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PERSPECTIVES

Using demographic methods to construct
Bayesian priors for the intrinsic rate of increase in
the Schaefer model and implications for stock
rebuilding

M.K. McAllister, E.K. Pikitch, and E.A. Babcock

Abstract: Even though Bayesian methods can provide statistically rigorous assessments of the biological status of fish
eries resources, uninformative data (e.g., declining catch rate series with little variation in fishing effort) can produce
highly imprecise parameter estimates. This can be counteracted with the use of informative Bayesian prior distributions
(priors) for model parameters. We develop priors for the intrinsic rate of increxse the Schaefer surplus production
model using demographic methods and illustrate the utility of this with an application to large coastal sharks in the
Atlantic. In 1996, a U.S. stock assessment obtained a point estimateofo®.26. For such long-lived and low-fecund
organisms, this could potentially be too high. Yet it was used to predict that within about 10 years, a 50% reduction in
the 1995 catch level should result in >50% chance of increasing the population to the abundance required to produce
maximum sustainable yield. In contrast, a Bayesian assessment that used demographic analysis to construct a prior for
r with a median of 0.07 and coefficient of variation (CV) of 0.7 indicated that within 30 years, this policy would have
only a very small chance of increasing the population to maximum sustainable yield.

Résumé: Bien que les techniques bayésiennes puissent fournir des estimations statistiquement rigoureuses du statut
biologique des ressources halieuthiques, des données pauvres en information (e.g., un série de taux de capture associée
a un effort de péche peu variable) peuvent produire des estimations de parametres trés imprécises. Ce probleme peut
étre contrecarré par I'utilisation de distributions bayésiennes a priori (priors) pour les paramétres du modéle. Nous
avons développé des distributions a priori pour le taux intrinseque de croissardan$ le modéle de production
excédentaire de Schaefer a I'aide de méthodes démographiques et nous illustrons I'utilité de cette approche en
I'appliquant aux grands requins cétiers de I'Atlantique. En 1996, une évaluation de stock faite aux Etats-Unis a donné
une estimation ponctuelle dede 0,26. Pour des organismes a grande longévité et a faible fécondité, cette valeur est
potentiellement trop élevée. Néanmoins, elle a servi a prédire que, dans a peu prés 10 ans, une réduction de 50% dans
le taux de capture de 1995 aurait pour conséquence une probabilité de >50% de faire croitre la population suffisam
ment pour atteindre le niveau de rendement maximal soutenu. En revanche, une estimation de type bayésien qui a
utilisé une analyse démographique pour établir une distribution a prioriadec une médiane de 0,07 et un coefficient

de variation de 0,7 indique qu’une telle politique de capture n'aurait, au bout de 30 ans, qu’une trés faible probabilité

de permettre a la population d’atteindre le rendement maximal soutenu.

[Traduit par la Rédaction]

Introduction Hilborn 1997; McAllister and Kirkwood 1998. However,
when these methods are used to model uncertainty, particu
Bayesian estimation has been advocated as a statisticallgrly in fisheries stock assessment, model predictions can
rigorous approach to account for and reduce uncertaintiestill be highly imprecise and biased (Adkison and Peterman
arising from data analysis (Gelman et al. 1995; Punt and996). This is often because data for individual fish stocks
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are uninformative about key population dynamics model pathis model, the intrinsic rate of increase, is defined as the

rameters, for example, the maximum population growth ratemaximum per capita rate of increase. Thus,andr,, are

r, which can determine the rate of population recovery fol analogous, except that is realized without any assump

lowing severe depletion and a reduction in harvestingions about age structure as abundance approaches zero,

(Liermann and Hilborn 1997; Myers et al. 1997). when density-dependent effects that reduce the rate of-popu
Estimation uncertainty can be reduced with the applicalation growth are assumed to be at a minimum:

tion of informative Bayesian prior probability density func

tions (pdfs) for model parameters (McAllister et al. 1994).(2) dN lim . N

Hierarchical modeling methods have recently been devel gt Noo -

oped to help construct these priors (Gelman et al. 1995;

Liermann and Hilborn 1997). Myers et al. (1997, 1999), for . . . . -

example, provided a hierarchical modeling approach thaf "€ realized per capita rate of increasg, in the logistic

was applied by Millar and Meyer (2000) to construct a priormodel (ed. 17) varies with population abundance and is

pdf for r that incorporates stock and recruit data sets; estit"eréby analogous t, in demographic theory. Therefore, it

mates of the age at maturity, and the rate of natural mortality/ould appear that under suitable conditions (defined below),

in adults. These methods, however, require data sets froy @PProximation of the quantity, with the use of demo
several other similar (e.g., conspecific or congeneric) popud'@Phic methods could potentially be used as an approxima

lations. In many instances, for example, for most shark poption of 1 in the logistic model. o _
ulations, such data sets are not available. We formulate in Despite the conceptual overlap between logistic modeling
this paper an alternative approach to constructing a prior foRnd demographic analysis, the methodologies employed by
r that uses demographic methods, which do not require da@@ch to estimate their parameters have remained separate.
from other populations (Krebs 1985; Begon et al. 1996:For example, in fisheries stock assessment, logistic models
Ebert 1999). We illustrate this approach with an application@"® typically fitted to abundance data to estimatghereaf
to demographic and catch and catch rate data for largter referred to as), and despite the availability of demo
coastal sharks (LCSs) off the U.S. Atlantic coast. graphic data, no use has been made of demographic methods
This paper is organized as follows. First, we formulate alo fa}C|I|tate this estimation. Demo_graph|c methods to ap-
demographic approach to constructing a prior distributiorProXimater, are often overlooked in stock assessments or
for r. Second, we illustrate the utility of this approach with 'eated separately from the model fitting approach (Cortes
an application to data for LCSs. Bayesian posterior estimates?98; Smith et al. 1998). In this paper, we illustrate the util-
of stock status and potential for recovery to the maximurr®y Of demographic methods in helping to improve the accu-

sustainable yield level (MSYL) are assessed with and with/@Cy of estimates of for population modeling. Below, we
out the informative prior for. review a few of the simpler demographic methods to approx-

imater,, and then provide some guidelines for the construc-

Using demographic analysis to construct a prior tion of a prior forr.

probability distribution for the intrinsic rate of increase

Demographic theory provides two conceptually interrelated®emographic methods to approximater,,
definitions of the intrinsic rate of natural increase (Krebs The simplest demographic methods for approximating
1985, pp. 182-184). The first is the observed rate of increasandr, rely on estimates of “vital rates” such as fecundity at
per individual per unit timer,, for a population in its natural age and survival rate at age (from natural causes of death)
environment. The, varies continuously from — to + in t+e  (Krebs 1985; Begon et al. 1996). Estimates of these quanti
sponse to changes in food availability, age distribution, andies are occasionally available for exploited populations. In
environmental conditions, among other things. The second isuch instances, demographic methods (Krebs 1985; Begon et
the innate capacity for increaseg,. This is the maximum per al. 1996) can be applied to approximaig It is important
capita rate of increase attained under some particular set é#r practitioners to note when in the population’s exploita
abiotic conditions when the quantities of food, space, andion history the vital rates were estimated. To obtain approx
animals in the population are kept to an optimum and otheimations ofr,,, the values for survival rate and fecundity
species are entirely excluded from the situation. In otheshould be obtained when density-dependent processes are
words, this is the maximum population growth rate owing toleast likely to be operating, for example, at abundances low
optimal biological conditions at a given set of abiotic cendi relative to carrying capacity. Alternatively, if estimates are
tions. This quantity is often used as a reference point foavailable when the population is moderately exploited, then
comparisons with observed rates of increase in naturdt could be assumed that the abundance was near the MSYL.
Demographic theory also specifies that under constantlyrhe realized rate of increase, of the population would
maintained abiotic and optimal biological conditions, a pop then be less than the maximum possible value and would
ulation would reach a stable age structure and increase ineed to be increased by up to a factor of 2 if it were to be

numbers according to the differential equation used as an approximation ofin the logistic model.
If the population is heavily exploited, it is unlikely that
(1) dN _ rN the population’s age distribution will be stable, as required
dt by some demographic methods. However, this should not

bias demographic approximations gf provided that they
These formulations parallel analogous ones associated wittho not obtain the survival rate at age directly from the ob
the age-aggregated logistic population dynamics model. liserved age distribution, as in some cohort life table methods
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(Begon et al. 1996). There are at least three simple demat (e.g., using the geometric and harmonic means instead of
graphic methods that could be used to approxinmgte the arithmetic mean) were highly inaccurate and that the
other two methods below should be used instead.
Generation time method
The simplest method derives from the following approxi Leslie matrix method

mation (Krebs 1985; Begon et al. 1996): A second approach to approximatimgprojects a Leslie

3) R~1exp(.G) population matrix over several time steps until the popula
m tion age structure (proportion at age) has stabilized (Krebs

whereR is the expected lifetime contribution of female -off 1985). The intrinsic rate of increase can then be computed

spring from a single female organism aBdis the approxi ~ from the ratio of abundance between one time step and the

mated mean generation time. TBemay also be interpreted previous. The initial vector of female numbers at age can be

as the weighted average age of reproductive females withnitialized by

weighting by the expected births at age after the survival

rate at age of reproductive females has been accounted f69) Ny =1000l,

see eq. 8). Th& can be obtained b
( a8) I y The number of age-0 female individuals for the next time

(4) R= EA,I m step is given by
- xHix
x=0

A
(10)  Nog1 = me Ny t
x=0

whereA is the maximum possible age of a femdlgis the
expected survivorship of females from age 0 to agandm,
is the expected number of age-0 female offspring per-indiThe number of female individuals of agein the next step

vidual female or fecundity at age Ther,, can thus be ob  for ages 1 toA (assuming senescence at aieis given by
tained by dividing the natural logarithm of the expected

lifetime contribution of female offspring from a single fe- (11) Nyy3 = S 1N, 14

male organismR, by the mean generation time: . . . . _
Trial and error is required to identify when the age structure

o A Im has stabilized. This usually does not take many time steps,
9 Z XX and stabilization can be monitored by computing the average
(5) M = X:j percent change in the proportion at age between each time
G step:
The components of this equation can be obtained as follows. 1 Né{t‘NS{ff
Thel, is computed by (12) A :10072 Ny t-1
A P_1
x-1 x=0
6 l,=11S;
(6) X g ! where
where§ is the survival rate at ageandl, is 1. Them, can 13) P = A N
be expressed as a function of the expected fecundity per ir{ ) t= 2 %t
dividual female, sex ratig, and the age at maturity: x=0
(7) m, = sg, f, When this average percentage becomes very small, say

<0.0001%, the age structure can be considered to be stable.

whereg is the expected proportion of individuals mature atonce age structure is stabilized,, can then be approxi
agex andf, is the fecundity of those mature at ageThe  mated from

arithmetic mean generation timé,, which is typically ap

lied, is approximated b
P PP y (14) r, =log R
A
Ra
Y xlymy
(8) Ga=*r— While this approach works well, the “classical” way to-ap
2| m proximater ., through Leslie or other matrices is using ‘ma
XPEEX

trix algebra wheré\, = & is the dominant eigenvalue of the
transition matrix (Ebert 1999; Quinn and Deriso 1999).
with each agex weighted by the expected contribution of However, both the eigenvalue and matrix projection ap
offspring at that age. Note that eq. 5 does not give the “true’proaches are practically identical. We compufedor the
value ofr,,. The shape of thal,m, versusx distribution i basecase for sandbar shari&(charhinus plumbegdelow
fluences how close the approximation @f from eq. 5 ap  and, as expected, obtained results practically identical to
proaches the true value af,. If that distribution is not those obtained using the matrix projection method. We-pres
normal, this method does not work well (see Ebert (1999ent the simpler matrix projection approach rather than the
pp. 17-18) for a discussion). Extensive simulations using theigenvalue one to make the methodology more accessible to
shark data below showed that this method and extensions & wider audience.
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Euler—Lotka method inaccuracies in the approximation if survival rates are high
Thirdly, r,, can be approximated from the following equa and the maximum age is not very large.

tion (Lotka 1907):
Formulation of distributions for survival rates and

AN fecundities
(158) Y emX,m, =1 Becauser in the logistic model is the rate of increase in
x=0 abundance when density-dependent effects are nonexistent,

the estimates of survival rate, fecundity, and proportior ma
kure at ages,, f,, andg, (egs. 6 and 7), used should only be
those expected to occur at very low population size when
o density-dependent effects that can reduce survival rate and
(15b) J'e—rmX|XdeX =1 fecundity at larger population abundance are not operating.
o However, for many exploited populations, this should not be
a serious problem, since a high percentage of them are
Ther,, cannot be solved analytically from this equation; it overexploited (e.g., about 70% of assessed fish stocks (FAO
must be solved numerically using a computer. The initial2000)).

guess forr can be that obtained by the first method above. In most instances, the most uncertain paramete,,ishe
survival rate at age, or, by transformatiod,, the rate of

natural mortality at age. A number of alternative distribu
tions reflecting what is known about the survival rate at age
p Should be formulated to evaluate the potential effects ef un
certainty in this parameter on the distribution fQf.
In some instances, distributions uniform over a small
range, e.g., 0.8 to 1, fog, have been formulated (NMFS
1996). We recommend that such distributions $rshould

Note that this is a discrete approximation of an integral ove
ages 0 to:

Steps for using demographic methods to construct a
prior distribution for r in the logistic model

A prior distribution forr in the logistic model can be e
tained from the following steps. (1) Formulate prior distribu
tions for the rate of survivalg) or natural mortality at age
(M,) of female individuals and fecundity at agenj of
female offspring. (2) Randomly draw a vector of values from . . X .
the prior distributions foiS, or M, andm,. Using one of the be _av0|ded. It is often the case th_at_there is a most credl_ble
demographic methods described above, compute the valfStimate ofS and that credibility diminishes as the numeri-
for r,,. (3) Repeat step 2 many times (e 51000). (4) Elim- cal_ d|stan.ce .fror_n this value increases. Eur;her_more, narrow
inate all values forr,, that are less than a predefined Uniform distributions forS, can produce distributions far,
minimum possible value (e.gr, < 0.01, see below). that have sharp cuto'ffs (see Results). Prior d!strlb_utlons that
(5) Construct a frequency distribution of the resulting valued'@ve sharp cutoff points can strongly bias estimation results,
for r,. (6) Construct a parametric density function such adparticularly if the true value is in the region of zero probabil-
the beta or lognormal distribution based on the empiricafty (Adkison and Peterman 1996).
distribution generated in steps 1 to 5. This parametric den- !NStéad, we suggest alternative distributions$psuch as
sity function forr,, can be used as the prior forin the lo- ~ the betay, w) (wherev > 0, w > 0, mean =v/(v + w), and
gistic model. The formulation of a parametric density V&rance =vw/[(v+w)*(v + w+ 1)]), and normal(, 6°) trun-
function is not absolutely necessary. One could instead workat€d below 0 and above 1 (wherés the median and is
directly with the discrete frequency distribution obtained. the standard deviation in the natural logarithm of the random

While the above steps appear to be straightforward, we hay@iable) (Evans et al. 1993). A beta distribution 8y is
several recommendations regarding them. particularly convenient because this distribution falls between

0 and 1 and can take on a wide variety of shapes. A normal
Use of the different demographic methods distribution truncated below 0 or a lognormal distribution for

Of the three demographic methods for approximatigg ~ the rate of natural mortality at aghl,, could also be appro
the generation time method (using the arithmetic mean gerP'iaté whereby the median favl, and the standard devia
eration time) is the simplest. It is also the least accurate bdfons in M, or the natural logarithm oM,, o,, are obtained
often provides values similar to those of the other methods8Mpirically, if possible. If no empirical estimate fax, is
The inaccuracy results mainly because the arithmetic meagvailable, then the value for this parameter could be set sub
generation time (eq. 8) is a biased approximation of meadectively. For example, the minimum and maximum pla_usmle
generation time; thus, other approximationsoére consid  values forM, can be used to set the value &grby associat
ered. In contrast, the Leslie projection and Euler-Lotkal"9 these extremes.wn_h potential 95% conﬁdencg intervals
methods provide much more accurate approximations,of [0F & lognormally distributedM,. In Monte Carlo simula
than the first method. We therefore recommend that thesHONS, S can then be obtained by transforming the random
latter two methods for approximating, be applied and the VariableM,:

;esults compared. To start, code up each of the methods qu) S =expEM,)

preadsheet and attempt to obtain comparable results wit
the same input parameters. We prefer the Leslie projectioff the sensitivity of prior distributions for to input distribu
method because it provides a nearly exact numerical agions for M, is to be evaluated, we recommend that at a-min
proach for approximation, providing that the simulated agemum, variants to the baseline distribution fidr, be tried in
structure has stabilized. In contrast, the Lotka methodvhich the median and, are varied. If it is plausible thad,
(eq. 15) is a discrete approximation of an integral over agesr S, varies with agex, then priors forr should be con
between 0 and- (Lotka 1907). In particular, there may be structed under this assumption.
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Estimating r for population models in numbers versus stant quota policies that were varying fractions of the 1995
biomass of individuals total reported catch of LCSs (367 200 fish). The fractions
The demographic methods that we describe are based ofaried from 100% to 90,...,10, and 0%. These same policies
abundance in numbers as opposed to biomass. However, Wwere also evaluated in the 1996 SEW.
many instances, the Schaefer equation models biomass, notStep 2 is to identify the indices of policy performance.
numbers. How then can we obtain a prior fousing deme  The indices used to evaluate policy performance include the
graphic methods? The answer is by applying the same-metliollowing: (a) the posterior expected value for the ratio of
ods. Appendix A proves that is the same whether the stock abundance to carrying capaciB();,/K)) in the years
modeling is in biomass or numbers, providing that weight at2008, 2018, and 2028b) the probabilities that stock size in
age remains constant from one generation to the next. these three years will be larger than the stock size in 1998
(P(Ng, > Ngg)), (c) the probability that the stock size in each
Estimating r for models of mature or exploited population of these years will be larger than &5the MSY stock level
abundance (P(N;s, > 0.5K)), and €) the probability that stock size will
The demographic methods to compujeare based on all be below 0.K in these yearsR(N;, < 0.2)).
age groupings (egs. 3-15). In contrast, Schaefer models Steps 3 and 4 are to identify alternative hypotheses and
when applied in fisheries stock assessment apply to the agevaluate the weight of evidence in their support. A key input
and (or) size-classes vulnerable to fishing mortality. Appento a decision analysis is the joint posterior probability distri
dix B proves that the value for, obtained by the demo bution for the alternative hypotheses, e.g., alternative values
graphic methods is independent of the age-classes includddr the estimated population model parameters. In this sec
and modeled in the quantitf?,. Therefore, demographic tion, we describe the population dynamics model, the data,
methods for computing,, are independent of the age or pat the likelihood function, the prior probability distributions,
tern of recruitment to the population modeled by the logisticand the method to produce marginal posterior distributions
model. However, the demographic methods applied will stillfor quantities of interest.
need to include all of the possible age-classes.
Population dynamics model and alternative hypotheses
Dealing with negative values of,r The surplus production model that we applied, the same
If there is considerable uncertainty over the survivorshipas in NMFS (1996), is in numbers rather than biomass and is
and fecundity schedules, it is likely that some of the permudetailed in Prager (1994). The surplus production function
tations of the combined fecundity and survivorship schedwith fishing mortality included is given by
ules that can be obtained from their respective distributions
will result in negative values for,. However, it is highly (17) dN; (r — F)N N2
unlikely for the intrinsic rate of increase in the logistic dt vt t
model to be equal to or less than zero, unless, for reasons
other than exploitation, the population is destined for extinCyyheret is the yearN is stock abundance, is the intrinsic
tion. It could be argued that very small nonnegative valuesate of increaseK is the carrying capacity, an& is the
(€.9.,r < 0.01) are also highly unlikely. This accounts for jnstantaneous fishing mortality rate. Dividing eq. 17 Ky

step 4 in the Monte Carlo procedure described above.  gives the realized rate of increase, The maximum harvest
rate possible was assumed to be 0.99. Abundance is updated
lllustrating the integration of demographic methods annually by

with Schaefer model assessments

Below, we illustrate the utility of integrating demographic N, expr)

methods in stock assessment using the Schaefer model Wigl] Nia o + BN (expey ) —1) whena, # 0
an application to data for large coastal sharks (LCSs) on th 8)

U.S. east coast. In 1996, the U.S. National Marine Fisheries N = Ne wheno,;, = 0

Service (NMFS) held a Shark Evaluation Workshop (SEW) 1+BN;

to evaluate the status of LCSs off of the east coast of the

United States and recommend harvesting policies for thisvhereo, = r —F andf = r/K. The most cumbersome aspect

species grouping. The report of the workshop concluded thatf this version of the Schaefer model is tHgtcan only be

the LCS grouping was heavily depleted and suggested that ablved numerically (Prager 1994). Prager (1994, p. 376) pro

least a 50% cut in the catch of LCSs was required to provided two different equations in whidh, is on both sides of

mote population recovery. In 1997, the NMFS implementedthe equation for whew, # 0 ando, = 0. A starting guess was

a 50% cut in the total allowable catch (TAC) for commercial provided forF, (the harvest rat€,/N,) and this was entered

fishermen (Anonymous 1997). The recreational bag limit forinto the right-hand side of the equation. The resultfagvas

Atlantic sharks was reduced to two fish per boat trip. Below,then computed. This lattét, was input into the equation and

we describe how we carried out each of the five steps fothis process was iterated until the difference between the

Bayesian stock assessment (from McAllister and Kirkwoodinputted and outputte®, was very small (<0.000001).

1998&). The data for LCSs combined are used here instead The alternative hypotheses considered in the stock assess

of those for single species to make the results comparableent consisted of alternative values for the parametefs

with those obtained in the 1996 SEW. andN,g/K. The initial uncertainty over these was represented
Step 1 is to identify the alternative management proceby a joint prior pdf ofr, K, andN,5/K, with each of the pa

dures to evaluate. As in the 1996 SEW, we evaluated corrameters independent.
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Catch and catch per unit effort (CPUE) data 13 1995 [ | 2
The production model used in NMFS (1996) was fitted to(21) A = _2 2 0.5 log| —t
13 different series of CPUE data. These data extend from 1219756 Cij,tGﬁL a; N
1975 to 1995. We fitted the same production model to these
data and assumed that CPUE, was directly proportional - 0.5log(g CVjZ,tGﬁ)

to stock abundance. . . T
Prior probability distributions

(19) Iy =N, Prior probability distributions were required forK, N;g/K,

' Co G, andc,j. Prior probability distributions were informa
whereg; is the constant of proportionality or catchability-co tive for r, Nzg/K, and C, only. The noninformative prior
efficient. Note that this latter assumption may be inaccuratdlistributions assumed fa; ando, were uniform over the
for several reasons. For example, there have probably bedwtural logarithm of these quantities, and this made their
long-term changes in catchability and catchability may notintegration from the joint distribution extremely simple (see
be constant with stock size. However, for now, we ignoreWalters and Ludwig (1994) for the numerical shortcut).
these possibilities. The informative prior forr for LCSs was developed using

The series of annual catches for LCSs extends from 198@emographic information for the two species most common
to 1996. All values but the last were taken from NMFSin the LCS fishery, sandbar shark and blacktip shark
(1996). The value for 1996 was taken from the 1997 SEw(Carcharhinus limbatus The input distributions formulated
Note that some of the CPUE series extend well before thavere based on those given in NMFS (1996). In NMFS
beginning of the catch series (from 1975) and that catche€l996), a Monte Carlo method similar to that described
were taken even before 1975. It would have been desirabl@bove was applied to compute probability distributions for
from the point of view of estimation for the catch and the 'm based on input distributions for survivorship at age and
CPUE series to begin at the same time and to begin as earBUpping rate at age for sandbar sharks. For example, in one
as possible in the history of exploitation. Conventional-esti instance, the maximum agé, was considered to be 100
mation approaches only allow us to use data series begiryears, the age at maturity was uniformly distributed between,
ning in 1981. However, the Bayesian approach can allow ugnd including, 13 and 17 years, the fecundity at age was nor-
to use the full CPUE series if we treat the catches betweemal with a mean of 2.1 female pups per year and a CV of
1975 and 1980 as unobserved random variables. For simplié-3, and the annual survival rate was uniformly distributed
ity, we have assumed that catches were constant over this pgetween 0.8 and 1.0 and assumed to be constant with age.
riod and equal taC, and thatC, is an additional parameter This latter assumption is unrealistic and the survival rate
to be estimated. We assumed that the total catches in 1997m natural causes of death is typically much less for the
and 1998 were given by the commercial quota (1285 mpoungest age-classes. Assuming constant survival rate
divided by the average dressed weight of 18.2fi&ky™) in instead could give rise to positively biased approximations
1997 plus 75% of the recreational harvest in 1996 and th@f rn. We applied this same assumption in this paper to rep-
values for longline and coastal discards for 1996 (NMFSlicate as closely as possible the results in the 1996 stock

1997). The total came to 227 300 fish. assessment (NMFS 1996). Moreover, for sharks that produce
well-developed, free-swimming young, the assumption of
Likelihood function constant survival rate at age is unlikely to result in large
In the likelihood function, we assumed that the data werdiases. On the other hand, the values used for parameters
lognormally distributed: such asS, were obtained not at the very lowest abundances
and this should compensate to some extent for the positive
(20) 1;, ~ lognormalg; N, 62 t) bias caused by assuming const&ptFor reasons described

above, narrow uniform distributions for parameters such as
whereo,z,[ is the annual variance in the lognormal densitysurvival rates are better replaced by beta distributionsSfor
function 'andqj is the constant of proportionality for series. or lognormal distributions for the rate of natural mortality.
In some of the CPUE series, annual estimates of the CV for With these and other input distributions (NMFS 1996), the
sampling error were available (GY. TheCij,t were used as resulting output distributions for include values mostly

li‘t

weights to determine the relative value for each anoial above zero, although in all cases, and others that we tried,
: the lower tail of the output distributions always included
o =c¢CVio? negative values. The Monte Carlo procedure outlined above
! j

suggests that the resulting distribution for the intrinsic rate
where ¢; is the constant for serigsrequired to make the of increase be truncated at or just above zero. The median
weights sum to 1 (derived by solving for it algebraically) values forr,, in the distributions from NMFS (1996) ranged
and clz, is the arithmetic mean value for the time serjes between 0.07 and 0.11, and the standard deviations (SDs)
variante. Here, CPUE data with relatively large sampling erranged between 0.03 and 0.05 (NMFS 1996). In contrast, in
ror variances were given less weight in the likelihood func the 1996 SEW, the frequentist estimation method that was
tion (hence the term inverse variance weighting). Bfe  used to fit the Prager model to CPUE data to estimaed

and ¢, for each CPUE series were treated as uncertain paK ignored these demographic results and obtained a-maxi
rameters but were integrated from the joint posterior distri mum likelihood estimate of 0.26 (highly imprecise largely
bution (Walters and Ludwig 1994), since they are of nodue to the one-way trip in the CPUE data). To obtain peten
direct interest to fishery management. The log likelihoodtially more reliable estimates, the Bayesian approach allows
function, A, of the catch rate data was thus us to formulate a prior distribution based on the demographic
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results that can be combined with the likelihood function oframetersy, K, C,, andn (a vector calle®”), was integrated
the data. to produce marginal posterior distributions and mean values
We computed prior distributions far for sandbar sharks for these and other model quantities using the samplirg/im
using a variety of alternative input distributions f& as portance resampling algorithm (Rubin 1988; McAllister et
sumed to be constant with age(Fig. 1). These included al. 1994; McAllister and lanelli 1997). For situations with
(i) S, uniform on 0.8, 1,i{) S in a symmetric triangular dis up to a few dozen parameters, this can be a simple and
tribution with minimum at 0.8 and maximum at 1.4j X S, in highly efficient Monte Carlo method for Bayesian integra
a distribution with minimum at 0.8, maximum at 1.0, and ation. Samples of parameter valuds,are randomly drawn
parabolic tail at each end of the distribution so that the mosfrom an importance function. This is a pdf @fconstructed
likely region was between 0.85 and 0.9%) (S, ~ beta(54, 6), to be as similar as possible to the actual posterior density
(V) S, ~ beta(18, 2),\i) M, ~ lognormal(—log(0.9), 02, and  function of interest but with tails no sharper than those of
(vii) M, ~ lognormal(-log(0.9), 0%. In the latter two distri  the actual posterior pdf. A weighting factor is computed for
butions, the term —log(0.9) gives the same median value ofach sample d that is proportional to the posterior density.
0.9 for S, as in the former four distributions. Moreover, the It can be easily shown that the resulting distribution6of
latter two lognormal distributions also give distributions &r converges on the posterior density function by the strong
analogous to the two beta distributions (Fig. 1) (see Evans daw of large numbers (Berger 1985). It took up to 300 000
al. (1993) for methods to draw random variables from thes@lraws from the importance function (up to about 10 min on
distributions). We also provide results gy for blacktip sharks a 300-MHz Pentium desktop) to achieve very good approxi
when the age at maturity is triangular between and not includmations of the estimated marginal posterior distributions.
ing 5 and 9 years of age with a mode at&7of 20, fecundity =~ The stopping rule applied was to stop the run when the-num
at age ~ normal(2.5, 0.5 and M, ~ lognormal(-log(0.9), ber of draws from the importance function exceeded 20 000
0.7%) for ages 1+ and the same distribution with a median surand the maximum importance weight in all cases had
vival rate of 0.5 for age 0 (E. Cortes, NMFS, 3500 Delwooddropped to below 1% of the total summed importance
Beach Road, Panama City, FL 32408, U.S.A., personalconweights (if draws were taken from the posterior, this-per
munication). centage would be 10096 wheren is the number of draws
As mentioned above, a convenient density functionrfisr  from the importance function). For other diagnostics, see
the lognormal, since values less than zero are impossible adcAllister and lanelli (1997).
it is skewed to the right, indicating that most of the density We tested the sensitivity of the marginal posterior distri-
centers around lower values. The SD in the logarithnr of butions for the key model parameters, for exampl&, Ngs,
(o,) for the lognormal density function is given by andNqg/K, and the maximum sustainable yield (MSYrk/4)
to alternative prior distributions for. Step 5 is to evaluate
2 the distribution and expected value of each performance
(22) o, = [In 1+( SOr) ] measure. In order to calculate the posterior expected value
meair) for the various indices of policy performance, the following
steps were applied. (1) Randomly draw 5000 vectors of pa-
rameter®” (0" =r, K, C,, andn = N,g/K) with replacement
from the discrete approximation to the posterior distribution
of 6" with the probability of drawing each vecté being

the result iss, = 0.64. However, due to the variation in the

median value for among the sensitivity tests in the demo 5.5 rtional to the posterior probabilif(6; |CUPE). This is
graphic analysis, we roundeg to 0.7. _ the resampling step in the sampling/importance resampling
The prior forK was uniform over the natural logarithm of gi50rithm (Rubin 1988; McAllister et al. 1994: McAllister
K fo_r values o_fK from 1000 to a trillion individuals. This  gnd 1anelli 1997) to obtain a set of draws @f from their
implies that within this range the prior probability fé& is  joint posterior distribution. See McAllister and Kirkwood
proportional to 1K. This prior gives lower probability t0 (199g) for an algorithm for randomly drawing values from
higher vglues fc_JK and makes values ¢f less than or equal g,ch a distribution. (2) Using each drawn vecﬁf;),r project
to zero impossible. The value fdd;s was set equal toK  the surplus production model (eq. 18) from the year 1975 to
wheren has a mean of 1 and an SD of 0.2 and is-log 1998, Then project the model from 1998 to 2028 and apply
normally dlstnbuteq. This prior reducgs the _pOSSIbIlI.ty thatgne of the constant quota policy options in each year. (3) In
N7s will be much higher tharK due to imprecise or biased gach projectiorj and yeary, calculate the values for MSY
data. The prior for the mean catch in years 1975-188) ( gp(g B,, /K; and check to see if it drops below B2in the
was lognormally distributed with a mean equal to the mea’}/ears’zoo& 2018, and 2028 or increases abov; (DB
of the observed catches (477 000). The SD in the naturgg og/K; in each of these years. If the condition has been met
logarithm of observed catches was 0.30 (eq. 22); howevehy'ieast once in the projection, then add 1 to the sum for that
we set the prior SD in the natural logarithm @f to 0.5 t0  ngicy index. (4) To obtain the expected value for each other

account for the fact tha€, represented catches outside of hgjicy index, divide the summation of values for each index
the observed catch time series. by 5000.

Integrating the joint posterior distribution to produce
marginal posterior distributions Results
The parameters and<5Ij were integrated from the joint
posterior of6 using the method of Walters and Ludwig Prior distributions for r
(1994). The joint posterior distribution for the remaining pa  We first compare prior distributions obtained using two
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Fig. 1. Input prior distributions for the annual rate of surviv&) based ond) beta distributions foiS and lognormal distributions for
the rate of natural mortalityM) and @) uniform, triangular, and parabolic distributions f8r

a)
— =S ~beta(18, 2)
—— S ~ beta(54, 6)
— — M~ logN(0.105, 0.16)
- - = =M~ logN(0.105, 0.49)
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different demographic methods to compute approximationsution for S, the distribution forr,, had more gradual tails

of r,, for sandbar sharks. Without the elimination of low~al (for both,r5,=0.07 and SD,) = 0.038) (Table 1). The pri

ues forr,, from the Monte Carlo procedure, about 12% of ors based on the beta distributions §rtended to be skewed

the simulated values fell below zero for each of the methodslightly to the right, and the spread of the distribution fr

(Fig. 2a). Because such values are biologically impossible, itdepended strongly on the parameterization of the beta-distri

was necessary to introduce a lower cutoff point for plausibleébution (Fig. ®). For S, ~ beta(18, 2),r,s0 = 0.09 and

values ofr,,. All subsequent results were obtained using aSD(,,) = 0.043 and forS, ~ beta(54, 6),r50 = 0.07 and

lower cutoff point ofr,, = 0.01. SD(r,,) = 0.033 (Table 1). The two lognormal distributions
The correlation between values of, between the Lotka for M,, were parameterized to give distributions &rsimilar

and Leslie matrix methods was >99.99% (Fig. 2). Howeverjn shape to those for the two beta distributions and therefore

the approximations provided by the Lotka method were-congave distributions for,, similar to those for the beta distribu

sistently about 5% larger than estimates from the Leslie mations forS, (Figs. 3 and ; Table 1). A lognormal prior dis

trix method (Table 1). The SDs in estimates from the Lotkatribution for r, that incorporates a median of 0.07 and

method were also consistently about 5% larger. The reasortlegnormal SD of 0.5 tends to weight the smaller valuesrfor

for these discrepancies are not clear but could result becauseore heavily and has a more gradually tapering upper tail

the Lotka method applied is a discrete approximation of arthan all of the distributions derived from the Monte Carle ex

integral over the ages from 0O te, while the Leslie method ercise (Fig. 3).

is more of an exact numerical approximation that directly ~Similar biases in the distributions produced by the differ

simulates the rate of population increase (Lotka 1907). ent methods to calculate, were observed when the input
The shape of the distribution fay, was relatively insensi  distributions for blacktip sharks were applied (Figl; Ja-

tive to the precise functional form of the input distribution as ble 1). The Lotka method gave slightly higher values rfgr

sumed forS, (Fig. 3), provided that the input distribution for than the Leslie method (Table 1). The prior distribution

S, had a similar central tendency and spread. The uniform disproduced for blacktip sharks had a higher central tendency

tribution for S, over 0.8, 1.0 produced the broadest distribu (ry,50 = 0.125, SDK,,) = 0.059) than the one produced for

tion for r,,, with the sharpest cutoff points (mediag (r,sg =  sandbar sharks, mainly because the age at maturity was

0.09, SDf(,, = 0.047; from the Leslie method) (Figa3Ta much lower for blacktips (Fig. & Table 1). A prior forr in

ble 1). When the parabolic and triangular distributions$pr the logistic model for LCSs that gives less productive-spe

were applied, which had less spread than the uniform districies more weight but has a larger SD to account for the vari

© 2001 NRC Canada



Perspectives 1879
Table 1. Description of priors for resulting from different input distributions for survival rate at age.
Shark species Distribution Method I'mso0 m SD(m) CV(ry) o,
Sandbar M ~ lognormal(0.105, 0% Leslie 0.085 0.083 0.038 0.46 0.43
Lotka 0.089 0.088 0.040 0.46 0.44
M ~ lognormal(0.105, 03 Leslie 0.071 0.070 0.032 0.45 0.43
S ~ beta(18, 2) Leslie 0.089 0.090 0.043 0.48 0.46
S ~ beta(54, 6) Leslie 0.073 0.074 0.033 0.45 0.43
S~ U(0.8, 1) Leslie 0.090 0.089 0.047 0.53 0.49
S ~ triangular(0.8, 0.9, 1) Leslie 0.070 0.074 0.038 0.51 0.48
S ~ parabolic(0.8, 0.85, 0.95, 1) Leslie 0.074 0.075 0.038 0.51 0.48
Blacktip M, ~ lognormal(0.693, 07
Leslie/Lotka 0.125 0.137 0.059 0.32 0.32

M., ~ lognorma(0.105, 0.7)

Note: rs, Medianr; f,,, meanr,; SD( ), standard deviation for,; CV(r,), coefficient of variation inr; o, lognormal standard deviation far,.

Fig. 2. Prior pdfs forr for sandbar sharks produced using the

ability in r among species in this grouping is given by a

Leslie matrix (dashed line) and Lotka (solid line) methods. The lognormal distribution with a median of 0.07 and a

age at maturity was assumed to be uniformly distributed betweedognormal SD of 0.7 (Fig. 8.
14 and 17 years, the maximum age was 100, fecundity at age
was normal(2.1, 0.63, and M, was lognormal(0.105, 0%y
(baseline and used in subsequent figurea).Oistributions with
out any truncation below the value of 0.01) {distributions with
truncation below the value of 0.01.

Posterior distributions for logistic model parameters

A joint posterior pdf forr and K in the logistic model
from a noninformative (uniform) prior for is shown in
Fig. 4a. This demonstrates that there is relatively little infor-

a) mation aboutr andK in the data, which is consistent with a
“one-way trip” (Fig. £). A long narrow ridge of higher

probability runs from high values farand low values foK

to lower values forr and higher values foK. Along this
ridge, many different combinations of values foandK re-

sult in model predictions that correspond almost equally
well to the CPUE data. However, because the ridge of higher
probability is relatively narrow and runs diagonally across
the joint region forr andK, it can be seen that if the value
for r were known, the estimate & would be considerably
more precise and vice versa. Using noninformative priors
and assumptions similar to those in the 1996 assessment, we
were, however, unable to obtain estimatesroédnywhere
close to that obtained in NMFS (1996) (0.26). For example,
our posterior mean with a noninformative prior omwvas 0.7

with an SD of about 0.2 (Table 2). Although the posterior

CVs for most quantities were similar when an informative

prior for r was used (Table 2), the posterior SDs were larger
b) for most quantities when the uniform prior was applied- Cu

riors.

0.00 0.05 0.10 0.15 0.20

Intrinsic rate of increase

riously, the posterior CV for MSY was only 5% with the

uniform onr prior compared with 44% in the baseline case.
. This resulted because the posterior correlation betwes

. K was —1 with a uniform prior om and —0.59 with an infoer

mative prior. The use of an informative prior forrather

than a noninformative prior thus produces marginal posteri

ors that are not necessarily more informative about model

\ quantities (Table 2; Figs.bdand 5). The most noteworthy

\ difference is in the central tendencies of the marginal poste

N Under the baseline case with the informative prior for
+d the posterior CV for (62%) is only slightly smaller than the
prior CV (80%), also indicating that the data are not infor
mative for the parameter (Fig. 5). The posterior expected
value for catch (309 000 fish, CV = 44%) for the years
1975-1980 E(C,)) was less than the prior expected value

(477 000 fish), indicating that the data suggest a smaller
value for this quantity (Fig. &. Despite the broad posteriors
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Fig. 3. Histograms ofr,, for sandbar sharks produced by using distribution 8rg ~ uniform(0.8, 1.0),S, ~ triangular(0.8, 0.9, 1.0),
and S, ~ parabolic in the tails with the minimum and maximum values at 0.8 and 1.0, respectively, ang, witform between 0.85 and
0.95, p) S, ~ beta(18, 2) an, ~ beta(54, 6), andc] M, that was lognormal(0.105, Gand M, that was lognormal(0.105, G)7 a
parametric prior distribution for that is lognormal(0.07, 0% is also given in Figs. &-3c; (d) histograms forr,, for blacktip (BT) sharks
from the Leslie projection and Lotka methods) prior for r for blacktip sharks from the Leslie method, priors fofor blacktip and
sandbar (SB) sharks, both produced by fitting a lognormal distribution to the Monte Carlo results, and a prifor fo€Ss that gives
less productive species more weight but has a larger SD to account for the variabiligimiong species in this grouping.

S ~U(0.8,1)
a) = = = =8 ~triang(0.8, 0.9, 1.0)
— = =S ~ parab(0.8, 0.85, 0.95, 1.0) = = = = BT - Leslie method
r ~ lognorm(0.07, 0.25) d) = =BT - Lotka method

0.0 0.2
b) — TS-beulss o 00 01 02 03 04
> = = =8 ~beta(18, 2)
= nocacanor ~ | 0.07, 0.25
P r ~lognorm( )
c
Q
©
— . AN
e} ’ \
I ‘ K
o ) - - - -BT-Leslie
o === =BT - norm(0.125, 0.0035)
sooooanor §B - Iolgnorm(O.(;)E,70.022)9
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Fig. 4. (a) Joint log likelihood profile forr andK in the logistic model; If) joint posterior distribution for parametersand K using

the baseline priors: prior median for= 0.07,p(K) «< 1/K, prior meanC,) = 477 000 fish, prior SD[logC,] = 0.52, prior mear{,5/K) =

1, and prior SD[logil;¢/K)] = 0.2; (c) plots of the 13 CPUE series (rescaled to abundance in the baseline assessment) (symbols) and
the modal posterior trend in abundance (line).
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in model parameters, the data suggest a strong decreasim@gs increased to 0.11 and 0.28(r) also increasedE(K)
trend in abundance since the mid-1970s (Fig. 6). The- mardecreased, an&(Nyg/K) and E(MSY) increased (Table 2;
ginal posterior distribution for abundance in 1998 is mark Fig. 7). The posterior CV for remained the sam&(MSY)
edly lower than that for abundance in 1975 with very little was particularly sensitive to the prior for When the prior
overlap between these distributions (Figl).5 median forr was increased from 0.07 to 0.11 and 0.20,
E(MSY) increased from 157 000 (CV = 0.44) to 205 000

Sensitivity of results to alternative priors (CV'=0.39) and 284 000 fish (CV = 0.30).

In Bayesian stock assessment, it is common to evaluate .
the sensitivity of results to alternative prior distributions for Decision analysis results
model input parameters. When the prior median valuerfor ~ Using a uniform prior for provided very optimistic pre
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Table 2. Posterior means and % CVs (in parentheses) for various management quantities for U.S. LCSs.

Expected value

Priors (all same as baseline except for these changeg) r G, MSY Nog Nog/K

Uniform prior for r 2 868 (24) 0.69 (28) 224 (33) 462 (5) 1274 (27)  0.45 (11)
Baseline (mediam = 0.07, etc.) 10226 (21) 0.07 (62) 309 (44) 157 (44) 2964 (32)  0.29 (29)
Medianr = 0.11 9142 (23) 0.10 (62) 295 (44) 205 (39) 2804 (34) 0.31(29)
Medianr = 0.20 (mean = 0.26) 7 339 (30) 0.19 (62) 268 (46) 284 (30) 2511 (36)  0.35 (30)

Note: C, is the mean annual catch before 1981. All runs used the CPUE data from NMFS (1996, 1997), and the 13 CPUE series were not combined.
Baseline refers to the use of a prior that is lognormal(0.07) @7 r, uniform on logK), lognormal(477, 0.53 for C,, and lognormal(exp(-0°2), 0.2%)
for the ratio ofN,5 to K. Abundance values (i.eK, MSY, andNyg) are in thousands.

dictions of resilience to exploitation (Table 3). With a low in optimal harvest decision was the same for diffuse and
abundance of 37% in 1993 and a TAC continued at the informative priors. McAllister and Kirkwood (1928 also
1995 level, recovery to the MSYL was predicted by 1999. Inexemplified a framework for Bayesian stock assessment us
contrast, when the baseline posterior distribution, which ining a nonequilibrium Schaefer model. Using catch and
corporates a prior for based on demographic analysis, is CPUE data for cape hakéerluccius capens)s they dem
applied in the decision analysis, TACs similar to the 1998onstrated that CPUE data could only be informative alvout
TAC (about 60% of the 1995 TAC) for LCSs are not sus if the CPUE data showed a decreasing trend followed by an
tainable. Whenf was maintained at the 1998 level of-ap increasing trend in response to a reduction in fishing effort.
proximately 60% for the next 10 yeans(N;,/K) dropped to  McAllister and Kirkwood (1998) also applied a
0.19. Only a policy in which the TAC was set ta 30% of  nonequilibrium Schaefer model to evaluate alternative -man
the harvest in 1995 had more than a 50% chance of increasgement procedures for newly developing fisheries. They
ing stock size above the 1998 level (Fig. 8; Table 3). Onlydemonstrated that risks of overdepletion could increase if
values forf that were 10% and smaller resulted in a largerpriors for uncertain model parameters were specified too
than 50% chance of increasing stock size to larger thalk 0.5precisely (e.g., prior CV < 0.5). Meyer and Millar (1999) ex-
after 30 years (Fig. 8). A complete elimination of fishing emplified useful and readily accessible software for
mortality could only result in a reasonable chance of stockBayesian data analysis, BUGS, with a Schaefer surplus pro-
recovery after 20 years (Table 3; Fig. 8). duction model. A state—space modeling framework is advo-
Increasing the prior median value fomarkedly increased cated that provides a conceptually and operationally
the chance of recovery for the harvesting options consideredtraightforward way to deal with model process error and
For example, with the prior median forset to 0.11, values observation error within a single unified analytical frame-
for f < 40% had more than a 50% chance of increasing stockvork. A Markov chain Monte Carlo method is used for nu-
size over the 1998 level after 30 years (Table 3). With themerical integration in contrast with the sampling/importance
prior median forr set to 0.20, values fdr< 60% had more resampling approach in this paper. Each alternative integra-
than a 50% chance of increasing stock size above the 199®n approach has its conveniences (McAllister and lanelli
level after 30 years (Table 3). 1997), and at least for fairly simple stock assessment-prob
lems such as the one in this paper, the choice is a matter of
. . personal preference. While the latter four works above give
Discussion scarce attention to the construction of prior distributions for

Much of the published work on Bayesian stock assessSChaefer model parameters, they could potentially use the

ment applies age-structured models that incorporate detaildg®thods for this presented in this paper.

age-structured data and information (McAllister and lanelli

1997; Punt and Hilborn 1997; Patterson 1999). Howeverl-inking demographic methods with parameter

more highly aggregated models, such as a surplus produestimation for Schaefer models

tion model, can often be suitable when less detailed data are In this paper, we apply Bayesian methods to link demo

available. But even for these latter models, priors are still regraphic analysis with the fitting of surplus production mod

quired and relatively little attention has been given to this.els to time series data to improve the empirical basis for

Hoenig et al. (1994) provided an empirical Bayes methodparameter estimation. The theoretical basis for this link was

for constructing a prior distribution for parameters of anpresented first. Here, we summarized three simple approaches

equilibrium surplus production model using data from-sev to approximatingr,, from the same age-structured informa

eral subpopulations. However, for a variety of reasons,-equition, the mean generation time, Leslie matrix, and Lotka

librium models are often inappropriate (Hilborn and Waltersmethods. We showed thaj, in demographic analysis is4n

1992). dependent of whether the population is modeled in biomass
Kinas (1996) applied adaptive importance sampling, er numbers and that, is independent of the age-classes that

method for Bayesian integration, to estimate the parameter®ake up the modeled population. We also showed that

in a nonequilibrium Schaefer model for orange roughyowing to conceptual similarities, the, calculated using

(Hoplostethus atlanticys Because the application was pri demographic methods can be exchangeable mwithsurplus

marily to illustrate methods of Bayesian integration, little at production models in numbers and biomass and is independ

tention was given to the construction of priors, e.g., for theent of the part of the population modeled.

intrinsic rate of increase. Unlike the current study, the We presented a Monte Carlo approach to constructing a
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Fig. 5. Baseline marginal posteriors foa)(K, (b) r, and €) C,. The prior is the dashed line and the posterior is the solid line. Base
line marginal posteriors fordj abundance in 1975 (dashed line) and 1998 (solid lind)Ngg/K, and ) MSY.
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prior distribution forr in the logistic model from demo method. As mentioned above, we believe that bias is more
graphic analysis and some alternative methods to accoutikely in the Lotka method because the Lotka method is a
for uncertainty in inputs to demographic analysis such agliscrete approximation of an integral over an infinite range
survival rate at age. The application to LCSs illustrates howof ages, and the model applied assumes senescence-yet al
age-structured demographic information can be integratetbws the possibility of very high survival rates (Lotka 1907).
into the estimation of parameters in the Schaefer model tWe therefore favor the use of the Leslie method, which does
increase accuracy in parameter estimates and provide bimot require such an approximation. Although this is compu
logically sensible estimates for the evaluation of stock statusationally more intense, it takes only a minute or two on a
and alternative fishery management plans for stock rebuildmodern desktop computer to generate a prior distribution us
ing. The methods rely on estimates of natural mortality, fe ing the Leslie method. Other methods such as eigenvalue
cundity, and the ages of maturity and senescence. Biologicahethods (Cortes 1998; Ebert 1999; Quinn and Deriso 1999)
research to obtain these estimates is essential before-demmmuld also be used, but it would be advisable to cross-check
graphic methods can provide useful results. the results by applying other demographic methods to the
The results for both sandbar and blacktip sharks supporteggme data.
the observation in textbooks that the Lotka and Leslie matrix Additional work not reported here demonstrated that the
methods for approximating,, give almost the same results mean generation time method for computingcould some
(Krebs 1985; Begon et al. 1996). However, for both blacktiptimes result in very large negative biases in approximations of
and sandbar sharks, the Lotka method gave results eonsis,. The replacement of the arithmetic mean with the- har
tently 5% higher and with larger variance than the Lesliemonic mean helped to reduce this bias, but not entirely. In
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Table 3. Consequences of alternative harvesting policies to promote resource recovery.

f = %Cqs Niin/K P(Nfi, < 0.2K) P(Nji, > 0.5K) P(Nsin > Ngg)
Baseliné
0 0.67 0.00 0.76 1.00
10 0.58 0.04 0.60 0.95
20 0.47 0.17 0.45 0.74
30 0.36 0.36 0.31 0.52
40 0.25 0.55 0.21 0.34
50 0.16 0.71 0.13 0.20
60 0.09 (0.86) 0.83 (0.01) 0.07 (0.99) 0.10 (0.99)
70 0.05 0.91 0.04 0.05
80 0.03 0.95 0.01 0.02
90 0.02 0.98 0.01 0.01
100 0.01 (0.72) 0.99 (0.01) 0.00 (0.99) 0.00 (0.99)
feo = 0.11
0 0.78 0.00 0.89 1.00
10 0.71 0.01 0.80 0.99
20 0.61 0.08 0.67 0.89
30 0.51 0.20 0.53 0.72
40 0.39 0.36 0.40 0.55
50 0.28 0.52 0.28 0.38
60 0.20 0.66 0.19 0.25
70 0.13 0.78 0.12 0.16
80 0.08 0.87 0.08 0.09
90 0.05 0.92 0.05 0.05
100 0.03 0.96 0.02 0.02
feo = 0.20
0 0.92 0.00 0.99 1.00
10 0.87 0.00 0.97 1.00
20 0.81 0.00 0.91 1.00
30 0.74 0.04 0.84 0.93
40 0.65 0.12 0.74 0.84
50 0.55 0.22 0.63 0.72
60 0.45 0.35 0.53 0.59
70 0.36 0.45 0.43 0.48
80 0.28 0.57 0.34 0.37
90 0.20 0.68 0.24 0.27
100 0.14 0.78 0.15 0.16

Note: N;,/K, stock abundance in the final year (2028) of management as a percentig®@i;, < 0.X),
probability that stock abundance falls below K. the final year of the management horizd®(\;, > 0.5K),
probability that stock abundance will be abovelQ.is the final year of the management horizd?(N;, > Ngg),
probability that stock abundance in the final year of the management horizon will be above that irf £998;
%C,ys, TAC policy option evaluated. The percent values in the last column reflect the TAC evaluated as a
percentage of the total reported catch in 1995 (367 200 fish).

#The values in parentheses were obtained when a uniform priar @s used in a separate decision
analysis and are included in this table to facilitate comparisons.

contrast, textbooks typically show examples in which the retion for r is analogous to other methods that have applied
sults provided by the Lotka and mean generation time methMonte Carlo methods to construct prior distributions that
ods give very similar results (Krebs 1985; Begon et al. 1996)combine empirical information and expert judgment
We recommend that practitioners avoid use of the mean gerfMcAllister et al. 1994; McAllister and lanelli 1997). How
eration time method even if the harmonic instead of arithmeever, the simple Monte Carlo approach developed in this pa
tic mean generation time, with its smaller bias, is applied. per is more reliant on empirical information, for example,
The example also demonstrates that the probabilisti@bout life history parameters, than these other Monte Carlo
framework for logistic model parameter estimation can beapproaches, which, for example, rely on expert judgment for
used to indicate the effect of different assumptions abouthe specification of input distributions for key sources of un
model input parameters on the estimates of, and uncertairtertainty in acoustic and trawl survey abundance estimates.
ties in, management quantities of interest such as MSY andn alternative approach to these is meta-analysis with- hier
the current level of stock depletion. archical probability models (Gelman et al. 1995; Liermann
The approach that we apply to construct a prior distribu and Hilborn 1997). This approach instead assumes that the
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Fig. 6. Abundance relative t& between 1975 and 1998 (solid line) and 95% probability intervals (dashed lines).
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parameter(s) of interest varies across similar populations and A major difference is in the estimate ofin the Prager
incorporates data from other similar populations to estimat€1994) production model. The non-Bayesian analysis in
the form of this distribution. The approach in Myers et al. NMFS (1996) provided a production model estimate aff
(1997, 1999) has been applied to construct a prior distribu@.26. This estimate ignored “prior” information abayjand
tion for r,, for albacore Thunnus alalungpusing stock— estimated by fitting the Prager model to a composite index
recruit data from 12 other tuna populations (Millar and based on the 1981-1995 CPUE data. Our attempt to repli-
Meyer 2000). However, hierarchical meta-analysis is thecate this assessment using the same Prager model and catch
most data-intensive method for developing priors and, asnd CPUE data produced an estimate of 0.7. Close analysis
with sharks, the data required are often not available. Wheref detailed model output in NMFS (1996) indicates that
both stock—recruit data from other populations and demothere may have been a failure in numerical convergence. In
graphic data for the population of interest are available,-hiercontrast, Bayesian demographic methods produced a-poste
archical meta-analysis and the demographic method in thisor median estimate af of 0.07, a value consistent with de
paper could both be applied to construct alternative priomographic data on LCSs.
distributions forr, and the sensitivity of decision analysisre  Thjs latter estimate of is preferable because it accounts
sults to these alternative priors could be communicated tgor life history information that the NMFS (1996) estimate
decision makers. Another option is to apply meta-analysis tQeaves out. This estimate is also consistent with estimates of
abundance data from taxonomically similar very heavilyr for marine animals with similar reproductive life history
fished populations where exploitation has been stopped angharacteristics (e.g., baleen whales (Best 1993)). Moreover,
to approximate a pdf for from the rebounds in observed the CPUE data are not informative forand, as also inli
abundance (Best 1993). cated by the very high estimate of 0.7, cannot be relied on
by themselves to provide an accurate estimate of
Comparisons between Bayesian and non-Bayesian results It is thus important for stock assessments that use a
The Bayesian assessment results on the status of LCSs &Behaefer model to incorporate prior information mpartic
far less optimistic than those in a recent non-Bayesian aularly when the time series data are noninformative with re
sessment (NMFS 1996) that used the same surplus produspect tor. As in the current example, time series data are
tion model and catch and CPUE data (we note that for theininformative often because they show a classic one-way
1998 assessment, the NMFS adopted the approach presenteg (Hilborn and Walters 1992): taken together, the relative
in this paper (NMFS 1998)). The Bayesian estimate of theabundance data to which the production model is fitted con
historic decline in abundance is not dissimilar from that inform only to a decreasing pattern over time. This is common
the 1996 SEW. For example, the 1996 SEW indicated thain many fisheries, especially developing ones and heavily
LCS abundance had declined about 50-75% between thexploited ones (McAllister and Kirkwood 1988 In order
1970s and 1996. The baseline analysis indicates that-abufor relative abundance data to be informative abguhey
dance appears to have declined about 55-80% over the sammaist show at least one decreasing and one increasing pattern
time period. This similarity is not surprising, since the sameover time resulting from varying levels of exploitation inten
model was fitted to the same CPUE data. sity (Hilborn and Walters 1992; McAllister and Kirkwood
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Fig. 7. Marginal posteriors ford) K, (b) r, () Ngg/K, and @) MSY when the prior median for was changed from 0.07 (solid line) to
0.11 (long-dashed line) and 0.20 (short-dashed line).
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199&). If they do not, then the resulting point estimaterof plied the estimate for of 0.26 in its evaluation of alterna
can be highly imprecise and possibly strongly biased, as iive recovery options. As this value ferappears to be too
the present example. The joint posterior foandK from a  high, it is likely that the policy projections of the 1996 SEW
uniform prior forr shows that there is a large set of combi are too optimistic. In contrast, the inclusion of demographic
nations of values for these parameters that fit the data almogtformation about should provide a more biologically cen
equally well. In such cases, a prior forbased on demo sistent basis with which to evaluate alternative recovery op
graphic analysis or hierarchical methods (Myers et al. 1999)ions.
can be particularly useful for providing estimatesrofon Bayesian estimation enabled the incorporation of other
sistent with knowledge about the organism’s life history. sensible assumptions about population dynamics. For exam
From a practical point of view, the use of such prior infor ple, an informative prior about the ratio of stock size in 1975
mation is important because the values assumed foan  to carrying capacity was incorporated based on the inferma
strongly determine the ability of a population to recover, if it tion that fishing for sharks only started to pick up in the
has been heavily depleted. For example, NMFS (1996) apmid-1970s (J. Musick, Virginia Institute of Marine Science,
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Fig. 8. Median values (thick line) and 90% probability intervals (thin lines) for stock size divideH kth alternative values for the
TAC after 1998. The panels show the results under alternative constant TAC policies for fractions of the 1995 reported catch ranging
from 0.0 to 0.7 of 367 200 fish. Results were produced with the baseline Bayesian assessment (e.g., prior medighday).
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Appendix A. r in numbers or biomass?

This appendix proves that under the assumption of stationary weight at &g&édependent of population abundance in
numbers or biomass. In a biomass dynamic modélas the following interpretation:

(A1) By, = lim Bexp(r)
B,—0

whereB; is population biomass in yedr Under such conditions and stable age structurean be obtained from

. Bia
A2 =
w2 o= e 2

t

or

A
zwx,Hle,Hl
_ i =0
(A3) r= Ilmolog =4

't
ZWX,'[NX,t
x=0

wherew,; andN,, are the weight and abundance at age yeart. This proof assumes that at very low population density, the
weight at age is likely to be unaffected by intraspecific competition. Therefore, the vectors of weight at age in time intervals
andt + 1 are assumed to be the same between time steps.

If weight at age is constant at low population density, then the intrinsic rate of increase for a model in biomass is the same
as that for a model in abundance. We demonstrate this as follows. First, the expressiondbundance can be expressed as

A
Z Nx,t+1

A4) r= limlog|X=2
(A4) N(_>09 A

D Nyt
x=0

Since this equation holds only if the age structure is stable, the expression can be rewritten as

A
Ht+12 &
x=0
A

th &
x=0

(A5) r

lim lo
N,—0 9

wherec, is the proportion of individuals of age and H,c, = N,,. This expression can be simplified as follows:

(AB) r= IET Iog[Hﬁ*tlj
or
(A7) r= h}l@obg Q

whereQ is a constant. This same result can be obtained for a model in biomass:

A
wa,t+1Nx,t+1
i x=0
I|mO log A

B,—
wa,t Nx,t
x=0

(A8) r

and from eq. A5:
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A
Ht+12WxCx

(A9) r= Iimo log| —2=0—

HtZWxCx
x=0

't

Simplifying:

t—0 t

(A10) r = lim log ['T_"”]

and from eqgs. A6 and A7:
(A11) r =lim log(@Q)

Biso

This is precisely the same result obtained with the equations in abundance (eq. A7). Therefahe same for a model in
abundance or biomass. Thés directly related to somatic growth because there is often a strong relationship between individ
ual growth rate, the age at maturity, and fecundity at age. The effect of somatic growtis aranifested in the maturity and
fecundity at age schedule. The demographic methods for compuittgus implicitly incorporate somatic growth rates and
apply equally well to Schaefer models in biomass and abundance. Application of matrix algebra to the Leslie matrix yields
the same dominant eigenvalue and valuerfevith and without the weight at age vector, providing that this vector remains
constant.

Appendix B. r for exploited or mature animals?

This appendix demonstrates thais independent of the age groupings considered in the population modeled in a Schaefer
model. Using an expression fof" for the abundance of age individuals,r'* can be equated with

A
2 Ny t+1

B1) ri* = lim log| Xl —
(B1) Ni* >0 9" A

D Nyt
xX=i

where 0<i < A. Using N, = Hc, wherec, is the “stabilized” proportion of individuals of age(i.e., if the Leslie population
matrix was projected indefinitely):

A

Ht+lzcx

(B2) r™* = lim log| —2=—
N;*—0

A
HtZ &
X=I

or

(B3) r"= N!i+f20|09 Q

where again:

_Hu
(B4) Q= H,

Thus,r is independent of the age-classes included and modeled in the qigniitle same can be shown for the biomass quantity
B.. The same can also be shown if recruitmen®tis not knife-edged at agebut occurs over a number of age-classes. Therefore,
demographic methods to estimatare also independent of the age or pattern of recruitment to the modeled population.
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