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In this study, we modelled fishery observer data to compare methods of identifying community structure using cluster analyses to determine stra-
tifications and probabilistic models for examining species co-occurrence in the Gulf of Mexico deepwater reef fish fishery. Comparing cluster ana-
lysis methods, the correlation measure of dissimilarity in combination with average agglomerative linkage was the most efficient method for
determining species relationships using simulated random species as a comparison tool. Cluster analysis revealed distinct species stratifications
and in combination with multiscale bootstrapping generated probabilities indicating the strength of stratifications in the fishery. A more parsimo-
nious approach with probabilistic models was also developed to quantify pairwise species co-occurrence as random, positive, or negative based on
the observed vs. expected fishing sets with co-occurrence. For the most common species captured, the probabilistic models predicted positive or
negative co-occurrence between 84.2% of the pairwise combinations examined. These methods provide fishery managers tools for determining
multispecies quota allocations and offer insights into other bycatch species of interest.

Keywords: cluster analysis, commercial fisheries, fishery observer, species co-occurrence, species stratifications.

Introduction
The incidental captures of undersized or non-target species
(bycatch) are of great concern to fishery managers due to the over-
exploitation of stocks not only in the Gulf of Mexico (Gulf) but
worldwide (Sissenwine et al., 2014). Selective fishing and its conse-
quential bycatch have a range of unintended effects such as modify-
ing foodwebs and ecosystem structure, altering energy flow and
species interactions, and reducing system resilience and fisheries
production. The commercial Gulf reef fishery targets primarily
groupers (Epinephelus sp. and Mycteroperca sp.) and snappers
(Lutjanus sp.) using two primary gear types, bottom longline and
vertical line. This fishery also has incidental bycatch for a number
of species. Based on observer programme coverage from 2006
through 2009, Scott-Denton et al. (2011) identified 183 taxa cap-
tured with bottom longline and 178 taxa with vertical line gear.
While species diversity was high, only 17 species accounted for 90%
of the number of captures recorded. Some of the past management
options have resulted in the at-sea discarding of reef fish caught at

depths that correlate with immediate mortality (Render and
Wilson, 1994; Bartholomew and Bohnsack, 2005; Rudershausen
et al., 2007; Stephen and Harris, 2010).

Analysing fishery observer data from the Gulf deepwater reef fish
fishery for community structure can provide an opportunity to
examine the current quota management system that has undergone
many changes in the past decade. The most recent change is a shift
from a “derby” style fleet-wide quota system to an individual fishing
quota (IFQ) allocation for each permit holder based on historical
landings for a number of species. Branch (2009) examined how in-
dividual transferrable quotas affected various fisheries worldwide
for a number of factors, including highgrading for single species
and discards for multispecies fisheries. He found that highgrading
and discards often declined, but may increase without effective en-
forcement or if the catches are not counted against the quota.
Highgrading refers to selective harvesting by fishers for a species
usually influenced by price differences based on fish size, i.e.
increased discards of less valuable fish sizes, or due to price
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differentials between species in multispecies IFQ allocation categor-
ies, e.g. retaining more valuable species and discarding less valuable
ones. Fishery managers can make better-informed decisions when
determining multispecies IFQ allocation categories if patterns in
species co-occurrence and stratifications in the fishery could be
readily identified using fishery-dependent data.

Many studies have examined fish species assemblages using
cluster analyses with fishery-independent and -dependent data
(Rogers and Pikitch, 1992; Williams and Ralston, 2002; Farmer
et al., 2010; Cope and Haltuch, 2012). Heery and Cope (2014)
used observer data to identify groundfish assemblages from trawls
off Oregon and Washington, but encountered difficulties in identi-
fying uncommon bycatch species on a large spatial scale using pres-
ence or absence data. Shertzer and Williams (2008) identified reef
fish assemblages off the southeastern United States by analysing
logbook data using hierarchical cluster analyses (HCA) aggregated
by year, month, area, and depth. They found little support for
using indicator species as a management tool but supported strati-
fying species into distinct management units as an achievable goal.
One limitation of the approach used by Shertzer and Williams
(2008) was that it relied on logbook data, which aggregates only
the retained species from the entire fishing trip, not for each specific
fishing location. During a fishing trip, a vessel may fish in many geo-
graphical areas across various habitats and environmental gradients.
Thus, the spatial resolution of logbook data may not be fine enough
for an accurate representation of patterns in species abundance
during fishing sets. A finer geographic scale provides more accurate
results in the assemblages due to the increased resolution in the
species coexisting relating to similar habitat or environmental pre-
ferences. More important, the methods in Shertzer and Williams
(2008) do not account for species that are discarded during the
trip unless they are self-reported by vessel captains. Unlike
logbook data, this study used fishery observer data that include
bycatch and site-specific abundance information for a more accur-
ate representation of community structure.

Furthermore, a more parsimonious approach with probabilistic
models that only examines co-occurrence could provide insight for
species of interest not available when using abundance data (Veech,
2013). This relatively recent method of examining species co-
occurrence differs from cluster analysis that represents species assem-
blages, in that only two species are compared against each other.
Probabilistic models quantify pairwise associations between species
as random, positive, or negative based on the observed vs. expected
site co-occurrence. Instead of focusing on the differences between
each approach, both methods could be used by managers in conjunc-
tion for identifying and visualizing patterns in abundance and species
co-occurrence during fishing sets using observer data. The objective
of this research was to compare the utility of analytical tools necessary
for quantifying species relationships and revealing stratifications, if
existing, for multispecies fisheries. So far, quantitative research on
the bycatch in the US Southeast Atlantic and the Gulf region, as
well as elsewhere, remains insufficient. This study was initiated in
an effort to address these key issues and build a baseline for a holistic
perspective on a fishery beyond species composition.

Methods
Observer data and IFQ-managed species
In July 2006, the National Marine Fisheries Service (NMFS)
Southeast Fisheries Science Center (SEFSC) initiated a mandatory
observer programme to characterize the Gulf commercial reef fish

fishery (GMFMC, 2005). Before that, the only observer coverage
was a voluntary NMFS observer programme conducted from 1993
through 1995. The mandatory programme incorporates a rando-
mized selection process to select federally permitted commercial
reef fish vessels for observer coverage stratified by season, gear,
and region (Scott-Denton et al., 2011). To limit the scale of the
study, only fishery observer data collected on vessels from 2006
through 2013 using bottom longline and vertical line gear from
depths ≥100 m were included in the analyses. While onboard the
fishing vessels, observers collected detailed information such as lo-
cation, depth, gear, and capture information for each set (NMFS,
2015). Scott-Denton et al. (2011) and Scott-Denton and Williams
(2013) provide detailed descriptions of the protocol on data collec-
tion for the reef fish observer programme. Only data that conformed
to confidentiality rules mandated by the Magnuson–Stevens
Fishery Conservation and Management Act were included in the
analyses (NMFS, 2007). Fishing sets from vessels trolling were
excluded from the analyses because these sets typically cover a
large area and are not targeting bottom fish. Additionally, fishing
sets with no catch were removed from the analyses.

To exhibit how modelling community structure can provide
insights for multispecies quota allocations, we first compared pre-
and post-IFQ retention rates for the seven species managed under
the current deepwater grouper and tilefish IFQ quota management
systems. The deepwater grouper IFQ allocation is not for a single
species but instead comprises four different grouper species:
snowy grouper (Epinephelus niveatus), speckled hind (Epinephelus
drummondhayi), warsaw grouper (Epinephelus nigritus), and yel-
lowedge grouper (Epinephelus flavolimbatus). The tilefish IFQ allo-
cation consists of three species: blueline tilefish (Caulolatilus
microps), goldface tilefish (Caulolatilus chrysops), and golden tilefish
(Lopholatilus chamaeleonticeps). Specifically, abundance data before
and after the grouper-tilefish IFQ start date of 1 January 2010 were
examined for changes in retention rates, i.e. number of fish retained
out of the total number captured. Differences in retention rates
between the periods were examined using Fisher’s exact test.
Before the implementation of the IFQ system, an open season was
used to manage the tilefish and deepwater grouper quotas until
they were filled. Both seasons opened on 1 January for a given
year; however, the closures did not always coincide (SERO, 2015).
We compared the retention rates with observer data to detect differ-
ences in discard rates between the staggered seasons. All analyses in
this study were performed using R statistical software (version 3.2.1;
R Core Team, 2015). (Mention of trade names or commercial com-
panies is for identification purposes only and does not imply en-
dorsement by the NMFS, NOAA.)

Cluster analyses
The HCAwere conducted on datasets with both gear types combined,
each gear type, the most common species with ≥1000 captures, and
the IFQ-managed species to investigate consistent patterns in the
species assemblages. Additionally, the IFQ-managed species were
separated into two groups of retained and discarded, e.g. retained
and discarded blueline tilefish, to analyse patterns in retention rates
for each fishing set. Only species with observations ≥100 during
the study period were used in the HCA as rare species may distort pat-
terns in the species assemblages (Koch, 1987). The reef fish capture
data were tabulated into counts of species or species categories, e.g.
spiny dogfish (genus), Squalus, for individual fishing sets. Count
data were converted to log-transformed abundance before HCA to
reduce the influence of outliers and normalize the data. Since HCA
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requires no a priori assumptions, it is necessary to validate the final
results using additional approaches (Borcard et al., 2011). For this
study, the correlation and Bray–Curtis dissimilarity measures were
compared for each grouping of the analysis. For each measure of dis-
similarity, the distance was calculated with both the average agglom-
erative linkage and Ward’s linkage to compare the two for consistent
groupings. The HCA was done using the package “pvclust” in R with
1000 multiscale bootstraps to create probabilities to evaluate the stat-
istical significance in each cluster or stratification (Suzuki and
Shimodaira, 2011). The approximately unbiased (AU) probabilities,
instead of the bootstrapped probabilities, were used because they
provide a more accurate approximation of the strength of the rela-
tionships in the dendrogram (Liu et al., 2012).

In addition to the HCAwith multiscale bootstrapping, simulated
random data were included with the actual catch data to verify
species stratifications and compare methods of dissimilarity and
linkage. Cope and Haltuch (2012) used a technique of incorporating
simulated random species into the analyses with a 0.5 probability of
occurrence to identify the significance of the clusters formed by
HCA. The idea behind this method is that any species included in
an assemblage with a higher dissimilarity than that of the simulated
random species should not be considered valid in the assemblage.
The Bray–Curtis measure and average agglomerative linkage were
the only methods used by Cope and Haltuch (2012) to detect pat-
terns in species assemblages. However, in this study, we compared
multiple combinations of dissimilarity measure and linkage. The
optimal method for dissimilarity measure and linkage in our
study was chosen when the simulated random species had the
highest dissimilarity consistently for all subsets of the data in the
resulting dendrograms. The simulated random data used for com-
parisons in this study were five species with a 0.5 probability of oc-
currence during the fishing sets with abundance equal to the mean
positive abundance for that dataset.

Once the optimal dissimilarity measure and linkage were deter-
mined with simulated random data, we compared stratifications in
the dendrograms using significant clusters for species stratifications
with an AU probability ≥0.95. The significant stratifications were
used to reveal patterns in covariance between the IFQ-managed
species managed with multispecies deepwater quotas. By comparing
these patterns in covariance with the retention rates observed,
insights can be derived into fisher behaviour during fishing sets.
Finally, for the optimal HCA methodology, the probability of occur-
rence for simulated random species was increased 0.05 increments
for each dataset until they significantly clustered with actual
observed species to further evaluate the strength of species stratifica-
tions.

Probabilistic models
The probabilistic models to analyse species relationships use a sim-
plistic pairwise approach comparing species co-occurrence on
observed sites (fishing sets) to the distribution expected if the
species were distributed independently from each other (Veech,
2013). These models quantify pairwise associations between
species as random or significantly non-random plus whether the
significant association is higher or lower than the expected value.
These models only test co-occurrence between two species
without taking into account that additional species may be depend-
ent of their occurrence, thus differs significantly from HCA that pro-
gressively merges elements in the distance matrix. To generate the
models, the same tabulated catch data used in the cluster analyses
with ≥100 captures, ≥1000 captures, and the IFQ-managed

species were converted to presence–absence during fishing sets.
The probabilistic models were generated with the package
“cooccur” in R (Griffith et al., 2014). The simulated random data
with a random 0.5 probability of species occurrence were included
in the analysis with ≥100 captures observed to serve as a null
model. Heat maps were generated from the models to visualize
the species pairwise associations as negative, random, or positive.
In addition to the pairwise associations, the groupings were com-
pared with any stratification present in the cluster analysis results
for consistent patterns in covariance.

Results
From 2006 through 2013, in depths ≥100 m, observers recorded a
total of 117 702 reef fish captures. Of these captures, 99 510 fish
were recorded from vessels using bottom longline gear, and 18 192
from vertical line gear. A total of 200 species groupings were
recorded for both gear types combined, of which 173 groupings
were unique to vessels using bottom longline gear and 106 groupings
unique for vertical line gear. For both gear types, 51 species group-
ings were included in the analyses when captures with n , 100
observations were removed (Table 1). Yellowedge grouper, golden
tilefish, and blueline tilefish were the three most abundant species
observed and were primarily captured using bottom longline gear.
Vermilion snapper (Rhomboplites aurorubens) was the most
common species recorded for vertical line gear with 7150 captures.
A total of 3194 fishing sets with captures recorded were observed for
both gear types, of which 1978 were bottom longline sets, and 1216
were vertical line sets. A small number of species groupings domi-
nated the catch with the ten most abundant species accounting
for .78% of the number of captures, and the three most abundant
comprising .50% (Table 1).

Significant differences were found in the retention rates for five of
the seven IFQ-managed species in the deepwater reef complex
(Table 2). All tilefish species had lower retention rates compared
with the IFQ grouper species; however, only 43 captures were gold-
face tilefish indicative of a rarely encountered species. The species
with the greatest difference relative to the number of fish discarded
after the implementation of the IFQ system was golden tilefish with a
post-IFQ retention rate of 80.3%, compared with 97.1% before the
IFQ implementation. Blueline tilefish had the highest percentage
(.44%) of discards under IFQ management but were less com-
monly captured than golden tilefish, thus representing a smaller
overall number of discards observed. Yellowedge, snowy, and
warsaw grouper species all had retention rates .96% under IFQ
management indicating little evidence of highgrading among
these species managed under the IFQ allocation category. Before
the IFQ system when fishery observer data were available, there is
evidence that most tilefish (.96%) were retained under the derby
system when the season was open (Table 3).

For examining community structure with HCA, the most con-
sistent method for filtering out the simulated random species
across all subsets of the data was the correlation measure of dissimi-
larity with average agglomerative linkage (Figure 1). For all subsets
of data with this combination, the simulated random species never
had a dissimilarity measure ,0.9 and resulted in the simulated
random species being absent from all significant clusters (AU ≥
95). The correlation measure of dissimilarity did not perform as
well with Ward’s linkage due to the simulated random species con-
sistently significantly clustering with actual observed species for all
subsets of the data. Using the Bray–Curtis measure of dissimilarity
with both average and Ward’s linkage resulted in the simulated
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random species being included in significant stratifications and with
smaller dissimilarities than observed species for all subsets of the
data (Figures 2 and 3). When validating the optimal combination
by increasing the probability of simulated random occurrence in
0.05 increments, the simulated random species did not significantly
cluster with actual observed species until the probability of occur-
rence was increased to 0.8 for the full dataset. For subsets of the
data with bottom longline and vertical line gears, the simulated
random species had smaller dissimilarity values than some of the

rarely caught species, but were never placed in any significant strati-
fication. In the analysis for species with observations ≥1000
(Figure 4), the simulated random species did not cluster significant-
ly with any observed species until the probability of random occur-
rence was increased above 0.95 in the species matrix.

Distinct stratifications were evident in the fishery using the
optimal HCA method examined of the correlation measure of dis-
similarity with average linkage. The IFQ-managed species of blue-
line tilefish, yellowedge grouper, and snowy grouper consistently

Table 1. The number of captures observed at depth (≥100 m) with observations (n ≥ 100) by gear type recorded by the observer
programme from 2006 through 2013 in the commercial Gulf reef fish fishery.

Common name Scientific name Number of captures observed % on bottom longline gear % on vertical line gear

Yellowedge grouper Epinephelus flavolimbatus 26 047 98.9 1.1
Golden tilefish Lopholatilus chamaeleonticeps 22 841 99.6 0.4
Blueline tilefish Caulolatilus microps 10 545 97.9 2.1
Vermillion snapper Rhomboplites aurorubens 7200 0.7 99.3
King snake eel Ophichthus rex 6193 99.8 0.2
Snowy grouper Epinephelus niveatus 4840 88.3 11.7
Cuban dogfish Squalus cubensis 4286 99.8 0.2
Red porgy Pagrus pagrus 4029 21.2 78.8
Smooth dogfish Mustelus canis 3989 99.0 1.0
Red snapper Lutjanus campechanus 2467 46.1 53.9
Atlantic sharpnose shark Rhizoprionodon terraenovae 1899 99.1 0.9
Scamp grouper Mycteroperca phenax 1761 60.0 40.0
Greater amberjack Seriola dumerili 1652 65.0 35.0
Southern hake Urophycis floridana 1291 99.6 0.4
Spiny dogfish (genus) Squalus sp. 1158 99.5 0.5
Spotted hake Urophycis regia 1135 99.6 0.4
Gag grouper Mycteroperca microlepis 1110 31.1 68.9
Speckled hind Epinephelus drummondhayi 1074 72.3 27.7
Blacktail moray Gymnothorax kolpos 1006 99.3 0.7
Hake (genus) Urophycis sp. 992 99.4 0.6
Grouped sharks General sharks 944 90.5 9.5
Chub mackerel Scomber japonicus 914 0.1 99.9
Spinycheek scorpionfish Neomerinthe hemingwayi 779 98.3 1.7
Silk snapper Lutjanus vivanus 774 32.7 67.3
Dogfish (genus) Mustelus sp. 560 99.3 0.7
Pale spotted eel Ophichthus puncticeps 523 100.0 0.0
Red grouper Epinephelus morio 511 97.7 2.3
Bearded brotula Brotula barbata 484 98.6 1.4
Almaco jack Seriola rivoliana 411 41.4 58.6
Blackedge moray Gymnothorax nigromarginatus 353 98.6 1.4
Purplemouth moray Gymnothorax vicinus 305 91.8 8.2
Gulf hake Urophycis cirrata 287 98.3 1.7
Queen snapper Etelis oculatus 260 69.6 30.4
Blackfin tuna Thunnus atlanticus 255 95.7 4.3
Blackfin snapper Lutjanus buccanella 236 19.1 80.9
Warsaw grouper Epinephelus nigritus 226 62.8 37.2
Scalloped hammerhead Sphyrna lewini 222 99.5 0.5
Sandbar shark Carcharhinus plumbeus 212 100.0 0.0
Moray eel (genus) Gymnothorax sp. 208 95.7 4.3
Blacktip shark Carcharhinus limbatus 203 94.6 5.4
Silky shark Carcharhinus falciformis 175 48.0 52.0
Bigeye sixgill shark Hexanchus nakamurai 164 100.0 0.0
Dolphin fish Coryphaena hippurus 160 90.6 9.4
Night shark Carcharhinus signatus 159 100.0 0.0
Wenchman Pristipomoides aquilonaris 140 55.0 45.0
Little tunny Euthynnus alletteratus 131 87.8 12.2
Shortspine dogfish Squalus mitsukurii 128 100.0 0.0
Tiger shark Galeocerdo cuvier 126 99.2 0.8
Blackbelly rosefish Helicolenus dactylopterus 110 76.4 23.6
Sharpnose sevengill shark Heptranchias perlo 103 100.0 0.0
Sixgill shark (genus) Hexanchus sp. 101 99.0 1.0
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clustered significantly together for all subsets of the data (Figures 1
and 4). Golden tilefish clustered significantly separate from the
other IFQ species for all subsets of the data examined (Figures 1,
4, and 5). When the most common species were examined, golden
tilefish were still significantly separate from blueline tilefish and
yellowedge grouper with substratification AU values of 96 and
97 (Figure 4). Additionally, consistent relationships for other
species were present for all subsets of the data such as golden tilefish
with cuban dogfish (Squalus cubensis) and red porgy (Pagrus pagrus)
with scamp grouper (Mycteroperca phenax). When the IFQ-managed
species disposition was added for cluster analysis, previous stratifica-
tions were evident such as retained and discarded golden tilefish clus-
tering significantly together, but not with any other IFQ-managed
species (Figure 5). Blueline tilefish being kept and discarded clustered
significantly with yellowedge grouper, snowy grouper, and speckled
hind that were retained. Discarded yellowedge, snowy, and speckled
hind grouper significantly clustered together indicating that they
are not being retained during the same fishing sets.

The probabilistic models detected non-random pairwise co-
occurrence between 47.6% of the 1540 species pair analysed
(Table 4). Due to an expected pair co-occurrence of ,1, 84
species pair combinations were filtered from the analysis. The simu-
lated random species were recognized as random on .90% of the
possible combinations, with at most 9 and as few as 2 non-random
pairwise associations predicted out of the 56 possible combinations
for a simulated random species (Figure 6). Generally, a greater per-
centage of non-random pairwise co-occurrence was predicted for
species that were captured on more fishing sets with few insights
derived for less commonly captured species. Similar patterns in
species abundance covariance revealed by the cluster analyses were
present, but any stratification was difficult to discern due to a
large number of species included in the heat map.

Stratifications were easier to distinguish when the more common
species were examined with the model predicting non-random co-
occurrence between 84.2% of the 171 pairwise combinations
(Figure 7). The model predicted the same positive co-occurrence
relationship between the IFQ-managed species of blueline tilefish,
yellowedge grouper, and snowy grouper as well as negative
co-occurrence between golden and blueline tilefish. A similar strati-
fication consisting primarily of vermilion snapper, red snapper
(Lutjanus campechanus), and red porgy was also evident in both
modelling approaches. The probabilistic model differed from
HCA in that it predicted a significant positive relationship
between golden tilefish and yellowedge grouper indicating that the
two species do co-occur more than expected on some fishing sets.
Greater amberjack (Seriola dumerili) and snowy grouper had the
greatest number of random associations, 7 and 6, respectively, sug-
gesting weak associations with other commonly captured species in
the deepwater fishery. Yellowedge grouper and cuban dogfish had
no random pairwise associations in the fishery possibly due to
these species having widespread distributions in the community
structure of the fishery. For fishing sets that only captured the
IFQ-managed species, the model was more robust predicting non-
random co-occurrence between all associations except between
warsaw grouper and speckled hind (Figure 8). Similar to previous
patterns, warsaw grouper had only negative and random pairwise
co-occurrence predicted with the other IFQ-managed species, pro-
viding little support for using a more commonly encountered
species as an indicator for the presence of warsaw grouper co-
occurrence using this approach.

Discussion
This research isof primary interest to fisheries scientists and managers
interested in deriving insights from stratifications or species co-

Table 2. Retention rates for the IFQ-managed deepwater reef fish species using fishery observer data from 2006 through 2013.

Species

Number retained Number discarded Retention rate

Fisher’s exact test p-valuePre-IFQ Post-IFQ Pre-IFQ Post-IFQ Pre-IFQ Post-IFQ

Golden tilefish 2169 16 464 65 4042 97.1% 80.3% ,0.001
Blueline tilefish 1723 3863 1761 3062 49.5% 55.8% ,0.001
Goldface tilefish 4 12 3 24 57.1% 33.3% 0.39
Yellowedge grouper 6834 18 925 41 233 99.4% 98.8% ,0.001
Snowy grouper 105 3968 13 75 89.0% 98.1% ,0.001
Speckled hind 392 583 6 93 98.5% 86.2% ,0.001
Warsaw grouper 98 115 8 4 92.5% 96.6% 0.24

Table 3. Retention rates for most common tilefish species pre-IFQ for periods before and after aggregated deepwater grouper closure.

Fishing season

2007
2008a

2009

Open,
1 January – 18 April

Closed,
19 April– 2 June

Open,
1 January – 10 May

Open,
1 January– 15 May

Closed,
16 May – 27 June

Golden tilefish
Number kept 44 0 211 1913 1
Number discarded 0 5 8 22 30
Retention rate 100.0% 0.0% 96.3% 98.9% 3.2%

Blueline tilefish
Number kept 3 9 155 1555 1
Number discarded 0 589 0 57 1115
Retention rate 100.0% 1.5% 100.0% 96.5% 0.1%

aIn 2008, the deepwater grouper closure coincided with the tilefish closure.
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occurrence using fishery observer data. The techniques presented
are useful for determining if multispecies quota allocations could
be divided into more or less distinct management units based
on their stratification and co-occurrence. Using the multispecies

IFQ-managed tilefish as an example, a refinement of the current allo-
cationcategory intomore distinct units (i.e. goldentilefish separately)
may be warranted since evidence exists that this species has minimal
co-occurrence with other IFQ-managed tilefish and grouper species

Figure 1. Dendrogram of species clusters for gear types combined using the correlation measure of dissimilarity with average agglomerative
linkage. Significant clusters (AU ≥ 95) are shaded in all dendrograms.
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only occurring withyellowedge grouper on some fishing sets. Figure 5
suggests the intention of fishers to selectively target golden tilefish
separately from the other IFQ-managed species on fishing sets.
Conversely, a less distinct management unit may be warranted
for blueline tilefish since it appears consistently in significant

stratifications with the other common IFQ-managed deepwater
grouper species, mostly yellowedge and snowy grouper, for all
subsets of the HCA. Figure 5 illustrates this with yellowedge, snowy,
and speckled hind grouper being retained significantly clustered
with blueline tilefish retained and discarded, which implies that

Figure 2. Dendrogram of species clusters for gear types combined using the Bray–Curtis dissimilarity measure and average agglomerative linkage.
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blueline tilefish cannot be selectively targeted, but instead are consist-
ently captured with the most common deepwater grouper species.

The modelling results are consistent with evidence that before
IFQ management vessels selectively targeted golden tilefish, but
that blueline tilefish were captured when targeting deepwater
grouper species. This is based on the number of discards observed
from 2007 through 2009 in which large numbers of discarded

blueline tilefish only occurred when the closures did not coincide.
This provides evidence that fishers can selectively harvest golden
tilefish, but when targeting deepwater grouper, blueline tilefish
are incidental bycatch. The current differences in retention rates
among the species may be due to price differentials. For
example, in 2012, blueline tilefish ex-vessel price was $1.32 lb21,
while golden tilefish was higher at $2.50 lb21, possibly explaining

Figure 3. Dendrogram of species clusters for gear types combined using the Bray–Curtis measure of dissimilarity with Ward’s linkage.

Modelling community structure and species co-occurrence 1757

 at N
O

A
A

 C
entral L

ibrary on July 26, 2016
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


the higher retention rate for that species (SERO, 2013). Another
possible reason for the difference in retention rates is that vessels
may have insufficient tilefish IFQ allocation available to retain all
the blueline tilefish captured when targeting grouper species.

The blueline tilefish retention rate of 55.8% under the current
IFQ management scheme through 2013 indicates a high amount
of discarding and represents an inefficient use of this fishery
resource.

Figure 4. Dendrogram of species clusters with ≥1000 captures recorded using the correlation dissimilarity measure and average agglomerative
linkage.

J. R. Pulver et al.1758

 at N
O

A
A

 C
entral L

ibrary on July 26, 2016
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


Methodologically, Bray–Curtis may be a robust measure of com-
position for species assemblages in other ecological contexts, but for
fishery data on a large spatial scale, our study showed that the correl-
ation measure was superior to Bray–Curtis using HCA. Singh et al.
(2011) using HCA to study Icelandic groundfish assemblages found

similar results with Bray–Curtis only performing better when the
data were highly aggregated, most likely due to the minimization
of the number of sites. Simulated random species have often been
used as a null model for evaluating the significance of species rela-
tionships since first being introduced by Strauss (1982). However,

Figure 5. Dendrogram of clusters for IFQ species kept or discarded using the correlation dissimilarity measure and average agglomerative linkage.
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only a limited number of ecological studies have applied the techni-
ques as a comparison tool between the measures of dissimilarity and
linkage choices combined with a bootstrap approach. Our findings
indicated that the correlation method of dissimilarity outperformed

the Bray–Curtis measure substantially by filtering out the simulated
random species for all subsets of the data. The correlation measure in
combination with average linkage was even more robust when less
likely encountered species were removed, which is indicated by

Table 4. Summary of the probabilistic model results for positive, negative, and random pairwise species co-occurrence for the three datasets
examined.

Datasets ≥100 captures ≥1000 captures IFQ-managed

Number of species 56 19 6
Number of fishing sets 3194 3194 2480
Total combinations 1540a 171 15
Positive co-occurrence 429 72 5
Negative co-occurrence 264 72 9
Random co-occurrence 763 27 1
% Non-random 47.6 84.2 93.3
aEighty-four species pair combinations were removed due to an expected co-occurrence of ,1.0.

Figure 6. Heat map of pairwise species co-occurrence from the probabilistic model with ≥100 captures recorded.
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the high probability of co-occurrence needed for the simulated
random species to be significantly clustered with observed species.
The Bray–Curtis measure of dissimilarity with both average and
Ward’s linkage may be inefficient at determining species relation-
ships on a large spatial scale with this type of dataset because the
simulated random species consistently exhibited a lower dissimilar-
ity than observed species and were present in significant clusters.
While a number of different probabilities of occurrence for the
simulated random data were examined in this study, future
studies could compare the results from simulating different levels
of abundance using similar methodologies.

Applying the Bray–Curtis measure with the simulated random
species as a null model, only one defined cluster or stratification
would be considered valid in this study: blueline tilefish, yellowedge
grouper, and snowy grouper (Figure 2). However, under the as-
sumption that the correlation measure of dissimilarity is a more
robust choice for determining stratifications with HCA in species

assemblages, three distinct groups were present. These represent a
shallow-water component consisting of snapper species, a mid-
depth component including yellowedge and snowy grouper with
blueline tilefish, and a deeper depth component of golden tilefish,
cuban dogfish, and king snake eel. Additionally, the stratification
of the fishery into smaller subunits may allow more accurate deter-
minations of bycatch levels or provide insights into other species of
concern. For instance, in the mid-depth cluster, many of the large
shark species were clustered together indicating that these species
may be captured on fishing sets with extended soak times, certain
bait types, or other unknown factors that are influencing capture.
In addition, the four most commonly discarded IFQ-managed
grouper species were significantly clustered separately from those
being retained possibly due to insufficient IFQ allocations.

For future studies, average linkage is recommended over Ward’s
linkage due to its efficiency in recognizing simulated random data.
Other studies using metrics such as the cophenetic correlation

Figure 7. Heat map of pairwise species co-occurrence from the probabilistic model with ≥1000 captures recorded.
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coefficient or agglomerative coefficient for evaluating cluster valid-
ity have recommended Ward’s linkage, but none of these studies
have used simulated random data for a null model as this study.
Jackson et al. (2010) examined cluster analysis and ordination com-
monly used by community ecologists and stated the field has been
slow to adopt recent advances such as the bootstrap or Bayesian
methods. The authors advocated using the bootstrap approach
with the caveat that since the independence of the fish species at
sites cannot be assumed; the probabilities should represent the
degree of association between species instead of a test of statistical
significance related to a null hypothesis. This precaution was
given because interspecific dynamics may violate the assumption
of independence between different sampling sites. While the lack
of a significant association between species does not mean that
none exists, significant relationships suggest a possible direction
for future ecological research.

Our research revealed that the optimal HCA complemented the
probabilistic models for species co-occurrence for most species stra-
tifications. For the species with ≥100 captures observed, the model
was able to recognize the simulated random species as random for
.90% of the pairwise associations. More insights were derived for
the more commonly captured species, but aggregating some of the
more indistinct species groupings together could alleviate this by re-
ducing the overall number of pairwise species combinations
included in the analysis. For instance, some of the grouping repre-
senting either genus or family due to questionable species identifi-
cation could be eliminated from future analyses to reduce the
overall number of possible combinations and thus increase the de-
tection power. Also, researchers could limit the fishing sets by geo-
graphic subregion or by a certain species of interest when certain
species co-occurrences are of interest. Overall, this parsimonious
approach for examining community structure is not without con-
troversy because modelling only pairwise associations between
species ignores many of the patterns that can be derived from abun-
dance data such as diversity indices, species abundance covariance,
and links to environmental variables (Soberón, 2015). Veech (2014)
argues some of the proposed limitations of this simplistic approach,

but regardless it represents a viable tool for managers that can be
easily implemented when co-occurrence is the primary goal of the
research.

Specific determinations of stock status are one of the driving
forces of current fishery management schemes and managers
often have to rely on limited data sources. A recent report on the
status of the Gulf of Mexico ecosystem found that abundance
indices for tilefish and some of the grouper species in our research
have been in decline since the 1980s, while some of the primary
species of commercial and recreational importance such as red
snapper and red grouper (Epinephelus morio) in the Gulf region
have increased in abundance (Karnauskas et al., 2013). The
authors suggest these fluctuations in abundance may be due to the
greater attention applied to the species of higher importance, and
that fishers may be targeting secondary species to compensate for
increased regulation on higher-profile species. As an initial quanti-
tative study on Gulf of Mexico bycatch issues, this research is an im-
portant step in advancing ecosystem-based fisheries management
through our increased understanding of the complex marine envir-
onment. The statistical techniques presented in this study can be
applied for analysing fishery observer or independent data to
reveal underlying stratifications and co-occurrence in other
regions. These approaches provide fishery managers useful tools
for visualizing community structure when proposing actions that
can affect multiple species and will be highly valuable in assessing
the potential impacts of regulatory mandates.
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