance are not operating.
However, for many exploited populations, this should not be
a serious problem, since a high percentage of them are
overexploited (e.g., about 70% of assessed fish stocks (FAO
2000)).

In most instances, the most uncertain parameter isSx, the
survival rate at age, or, by transformation,Mx, the rate of
natural mortality at age. A number of alternative distribu-
tions reflecting what is known about the survival rate at age
should be formulated to evaluate the potential effects of un-
certainty in this parameter on the distribution forrm.

In some instances, distributions uniform over a small
range, e.g., 0.8 to 1, forSx have been formulated (NMFS
1996). We recommend that such distributions forSx should
be avoided. It is often the case that there is a most credible
estimate ofSx and that credibility diminishes as the numeri-
cal distance from this value increases. Furthermore, narrow
uniform distributions forSx can produce distributions forrm
that have sharp cutoffs (see Results). Prior distributions that
have sharp cutoff points can strongly bias estimation results,
particularly if the true value is in the region of zero probabil-
ity (Adkison and Peterman 1996).

Instead, we suggest alternative distributions forSx such as
the beta(v, w) (wherev > 0, w > 0, mean =v/(v + w), and
variance =vw/[(v + w)2(v + w + 1)]), and normal(m, s2) trun-
cated below 0 and above 1 (wherem is the median ands is
the standard deviation in the natural logarithm of the random
variable) (Evans et al. 1993). A beta distribution forSx is
particularly convenient because this distribution falls between
0 and 1 and can take on a wide variety of shapes. A normal
distribution truncated below 0 or a lognormal distribution for
the rate of natural mortality at age,Mx, could also be appro-
priate whereby the median forMx and the standard devia-
tions in Mx or the natural logarithm ofMx, sx, are obtained
empirically, if possible. If no empirical estimate forsx is
available, then the value for this parameter could be set sub-
jectively. For example, the minimum and maximum plausible
values forMx can be used to set the value forsx by associat-
ing these extremes with potential 95% confidence intervals
for a lognormally distributedMx. In Monte Carlo simula-
tions, Sx can then be obtained by transforming the random
variableMx:

(16) S Mx x= -exp( )

If the sensitivity of prior distributions forr to input distribu-
tions forMx is to be evaluated, we recommend that at a min-
imum, variants to the baseline distribution forMx be tried in
which the median andsx are varied. If it is plausible thatMx
or Sx varies with age,x, then priors forr should be con-
structed under this assumption.
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Estimating r for population models in numbers versus
biomass of individuals

The demographic methods that we describe are based on
abundance in numbers as opposed to biomass. However, in
many instances, the Schaefer equation models biomass, not
numbers. How then can we obtain a prior forr using demo-
graphic methods? The answer is by applying the same meth-
ods. Appendix A proves thatr is the same whether the
modeling is in biomass or numbers, providing that weight at
age remains constant from one generation to the next.

Estimating r for models of mature or exploited population
abundance

The demographic methods to computerm are based on all
age groupings (eqs. 3–15). In contrast, Schaefer models
when applied in fisheries stock assessment apply to the age-
and (or) size-classes vulnerable to fishing mortality. Appen-
dix B proves that the value forrm obtained by the demo-
graphic methods is independent of the age-classes included
and modeled in the quantityPt. Therefore, demographic
methods for computingrm are independent of the age or pat-
tern of recruitment to the population modeled by the logistic
model. However, the demographic methods applied will still
need to include all of the possible age-classes.

Dealing with negative values of rm
If there is considerable uncertainty over the survivorship

and fecundity schedules, it is likely that some of the permu-
tations of the combined fecundity and survivorship sched-
ules that can be obtained from their respective distributions
will result in negative values forrm. However, it is highly
unlikely for the intrinsic rate of increase in the logistic
model to be equal to or less than zero, unless, for reasons
other than exploitation, the population is destined for extinc-
tion. It could be argued that very small nonnegative values
(e.g., r < 0.01) are also highly unlikely. This accounts for
step 4 in the Monte Carlo procedure described above.

Illustrating the integration of demographic methods
with Schaefer model assessments

Below, we illustrate the utility of integrating demographic
methods in stock assessment using the Schaefer model with
an application to data for large coastal sharks (LCSs) on the
U.S. east coast. In 1996, the U.S. National Marine Fisheries
Service (NMFS) held a Shark Evaluation Workshop (SEW)
to evaluate the status of LCSs off of the east coast of the
United States and recommend harvesting policies for this
species grouping. The report of the workshop concluded that
the LCS grouping was heavily depleted and suggested that at
least a 50% cut in the catch of LCSs was required to pro-
mote population recovery. In 1997, the NMFS implemented
a 50% cut in the total allowable catch (TAC) for commercial
fishermen (Anonymous 1997). The recreational bag limit for
Atlantic sharks was reduced to two fish per boat trip. Below,
we describe how we carried out each of the five steps for
Bayesian stock assessment (from McAllister and Kirkwood
1998a). The data for LCSs combined are used here instead
of those for single species to make the results comparable
with those obtained in the 1996 SEW.

Step 1 is to identify the alternative management proce-
dures to evaluate. As in the 1996 SEW, we evaluated con-

stant quota policies that were varying fractions of the 1995
total reported catch of LCSs (367 200 fish). The fractions
varied from 100% to 90,...,10, and 0%. These same policies
were also evaluated in the 1996 SEW.

Step 2 is to identify the indices of policy performance.
The indices used to evaluate policy performance include the
following: (a) the posterior expected value for the ratio of
stock abundance to carrying capacity (E(Nfin/K)) in the years
2008, 2018, and 2028, (b) the probabilities that stock size in
these three years will be larger than the stock size in 1998
(P(Nfin > N98)), (c) the probability that the stock size in each
of these years will be larger than 0.5K, the MSY stock level
(P(Nfin > 0.5K)), and (d) the probability that stock size will
be below 0.2K in these years (P(Nfin < 0.2K)).

Steps 3 and 4 are to identify alternative hypotheses and
evaluate the weight of evidence in their support. A key input
to a decision analysis is the joint posterior probability distri-
bution for the alternative hypotheses, e.g., alternative values
for the estimated population model parameters. In this sec-
tion, we describe the population dynamics model, the data,
the likelihood function, the prior probability distributions,
and the method to produce marginal posterior distributions
for quantities of interest.

Population dynamics model and alternative hypotheses
The surplus production model that we applied, the same

as in NMFS (1996), is in numbers rather than biomass and is
detailed in Prager (1994). The surplus production function
with fishing mortality included is given by

(17)
d
d
N
t

r F N
r
K

Nt
t t t= - -( ) 2

where t is the year,N is stock abundance,r is the intrinsic
rate of increase,K is the carrying capacity, andF is the
instantaneous fishing mortality rate. Dividing eq. 17 byNt
gives the realized rate of increase,rr. The maximum harvest
rate possible was assumed to be 0.99. Abundance is updated
annually by

(18)
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when

b
a

Nt
twhen = 0

wherea t = r – F andb = r/K. The most cumbersome aspect
of this version of the Schaefer model is thatFt can only be
solved numerically (Prager 1994). Prager (1994, p. 376) pro-
vided two different equations in whichFt is on both sides of
the equation for whenat ¹ 0 andat = 0. A starting guess was
provided forFt (the harvest rateCt/Nt) and this was entered
into the right-hand side of the equation. The resultingFt was
then computed. This latterFt was input into the equation and
this process was iterated until the difference between the
inputted and outputtedFt was very small (<0.000001).

The alternative hypotheses considered in the stock assess-
ment consisted of alternative values for the parametersr, K,
andN75/K. The initial uncertainty over these was represented
by a joint prior pdf ofr, K, andN75/K, with each of the pa-
rameters independent.
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Catch and catch per unit effort (CPUE) data
The production model used in NMFS (1996) was fitted to

13 different series of CPUE data. These data extend from
1975 to 1995. We fitted the same production model to these
data and assumed that CPUE,Ij,t, was directly proportional
to stock abundance.

(19) I q Nj t j t, =

whereqj is the constant of proportionality or catchability co-
efficient. Note that this latter assumption may be inaccurate
for several reasons. For example, there have probably been
long-term changes in catchability and catchability may not
be constant with stock size. However, for now, we ignore
these possibilities.

The series of annual catches for LCSs extends from 1981
to 1996. All values but the last were taken from NMFS
(1996). The value for 1996 was taken from the 1997 SEW.
Note that some of the CPUE series extend well before the
beginning of the catch series (from 1975) and that catches
were taken even before 1975. It would have been desirable
from the point of view of estimation for the catch and the
CPUE series to begin at the same time and to begin as early
as possible in the history of exploitation. Conventional esti-
mation approaches only allow us to use data series begin-
ning in 1981. However, the Bayesian approach can allow us
to use the full CPUE series if we treat the catches between
1975 and 1980 as unobserved random variables. For simplic-
ity, we have assumed that catches were constant over this pe-
riod and equal toCo and thatCo is an additional parameter
to be estimated. We assumed that the total catches in 1997
and 1998 were given by the commercial quota (1285 mt
divided by the average dressed weight of 18.2 kg×fish–1) in
1997 plus 75% of the recreational harvest in 1996 and the
values for longline and coastal discards for 1996 (NMFS
1997). The total came to 227 300 fish.

Likelihood function
In the likelihood function, we assumed that the data were

lognormally distributed:

(20) I q Nj t j t I j t
, ~ ( , )

,
lognormal s2

wheres I j t,

2 is the annual variance in the lognormal density
function andqj is the constant of proportionality for series.
In some of the CPUE series, annual estimates of the CV for
sampling error were available (CVj,t). TheCVj t,

2 were used as
weights to determine the relative value for each annuals I j

2 :

s sI j j t Ij t
c

j,
,

2 2 2= CV

where cj is the constant for seriesj required to make the
weights sum to 1 (derived by solving for it algebraically)
ands I j

2 is the arithmetic mean value for the time seriesj
variance. Here, CPUE data with relatively large sampling er-
ror variances were given less weight in the likelihood func-
tion (hence the term inverse variance weighting). Thes I j

2

and qj for each CPUE series were treated as uncertain pa-
rameters but were integrated from the joint posterior distri-
bution (Walters and Ludwig 1994), since they are of no
direct interest to fishery management. The log likelihood
function, l, of the catch rate data was thus
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Prior probability distributions
Prior probability distributions were required forr, K, N75/K,

Co, qj, ands I j
. Prior probability distributions were informa-

tive for r, N75/K, and Co only. The noninformative prior
distributions assumed forqj ands I j

were uniform over the
natural logarithm of these quantities, and this made their
integration from the joint distribution extremely simple (see
Walters and Ludwig (1994) for the numerical shortcut).

The informative prior forr for LCSs was developed using
demographic information for the two species most common
in the LCS fishery, sandbar shark and blacktip shark
(Carcharhinus limbatus). The input distributions formulated
were based on those given in NMFS (1996). In NMFS
(1996), a Monte Carlo method similar to that described
above was applied to compute probability distributions for
rm based on input distributions for survivorship at age and
pupping rate at age for sandbar sharks. For example, in one
instance, the maximum age,A, was considered to be 100
years, the age at maturity was uniformly distributed between,
and including, 13 and 17 years, the fecundity at age was nor-
mal with a mean of 2.1 female pups per year and a CV of
0.3, and the annual survival rate was uniformly distributed
between 0.8 and 1.0 and assumed to be constant with age.
This latter assumption is unrealistic and the survival rate
from natural causes of death is typically much less for the
youngest age-classes. Assuming constant survival rate
instead could give rise to positively biased approximations
of rm. We applied this same assumption in this paper to rep-
licate as closely as possible the results in the 1996 stock
assessment (NMFS 1996). Moreover, for sharks that produce
well-developed, free-swimming young, the assumption of
constant survival rate at age is unlikely to result in large
biases. On the other hand, the values used for parameters
such asSx were obtained not at the very lowest abundances
and this should compensate to some extent for the positive
bias caused by assuming constantSx. For reasons described
above, narrow uniform distributions for parameters such as
survival rates are better replaced by beta distributions forSx
or lognormal distributions for the rate of natural mortality.

With these and other input distributions (NMFS 1996), the
resulting output distributions forr include values mostly
above zero, although in all cases, and others that we tried,
the lower tail of the output distributions always included
negative values. The Monte Carlo procedure outlined above
suggests that the resulting distribution for the intrinsic rate
of increase be truncated at or just above zero. The median
values forrm in the distributions from NMFS (1996) ranged
between 0.07 and 0.11, and the standard deviations (SDs)
ranged between 0.03 and 0.05 (NMFS 1996). In contrast, in
the 1996 SEW, the frequentist estimation method that was
used to fit the Prager model to CPUE data to estimater and
K ignored these demographic results and obtained a maxi-
mum likelihood estimate of 0.26 (highly imprecise largely
due to the one-way trip in the CPUE data). To obtain poten-
tially more reliable estimates, the Bayesian approach allows
us to formulate a prior distribution based on the demographic
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results that can be combined with the likelihood function of
the data.

We computed prior distributions forr for sandbar sharks
using a variety of alternative input distributions forSx as-
sumed to be constant with agex (Fig. 1). These included
(i) Sx uniform on 0.8, 1, (ii ) Sx in a symmetric triangular dis-
tribution with minimum at 0.8 and maximum at 1.0, (iii ) Sx in
a distribution with minimum at 0.8, maximum at 1.0, and a
parabolic tail at each end of the distribution so that the most
likely region was between 0.85 and 0.95, (iv) Sx ~ beta(54, 6),
(v) Sx ~ beta(18, 2), (vi) Mx ~ lognormal(–log(0.9), 0.42), and
(vii) Mx ~ lognormal(–log(0.9), 0.72). In the latter two distri-
butions, the term –log(0.9) gives the same median value of
0.9 for Sx as in the former four distributions. Moreover, the
latter two lognormal distributions also give distributions forSx
analogous to the two beta distributions (Fig. 1) (see Evans et
al. (1993) for methods to draw random variables from these
distributions). We also provide results forrm for blacktip sharks
when the age at maturity is triangular between and not includ-
ing 5 and 9 years of age with a mode at 7,A of 20, fecundity
at age ~ normal(2.5, 0.752), and Mx ~ lognormal(–log(0.9),
0.72) for ages 1+ and the same distribution with a median sur-
vival rate of 0.5 for age 0 (E. Cortes, NMFS, 3500 Delwood
Beach Road, Panama City, FL 32408, U.S.A., personal com-
munication).

As mentioned above, a convenient density function forr is
the lognormal, since values less than zero are impossible and
it is skewed to the right, indicating that most of the density
centers around lower values. The SD in the logarithm ofr
(sr) for the lognormal density function is given by

(22) sr
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Using as baseline values a mean of 0.07 and an SD of 0.05,
the result issr = 0.64. However, due to the variation in the
median value forr among the sensitivity tests in the demo-
graphic analysis, we roundedsr to 0.7.

The prior forK was uniform over the natural logarithm of
K for values ofK from 1000 to a trillion individuals. This
implies that within this range the prior probability forK is
proportional to 1/K. This prior gives lower probability to
higher values forK and makes values ofK less than or equal
to zero impossible. The value forN75 was set equal tohK
where h has a mean of 1 and an SD of 0.2 and is log-
normally distributed. This prior reduces the possibility that
N75 will be much higher thanK due to imprecise or biased
data. The prior for the mean catch in years 1975–1980 (Co)
was lognormally distributed with a mean equal to the mean
of the observed catches (477 000). The SD in the natural
logarithm of observed catches was 0.30 (eq. 22); however,
we set the prior SD in the natural logarithm ofCo to 0.5 to
account for the fact thatCo represented catches outside of
the observed catch time series.

Integrating the joint posterior distribution to produce
marginal posterior distributions

The parametersqj ands I j
were integrated from the joint

posterior of q using the method of Walters and Ludwig
(1994). The joint posterior distribution for the remaining pa-

rameters,r, K, Co, andh (a vector calledq¢¢), was integrated
to produce marginal posterior distributions and mean values
for these and other model quantities using the sampling/im-
portance resampling algorithm (Rubin 1988; McAllister et
al. 1994; McAllister and Ianelli 1997). For situations with
up to a few dozen parameters, this can be a simple and
highly efficient Monte Carlo method for Bayesian integra-
tion. Samples of parameter values,q, are randomly drawn
from an importance function. This is a pdf ofq constructed
to be as similar as possible to the actual posterior density
function of interest but with tails no sharper than those of
the actual posterior pdf. A weighting factor is computed for
each sample ofq that is proportional to the posterior density.
It can be easily shown that the resulting distribution ofq
converges on the posterior density function by the strong
law of large numbers (Berger 1985). It took up to 300 000
draws from the importance function (up to about 10 min on
a 300-MHz Pentium desktop) to achieve very good approxi-
mations of the estimated marginal posterior distributions.
The stopping rule applied was to stop the run when the num-
ber of draws from the importance function exceeded 20 000
and the maximum importance weight in all cases had
dropped to below 1% of the total summed importance
weights (if draws were taken from the posterior, this per-
centage would be 100%×n–1 wheren is the number of draws
from the importance function). For other diagnostics, see
McAllister and Ianelli (1997).

We tested the sensitivity of the marginal posterior distri-
butions for the key model parameters, for example,r, K, N95,
andN98/K, and the maximum sustainable yield (MSY =rK/4)
to alternative prior distributions forr. Step 5 is to evaluate
the distribution and expected value of each performance
measure. In order to calculate the posterior expected value
for the various indices of policy performance, the following
steps were applied. (1) Randomly draw 5000 vectors of pa-
rametersq¢¢ (q¢¢ = r, K, Co, andh = N75/K) with replacement
from the discrete approximation to the posterior distribution
of q¢¢ with the probability of drawing each vectorq j

¢¢ being
proportional to the posterior probabilityP j( | )q¢¢ CUPE. This is
the resampling step in the sampling/importance resampling
algorithm (Rubin 1988; McAllister et al. 1994; McAllister
and Ianelli 1997) to obtain a set of draws ofq¢¢ from their
joint posterior distribution. See McAllister and Kirkwood
(1998a) for an algorithm for randomly drawing values from
such a distribution. (2) Using each drawn vectorq j

¢¢, project
the surplus production model (eq. 18) from the year 1975 to
1998. Then project the model from 1998 to 2028 and apply
one of the constant quota policy options in each year. (3) In
each projectionj and yeary, calculate the values for MSYj
and Bj,y /Kj and check to see if it drops below 0.2Kj in the
years 2008, 2018, and 2028 or increases above 0.5Kj or
Bj,98 /Kj in each of these years. If the condition has been met
at least once in the projection, then add 1 to the sum for that
policy index. (4) To obtain the expected value for each other
policy index, divide the summation of values for each index
by 5000.

Results

Prior distributions for r
We first compare prior distributions obtained using two
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different demographic methods to compute approximations
of rm for sandbar sharks. Without the elimination of low val-
ues for rm from the Monte Carlo procedure, about 12% of
the simulated values fell below zero for each of the methods
(Fig. 2a). Because such values are biologically impossible, it
was necessary to introduce a lower cutoff point for plausible
values ofrm. All subsequent results were obtained using a
lower cutoff point ofrm = 0.01.

The correlation between values ofrm between the Lotka
and Leslie matrix methods was >99.99% (Fig. 2). However,
the approximations provided by the Lotka method were con-
sistently about 5% larger than estimates from the Leslie ma-
trix method (Table 1). The SDs in estimates from the Lotka
method were also consistently about 5% larger. The reasons
for these discrepancies are not clear but could result because
the Lotka method applied is a discrete approximation of an
integral over the ages from 0 to¥, while the Leslie method
is more of an exact numerical approximation that directly
simulates the rate of population increase (Lotka 1907).

The shape of the distribution forrm was relatively insensi-
tive to the precise functional form of the input distribution as-
sumed forSx (Fig. 3), provided that the input distribution for
Sx had a similar central tendency and spread. The uniform dis-
tribution for Sx over 0.8, 1.0 produced the broadest distribu-
tion for rm with the sharpest cutoff points (medianrm (rm50) =
0.09, SD(rm) = 0.047; from the Leslie method) (Fig. 3a; Ta-
ble 1). When the parabolic and triangular distributions forSx
were applied, which had less spread than the uniform distri-

bution for Sx, the distribution forrm had more gradual tails
(for both,rm50 = 0.07 and SD(rm) = 0.038) (Table 1). The pri-
ors based on the beta distributions forSx tended to be skewed
slightly to the right, and the spread of the distribution forrm
depended strongly on the parameterization of the beta distri-
bution (Fig. 3b). For Sx ~ beta(18, 2),rm50 = 0.09 and
SD(rm) = 0.043 and forSx ~ beta(54, 6),rm50 = 0.07 and
SD(rm) = 0.033 (Table 1). The two lognormal distributions
for Mx, were parameterized to give distributions forSx similar
in shape to those for the two beta distributions and therefore
gave distributions forrm similar to those for the beta distribu-
tions forSx (Figs. 3b and 3c; Table 1). A lognormal prior dis-
tribution for rm that incorporates a median of 0.07 and
lognormal SD of 0.5 tends to weight the smaller values forrm
more heavily and has a more gradually tapering upper tail
than all of the distributions derived from the Monte Carlo ex-
ercise (Fig. 3).

Similar biases in the distributions produced by the differ-
ent methods to calculaterm were observed when the input
distributions for blacktip sharks were applied (Fig. 3d; Ta-
ble 1). The Lotka method gave slightly higher values forrm
than the Leslie method (Table 1). The prior distribution
produced for blacktip sharks had a higher central tendency
(rm50 = 0.125, SD(rm) = 0.059) than the one produced for
sandbar sharks, mainly because the age at maturity was
much lower for blacktips (Fig. 3e; Table 1). A prior forr in
the logistic model for LCSs that gives less productive spe-
cies more weight but has a larger SD to account for the vari-
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Fig. 1. Input prior distributions for the annual rate of survival (S) based on (a) beta distributions forS and lognormal distributions for
the rate of natural mortality (M) and (b) uniform, triangular, and parabolic distributions forS.
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ability in r among species in this grouping is given by a
lognormal distribution with a median of 0.07 and a
lognormal SD of 0.7 (Fig. 3e).

Posterior distributions for logistic model parameters
A joint posterior pdf for r and K in the logistic model

from a noninformative (uniform) prior forr is shown in
Fig. 4a. This demonstrates that there is relatively little infor-
mation aboutr andK in the data, which is consistent with a
“one-way trip” (Fig. 4c). A long narrow ridge of higher
probability runs from high values forr and low values forK
to lower values forr and higher values forK. Along this
ridge, many different combinations of values forr andK re-
sult in model predictions that correspond almost equally
well to the CPUE data. However, because the ridge of higher
probability is relatively narrow and runs diagonally across
the joint region forr andK, it can be seen that if the value
for r were known, the estimate ofK would be considerably
more precise and vice versa. Using noninformative priors
and assumptions similar to those in the 1996 assessment, we
were, however, unable to obtain estimates ofr anywhere
close to that obtained in NMFS (1996) (0.26). For example,
our posterior mean with a noninformative prior onr was 0.7
with an SD of about 0.2 (Table 2). Although the posterior
CVs for most quantities were similar when an informative
prior for r was used (Table 2), the posterior SDs were larger
for most quantities when the uniform prior was applied. Cu-
riously, the posterior CV for MSY was only 5% with the
uniform on r prior compared with 44% in the baseline case.
This resulted because the posterior correlation betweenr and
K was –1 with a uniform prior onr and –0.59 with an infor-
mative prior. The use of an informative prior forr rather
than a noninformative prior thus produces marginal posteri-
ors that are not necessarily more informative about model
quantities (Table 2; Figs. 4b and 5). The most noteworthy
difference is in the central tendencies of the marginal poste-
riors.

Under the baseline case with the informative prior forr,
the posterior CV forr (62%) is only slightly smaller than the
prior CV (80%), also indicating that the data are not infor-
mative for the parameterr (Fig. 5b). The posterior expected
value for catch (309 000 fish, CV = 44%) for the years
1975–1980 (E(Co)) was less than the prior expected value
(477 000 fish), indicating that the data suggest a smaller
value for this quantity (Fig. 5c). Despite the broad posteriors
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Shark species Distribution Method rm50 rm SD(rm) CV(rm) sr

Sandbar M ~ lognormal(0.105, 0.72) Leslie 0.085 0.083 0.038 0.46 0.43
Lotka 0.089 0.088 0.040 0.46 0.44

M ~ lognormal(0.105, 0.42) Leslie 0.071 0.070 0.032 0.45 0.43
S ~ beta(18, 2) Leslie 0.089 0.090 0.043 0.48 0.46
S ~ beta(54, 6) Leslie 0.073 0.074 0.033 0.45 0.43
S ~ U(0.8, 1) Leslie 0.090 0.089 0.047 0.53 0.49
S ~ triangular(0.8, 0.9, 1) Leslie 0.070 0.074 0.038 0.51 0.48
S ~ parabolic(0.8, 0.85, 0.95, 1) Leslie 0.074 0.075 0.038 0.51 0.48

Blacktip M0 ~ lognormal(0.693, 0.72)
Leslie/Lotka 0.125 0.137 0.059 0.32 0.32

M1+ ~ lognormal(0.105, 0.72)

Note: rm50, medianrm; rm, meanrm; SD(rm), standard deviation forrm; CV(rm), coefficient of variation inrm; sr lognormal standard deviation forrm.

Table 1. Description of priors forr resulting from different input distributions for survival rate at age.

Fig. 2. Prior pdfs forr for sandbar sharks produced using the
Leslie matrix (dashed line) and Lotka (solid line) methods. The
age at maturity was assumed to be uniformly distributed between
14 and 17 years, the maximum age was 100, fecundity at age
was normal(2.1, 0.632), andMx was lognormal(0.105, 0.72)
(baseline and used in subsequent figures). (a) Distributions with-
out any truncation below the value of 0.01; (b) distributions with
truncation below the value of 0.01.
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Fig. 3. Histograms ofrm for sandbar sharks produced by using distribution for (a) Sx ~ uniform(0.8, 1.0),Sx ~ triangular(0.8, 0.9, 1.0),
andSx ~ parabolic in the tails with the minimum and maximum values at 0.8 and 1.0, respectively, and withSx uniform between 0.85 and
0.95, (b) Sx ~ beta(18, 2) andSx ~ beta(54, 6), and (c) Mx that was lognormal(0.105, 0.42) andMx that was lognormal(0.105, 0.72); a
parametric prior distribution forr that is lognormal(0.07, 0.52) is also given in Figs. 3a–3c; (d) histograms forrm for blacktip (BT) sharks
from the Leslie projection and Lotka methods; (e) prior for r for blacktip sharks from the Leslie method, priors forr for blacktip and
sandbar (SB) sharks, both produced by fitting a lognormal distribution to the Monte Carlo results, and a prior forr for LCSs that gives
less productive species more weight but has a larger SD to account for the variability inr among species in this grouping.
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in model parameters, the data suggest a strong decreasing
trend in abundance since the mid-1970s (Fig. 6). The mar-
ginal posterior distribution for abundance in 1998 is mark-
edly lower than that for abundance in 1975 with very little
overlap between these distributions (Fig. 5d).

Sensitivity of results to alternative priors
In Bayesian stock assessment, it is common to evaluate

the sensitivity of results to alternative prior distributions for
model input parameters. When the prior median value forr

was increased to 0.11 and 0.20,E(r) also increased,E(K)
decreased, andE(N98/K) and E(MSY) increased (Table 2;
Fig. 7). The posterior CV forr remained the same.E(MSY)
was particularly sensitive to the prior forr. When the prior
median for r was increased from 0.07 to 0.11 and 0.20,
E(MSY) increased from 157 000 (CV = 0.44) to 205 000
(CV = 0.39) and 284 000 fish (CV = 0.30).

Decision analysis results
Using a uniform prior forr provided very optimistic pre-
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Fig. 4. (a) Joint log likelihood profile forr and K in the logistic model; (b) joint posterior distribution for parametersr and K using
the baseline priors: prior median forr = 0.07,p(K) µ 1/K, prior mean(Co) = 477 000 fish, prior SD[logCo] = 0.52, prior mean(N75/K) =
1, and prior SD[log(N75/K)] = 0.2; (c) plots of the 13 CPUE series (rescaled to abundance in the baseline assessment) (symbols) and
the modal posterior trend in abundance (line).
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dictions of resilience to exploitation (Table 3). With a low in
abundance of 37%K in 1993 and a TAC continued at the
1995 level, recovery to the MSYL was predicted by 1999. In
contrast, when the baseline posterior distribution, which in-
corporates a prior forr based on demographic analysis, is
applied in the decision analysis, TACs similar to the 1998
TAC (about 60% of the 1995 TAC) for LCSs are not sus-
tainable. Whenf was maintained at the 1998 level of ap-
proximately 60% for the next 10 years,E(Nfin/K) dropped to
0.19. Only a policy in which the TAC was set tof £ 30% of
the harvest in 1995 had more than a 50% chance of increas-
ing stock size above the 1998 level (Fig. 8; Table 3). Only
values forf that were 10% and smaller resulted in a larger
than 50% chance of increasing stock size to larger than 0.5K
after 30 years (Fig. 8). A complete elimination of fishing
mortality could only result in a reasonable chance of stock
recovery after 20 years (Table 3; Fig. 8).

Increasing the prior median value forr markedly increased
the chance of recovery for the harvesting options considered.
For example, with the prior median forr set to 0.11, values
for f £ 40% had more than a 50% chance of increasing stock
size over the 1998 level after 30 years (Table 3). With the
prior median forr set to 0.20, values forf £ 60% had more
than a 50% chance of increasing stock size above the 1998
level after 30 years (Table 3).

Discussion

Much of the published work on Bayesian stock assess-
ment applies age-structured models that incorporate detailed
age-structured data and information (McAllister and Ianelli
1997; Punt and Hilborn 1997; Patterson 1999). However,
more highly aggregated models, such as a surplus produc-
tion model, can often be suitable when less detailed data are
available. But even for these latter models, priors are still re-
quired and relatively little attention has been given to this.
Hoenig et al. (1994) provided an empirical Bayes method
for constructing a prior distribution for parameters of an
equilibrium surplus production model using data from sev-
eral subpopulations. However, for a variety of reasons, equi-
librium models are often inappropriate (Hilborn and Walters
1992).

Kinas (1996) applied adaptive importance sampling, a
method for Bayesian integration, to estimate the parameters
in a nonequilibrium Schaefer model for orange roughy
(Hoplostethus atlanticus). Because the application was pri-
marily to illustrate methods of Bayesian integration, little at-
tention was given to the construction of priors, e.g., for the
intrinsic rate of increase. Unlike the current study, the

optimal harvest decision was the same for diffuse and
informative priors. McAllister and Kirkwood (1998a) also
exemplified a framework for Bayesian stock assessment us-
ing a nonequilibrium Schaefer model. Using catch and
CPUE data for cape hake (Merluccius capensis), they dem-
onstrated that CPUE data could only be informative aboutr
if the CPUE data showed a decreasing trend followed by an
increasing trend in response to a reduction in fishing effort.
McAllister and Kirkwood (1998b) also applied a
nonequilibrium Schaefer model to evaluate alternative man-
agement procedures for newly developing fisheries. They
demonstrated that risks of overdepletion could increase if
priors for uncertain model parameters were specified too
precisely (e.g., prior CV < 0.5). Meyer and Millar (1999) ex-
emplified useful and readily accessible software for
Bayesian data analysis, BUGS, with a Schaefer surplus pro-
duction model. A state–space modeling framework is advo-
cated that provides a conceptually and operationally
straightforward way to deal with model process error and
observation error within a single unified analytical frame-
work. A Markov chain Monte Carlo method is used for nu-
merical integration in contrast with the sampling/importance
resampling approach in this paper. Each alternative integra-
tion approach has its conveniences (McAllister and Ianelli
1997), and at least for fairly simple stock assessment prob-
lems such as the one in this paper, the choice is a matter of
personal preference. While the latter four works above give
scarce attention to the construction of prior distributions for
Schaefer model parameters, they could potentially use the
methods for this presented in this paper.

Linking demographic methods with parameter
estimation for Schaefer models

In this paper, we apply Bayesian methods to link demo-
graphic analysis with the fitting of surplus production mod-
els to time series data to improve the empirical basis for
parameter estimation. The theoretical basis for this link was
presented first. Here, we summarized three simple approaches
to approximatingrm from the same age-structured informa-
tion, the mean generation time, Leslie matrix, and Lotka
methods. We showed thatrm in demographic analysis is in-
dependent of whether the population is modeled in biomass
or numbers and thatrm is independent of the age-classes that
make up the modeled population. We also showed that
owing to conceptual similarities, therm calculated using
demographic methods can be exchangeable withr in surplus
production models in numbers and biomass and is independ-
ent of the part of the population modeled.

We presented a Monte Carlo approach to constructing a
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Expected value

Priors (all same as baseline except for these changes)K r Co MSY N98 N98/K

Uniform prior for r 2 868 (24) 0.69 (28) 224 (33) 462 (5) 1274 (27) 0.45 (11)
Baseline (medianr = 0.07, etc.) 10 226 (21) 0.07 (62) 309 (44) 157 (44) 2964 (32) 0.29 (29)
Median r = 0.11 9 142 (23) 0.10 (62) 295 (44) 205 (39) 2804 (34) 0.31 (29)
Median r = 0.20 (mean = 0.26) 7 339 (30) 0.19 (62) 268 (46) 284 (30) 2511 (36) 0.35 (30)

Note: Co is the mean annual catch before 1981. All runs used the CPUE data from NMFS (1996, 1997), and the 13 CPUE series were not combined.
Baseline refers to the use of a prior that is lognormal(0.07, 0.72) for r, uniform on log(K), lognormal(477, 0.522) for Co, and lognormal(exp(–0.22/2), 0.22)
for the ratio ofN75 to K. Abundance values (i.e.,K, MSY, andN98) are in thousands.

Table 2. Posterior means and % CVs (in parentheses) for various management quantities for U.S. LCSs.
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prior distribution for r in the logistic model from demo-
graphic analysis and some alternative methods to account
for uncertainty in inputs to demographic analysis such as
survival rate at age. The application to LCSs illustrates how
age-structured demographic information can be integrated
into the estimation of parameters in the Schaefer model to
increase accuracy in parameter estimates and provide bio-
logically sensible estimates for the evaluation of stock status
and alternative fishery management plans for stock rebuild-
ing. The methods rely on estimates of natural mortality, fe-
cundity, and the ages of maturity and senescence. Biological
research to obtain these estimates is essential before demo-
graphic methods can provide useful results.

The results for both sandbar and blacktip sharks supported
the observation in textbooks that the Lotka and Leslie matrix
methods for approximatingrm give almost the same results
(Krebs 1985; Begon et al. 1996). However, for both blacktip
and sandbar sharks, the Lotka method gave results consis-
tently 5% higher and with larger variance than the Leslie

method. As mentioned above, we believe that bias is more
likely in the Lotka method because the Lotka method is a
discrete approximation of an integral over an infinite range
of ages, and the model applied assumes senescence yet al-
lows the possibility of very high survival rates (Lotka 1907).
We therefore favor the use of the Leslie method, which does
not require such an approximation. Although this is compu-
tationally more intense, it takes only a minute or two on a
modern desktop computer to generate a prior distribution us-
ing the Leslie method. Other methods such as eigenvalue
methods (Cortes 1998; Ebert 1999; Quinn and Deriso 1999)
could also be used, but it would be advisable to cross-check
the results by applying other demographic methods to the
same data.

Additional work not reported here demonstrated that the
mean generation time method for computingrm could some-
times result in very large negative biases in approximations of
rm. The replacement of the arithmetic mean with the har-
monic mean helped to reduce this bias, but not entirely. In
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Fig. 5. Baseline marginal posteriors for (a) K, (b) r, and (c) Co. The prior is the dashed line and the posterior is the solid line. Base-
line marginal posteriors for (d) abundance in 1975 (dashed line) and 1998 (solid line), (e) N98/K, and (f) MSY.
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contrast, textbooks typically show examples in which the re-
sults provided by the Lotka and mean generation time meth-
ods give very similar results (Krebs 1985; Begon et al. 1996).
We recommend that practitioners avoid use of the mean gen-
eration time method even if the harmonic instead of arithme-
tic mean generation time, with its smaller bias, is applied.

The example also demonstrates that the probabilistic
framework for logistic model parameter estimation can be
used to indicate the effect of different assumptions about
model input parameters on the estimates of, and uncertain-
ties in, management quantities of interest such as MSY and
the current level of stock depletion.

The approach that we apply to construct a prior distribu-

tion for r is analogous to other methods that have applied
Monte Carlo methods to construct prior distributions that
combine empirical information and expert judgment
(McAllister et al. 1994; McAllister and Ianelli 1997). How-
ever, the simple Monte Carlo approach developed in this pa-
per is more reliant on empirical information, for example,
about life history parameters, than these other Monte Carlo
approaches, which, for example, rely on expert judgment for
the specification of input distributions for key sources of un-
certainty in acoustic and trawl survey abundance estimates.
An alternative approach to these is meta-analysis with hier-
archical probability models (Gelman et al. 1995; Liermann
and Hilborn 1997). This approach instead assumes that the

© 2001 NRC Canada

1884 Can. J. Fish. Aquat. Sci. Vol. 58, 2001

f = %C95 Nfin/K P(Nfin < 0.2K) P(Nfin > 0.5K) P(Nfin > N98)

Baselinea

0 0.67 0.00 0.76 1.00
10 0.58 0.04 0.60 0.95
20 0.47 0.17 0.45 0.74
30 0.36 0.36 0.31 0.52
40 0.25 0.55 0.21 0.34
50 0.16 0.71 0.13 0.20
60 0.09 (0.86) 0.83 (0.01) 0.07 (0.99) 0.10 (0.99)
70 0.05 0.91 0.04 0.05
80 0.03 0.95 0.01 0.02
90 0.02 0.98 0.01 0.01

100 0.01 (0.72) 0.99 (0.01) 0.00 (0.99) 0.00 (0.99)
r50 = 0.11

0 0.78 0.00 0.89 1.00
10 0.71 0.01 0.80 0.99
20 0.61 0.08 0.67 0.89
30 0.51 0.20 0.53 0.72
40 0.39 0.36 0.40 0.55
50 0.28 0.52 0.28 0.38
60 0.20 0.66 0.19 0.25
70 0.13 0.78 0.12 0.16
80 0.08 0.87 0.08 0.09
90 0.05 0.92 0.05 0.05

100 0.03 0.96 0.02 0.02
r50 = 0.20

0 0.92 0.00 0.99 1.00
10 0.87 0.00 0.97 1.00
20 0.81 0.00 0.91 1.00
30 0.74 0.04 0.84 0.93
40 0.65 0.12 0.74 0.84
50 0.55 0.22 0.63 0.72
60 0.45 0.35 0.53 0.59
70 0.36 0.45 0.43 0.48
80 0.28 0.57 0.34 0.37
90 0.20 0.68 0.24 0.27

100 0.14 0.78 0.15 0.16

Note: Nfin/K, stock abundance in the final year (2028) of management as a percentage ofK; P(Nfin < 0.2K),
probability that stock abundance falls below 0.2K in the final year of the management horizon;P(Nfin > 0.5K),
probability that stock abundance will be above 0.5K in the final year of the management horizon;P(Nfin > N98),
probability that stock abundance in the final year of the management horizon will be above that in 1998;f =
%C95, TAC policy option evaluated. The percent values in the last column reflect the TAC evaluated as a
percentage of the total reported catch in 1995 (367 200 fish).

aThe values in parentheses were obtained when a uniform prior forr was used in a separate decision
analysis and are included in this table to facilitate comparisons.

Table 3. Consequences of alternative harvesting policies to promote resource recovery.
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parameter(s) of interest varies across similar populations and
incorporates data from other similar populations to estimate
the form of this distribution. The approach in Myers et al.
(1997, 1999) has been applied to construct a prior distribu-
tion for rm for albacore (Thunnus alalunga) using stock–
recruit data from 12 other tuna populations (Millar and
Meyer 2000). However, hierarchical meta-analysis is the
most data-intensive method for developing priors and, as
with sharks, the data required are often not available. Where
both stock–recruit data from other populations and demo-
graphic data for the population of interest are available, hier-
archical meta-analysis and the demographic method in this
paper could both be applied to construct alternative prior
distributions forr, and the sensitivity of decision analysis re-
sults to these alternative priors could be communicated to
decision makers. Another option is to apply meta-analysis to
abundance data from taxonomically similar very heavily
fished populations where exploitation has been stopped and
to approximate a pdf forr from the rebounds in observed
abundance (Best 1993).

Comparisons between Bayesian and non-Bayesian results
The Bayesian assessment results on the status of LCSs are

far less optimistic than those in a recent non-Bayesian as-
sessment (NMFS 1996) that used the same surplus produc-
tion model and catch and CPUE data (we note that for the
1998 assessment, the NMFS adopted the approach presented
in this paper (NMFS 1998)). The Bayesian estimate of the
historic decline in abundance is not dissimilar from that in
the 1996 SEW. For example, the 1996 SEW indicated that
LCS abundance had declined about 50–75% between the
1970s and 1996. The baseline analysis indicates that abun-
dance appears to have declined about 55–80% over the same
time period. This similarity is not surprising, since the same
model was fitted to the same CPUE data.

A major difference is in the estimate ofr in the Prager
(1994) production model. The non-Bayesian analysis in
NMFS (1996) provided a production model estimate ofr of
0.26. This estimate ignored “prior” information aboutrm and
estimatedr by fitting the Prager model to a composite index
based on the 1981–1995 CPUE data. Our attempt to repli-
cate this assessment using the same Prager model and catch
and CPUE data produced an estimate of 0.7. Close analysis
of detailed model output in NMFS (1996) indicates that
there may have been a failure in numerical convergence. In
contrast, Bayesian demographic methods produced a poste-
rior median estimate ofr of 0.07, a value consistent with de-
mographic data on LCSs.

This latter estimate ofr is preferable because it accounts
for life history information that the NMFS (1996) estimate
leaves out. This estimate is also consistent with estimates of
ro for marine animals with similar reproductive life history
characteristics (e.g., baleen whales (Best 1993)). Moreover,
the CPUE data are not informative forr and, as also indi-
cated by the very high estimate of 0.7, cannot be relied on
by themselves to provide an accurate estimate ofr.

It is thus important for stock assessments that use a
Schaefer model to incorporate prior information onr, partic-
ularly when the time series data are noninformative with re-
spect tor. As in the current example, time series data are
uninformative often because they show a classic one-way
trip (Hilborn and Walters 1992): taken together, the relative
abundance data to which the production model is fitted con-
form only to a decreasing pattern over time. This is common
in many fisheries, especially developing ones and heavily
exploited ones (McAllister and Kirkwood 1998b). In order
for relative abundance data to be informative aboutr, they
must show at least one decreasing and one increasing pattern
over time resulting from varying levels of exploitation inten-
sity (Hilborn and Walters 1992; McAllister and Kirkwood
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Fig. 6. Abundance relative toK between 1975 and 1998 (solid line) and 95% probability intervals (dashed lines).
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1998a). If they do not, then the resulting point estimate ofr
can be highly imprecise and possibly strongly biased, as in
the present example. The joint posterior forr andK from a
uniform prior for r shows that there is a large set of combi-
nations of values for these parameters that fit the data almost
equally well. In such cases, a prior forr based on demo-
graphic analysis or hierarchical methods (Myers et al. 1999)
can be particularly useful for providing estimates ofr con-
sistent with knowledge about the organism’s life history.

From a practical point of view, the use of such prior infor-
mation is important because the values assumed forr can
strongly determine the ability of a population to recover, if it
has been heavily depleted. For example, NMFS (1996) ap-

plied the estimate forr of 0.26 in its evaluation of alterna-
tive recovery options. As this value forr appears to be too
high, it is likely that the policy projections of the 1996 SEW
are too optimistic. In contrast, the inclusion of demographic
information aboutr should provide a more biologically con-
sistent basis with which to evaluate alternative recovery op-
tions.

Bayesian estimation enabled the incorporation of other
sensible assumptions about population dynamics. For exam-
ple, an informative prior about the ratio of stock size in 1975
to carrying capacity was incorporated based on the informa-
tion that fishing for sharks only started to pick up in the
mid-1970s (J. Musick, Virginia Institute of Marine Science,
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Fig. 7. Marginal posteriors for (a) K, (b) r, (c) N98/K, and (d) MSY when the prior median forr was changed from 0.07 (solid line) to
0.11 (long-dashed line) and 0.20 (short-dashed line).
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Fig. 8. Median values (thick line) and 90% probability intervals (thin lines) for stock size divided byK with alternative values for the
TAC after 1998. The panels show the results under alternative constant TAC policies for fractions of the 1995 reported catch ranging
from 0.0 to 0.7 of 367 200 fish. Results were produced with the baseline Bayesian assessment (e.g., prior median forr = 0.07).
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College of William and Mary, School of Marine Science,
Gloucester Point, VA 23062, U.S.A., personal communica-
tion). In order to account for the missing catch data between
1975 and 1980 and fit the model also to the CPUE data in
these years, we also incorporated an informative prior for
the mean catch between 1975 and 1980 based on the mean
catches between 1981 and 1995.

As with other recent articles on Bayesian stock assess-
ment (McAllister and Kirkwood 1998a, 1998b; Patterson
1999), this paper also demonstrates that the use of Bayesian
decision analytic methods could help fishery managers to
implement a deliberately precautionary approach (FAO 1995)
to fishery management. The methods can be used to account
for some highly influential uncertainties in population dy-
namics and provide a rational and objective means to evalu-
ate the trade-offs of decreasing harvests and increasing the
chances of achieving a stock recovery.
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Appendix A. r in numbers or biomass?

This appendix proves that under the assumption of stationary weight at age,r is independent of population abundance in
numbers or biomass. In a biomass dynamic model,r has the following interpretation:
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whereBt is population biomass in yeart. Under such conditions and stable age structure,r can be obtained from
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wherewx,t andNx,t are the weight and abundance at agex in yeart. This proof assumes that at very low population density, the
weight at age is likely to be unaffected by intraspecific competition. Therefore, the vectors of weight at age in time intervalst
and t + 1 are assumed to be the same between time steps.

If weight at age is constant at low population density, then the intrinsic rate of increase for a model in biomass is the same
as that for a model in abundance. We demonstrate this as follows. First, the expression forr in abundance can be expressed as
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Since this equation holds only if the age structure is stable, the expression can be rewritten as
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wherecx is the proportion of individuals of agex and Htcx = Nt,x. This expression can be simplified as follows:
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whereQ is a constant. This same result can be obtained for a model in biomass:
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and from eq. A5:
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Simplifying:
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This is precisely the same result obtained with the equations in abundance (eq. A7). Therefore,r is the same for a model in
abundance or biomass. Ther is directly related to somatic growth because there is often a strong relationship between individ-
ual growth rate, the age at maturity, and fecundity at age. The effect of somatic growth onr is manifested in the maturity and
fecundity at age schedule. The demographic methods for computingrm thus implicitly incorporate somatic growth rates and
apply equally well to Schaefer models in biomass and abundance. Application of matrix algebra to the Leslie matrix yields
the same dominant eigenvalue and value forr with and without the weight at age vector, providing that this vector remains
constant.

Appendix B. r for exploited or mature animals?

This appendix demonstrates thatr is independent of the age groupings considered in the population modeled in a Schaefer
model. Using an expression forri+ for the abundance of agei+ individuals,ri+ can be equated with
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where 0£ i £ A. Using Nx,t = Htcx wherecx is the “stabilized” proportion of individuals of agex (i.e., if the Leslie population
matrix was projected indefinitely):

(B2) r

H c

H c

i

N

t x
x i

A

t x
x i

A
t
i

+

®

+
=

=

=

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

+

å

å
lim log

0

1

or

(B3) r Qi

Nt
i

+

®
=

+
lim log( )

0

where again:

(B4) Q
H
H
t

t

= +1

Thus,r is independent of the age-classes included and modeled in the quantityPt. The same can be shown for the biomass quantity
Bt. The same can also be shown if recruitment toPt is not knife-edged at agei but occurs over a number of age-classes. Therefore,
demographic methods to estimater are also independent of the age or pattern of recruitment to the modeled population.
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