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Abstract–Biomass indices, from com­
mercial catch per unit of effort (CPUE) 
or random trawl surveys, are commonly 
used in fisheries stock assessments. 
Uncertainty in such indices, often ex-
pressed as a coefficient of variation 
(CV), has two components: observa­
tion error, and annual variation in 
catchability. Only the former can be 
estimated directly. As a result, the CVs 
used for these indices either ignore the 
annual-variation component or assume 
a value for it (often implicitly). Two 
types of data for New Zealand stocks 
were examined: 48 sets of residuals 
and catchability estimates from stock 
assessments using either CPUE or 
trawl survey indices; and biomass esti­
mates from 17 time series of trawl sur­
veys with between 4 and 25 species per 
time series. These data show clear evi­
dence of significant annual variation in 
catchability.With the trawl survey data, 
catchability was detectably extreme for 
many species in about one year in six. 
The assessment data suggest that this 
annual variability typically has a CV of 
about 0.2. For commercial CPUE the 
variability is slightly less, and a typical 
total CV (including both components) 
of 0.15 to 0.2. This is much less than 
the values of 0.3 to 0.35 that have com­
monly been assumed in New Zealand. 
Some estimates of catchability are 
shown to be implausible. 
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Catchability is a key parameter that and Dickie (1964) gave theoretical rea­
is estimated in many fish stock assess- sons to expect that catchability would 
ments (Arreguín-Sánchez, 1996). It is increase as biomass declined, many au-
the constant of proportionality between thors have presented confirmatory data 
biomass indices (either from commer- (e.g. Schaaf, 1975: Pope, 1980; Winters 
cial catch per unit of effort (CPUE) or and Wheeler, 1985; Quinn and Collie, 
random trawl surveys) and absolute 1990). Nevertheless, many stock assess-
biomass. Despite its importance it ments are based on the assumption that 
is usually thought of as a “nuisance” catchability is independent of abun­
parameter: one that is not of intrinsic dance. It is data from such assessments 
interest but which needs to be esti- that we examine here. We also assume, 
mated so that other quantities, which of necessity, that the role of CVs in stock 
are of interest (e.g. biomass), can be assessments is to describe the precision 
estimated. For this reason estimates of of biomass indices, rather than their 
catchability are not often reported. quality. This issue is discussed further 

Uncertainty in biomass indices, often in the final paragraph of this paper. To 
expressed as a coefficient of variation begin with, we describe more precisely 
(CV), has two components: observation what we mean by catchability. 
error and annual variation in catchabil­
ity. Only the former can be estimated 
directly. As a result, the CVs used for Definitions 
these indices either ignore the annual-
variation component or assume a value “Catchability” is used in several slightly 
for it (often implicitly). Our objectives in different ways in the fisheries literature. 
this study were to estimate the extent The use we are concerned with is as a 
to which catchability varies from year parameter (conventionally denoted by 
to year for New Zealand stocks.We used q) in a stock assessment model, defined 
all available data, including residuals by the equations 
and catchability estimates from stock 
assessments and biomass estimates Ii = qBiεi or log (Ii) = log (qBi)ε′ i (1) 
from time series of trawl surveys. We 
show that standard New Zealand prac- where Ii = the index in year i; 
tice typically overestimates catchability Bi = the corresponding true bio­
variation for trawl survey indices and mass; and 
underestimates it for CPUE, and sug- the error terms, εi and ε′ i are ran­
gest that some catchability estimates dom variables with expectation 1 
are clearly implausible. More details and CV (coefficient of variation) 
concerning the data and analyses below ci. 
are given by Francis et al. (2001). 

We assume throughout that catch- The interpretation of q in (Eq. 1) de-
ability does not vary systematically pends on whether the Ii are from CPUE 
with abundance. There is much con- or trawl surveys (other types of biomass 
troversy surrounding this assumption, index—e.g. from acoustic surveys—are 
particularly for CPUE. Since Paloheimo possible but not considered here). In 
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the former case, q may be interpreted as the proportion 
of the population biomass that is caught by one unit of 
effort. Often the CPUE is standardized (using methods 
akin to those of Punt et al., 2000), so that the unit of effort 
is a standard one (e.g. if nationality and area are factors 
in the CPUE standardization, then the standard unit of 
effort will be that for a vessel from the reference nation in 
the reference area). However, the unit of effort is changed 
when, as is common in New Zealand, CPUE indices are 
standardized to have value 1 in a reference year. If the Ii 
are from a trawl survey series, the interpretation of q is 
slightly different. Here, it is the product of the survey area 
and the proportion of the biomass that is caught per unit 
of area swept (because trawl survey indices are usually 
scaled up by the survey area, whereas no such scaling is 
done for CPUE indices). 

Trawl survey catchability may also be interpreted as 
the product of three components: vulnerability, v, vertical 
availability, uv, and areal availability, ua (Francis1). These 
components are defined in the framework of a conceptual 
model in which the trawl gear is thought of as sweeping a 
volume of water in the shape of a cuboid of width equal to 
the distance between the trawl doors, height equal to the 
headline height, and length equal to the distance trawled. 
Vulnerability is the average proportion of fish in the swept 
volume that are caught. Vertical availability is the propor­
tion of fish in the survey area that could be encountered 
by the trawl gear (i.e. that are close enough to the bottom 
to be below the trawl headline but not so close as to pass 
under the footrope). Areal availability is the proportion of 
fish in the population being surveyed that are in the survey 
area at the time of the survey (this is important in stock 
assessment when the full range of the stock being assessed 
is not covered by a survey). 

These three components are usually of more theoretical 
than practical use. That is, they help us to think about the 
relationship between a trawl survey biomass index and the 
actual biomass. In New Zealand the common practice is to 
calculate survey biomass indices as if all three constants 
had value 1. This means that the catchability associated 
with these indices is the product of the three components, 
i.e. q = vuvua. This interpretation restricts the range of 
plausible values for a trawl survey q. Because all three 
catchability components are defined as proportions their 
product should be less than (or equal to) 1. (It is techni­
cally possible for v to exceed 1 [if, for instance, fish that are 
initially above the headline, and thus unavailable to the 
net, are herded downwards] but it is most unlikely that vuv 
would be greater than 1; ua cannot exceed 1.) Thus, if the 
default values of the catchability components have been 
used, we would expect q to be less than 1. Also, very small 
values of q are implausible for any species that is assessed 
by using trawl survey biomasses. Although there are spe­
cies that are not well caught by trawls (e.g. because they 

1 Francis, R. I. C. C. 1989. A standard approach to biomass 
estimation from bottom trawl surveys. N.Z. Fish. Assess. Res. 
Doc. 89/3, 4 p. National Institute of Water and Atmospheric 
Research, P.O. Box 14901, Wellington, New Zealand. 

are fast-swimming, high above the bottom, or because they 
burrow in the substrate) and thus have very low values of 
v or uv (or both), such species are not, for that reason, as­
sessed with trawl survey indices. Similarly, a very low areal 
availability (implying that most of a fish stock is outside 
the survey area) would rule out the use of trawl surveys in 
assessing a stock. 

There is also a limit to how much we would expect values 
of q for the same species to vary between surveys. For a 
given fishing vessel and trawl net, the components v and 
uv are determined by fish behavior (e.g. swimming speed, 
typical height above the bottom, reaction to an approaching 
net). This means that if the same vessel and gear are used 
in surveys in different areas we would expect the product 
vuv not to vary very much for the same species (except, 
perhaps, between spawning and nonspawning periods, 
when there may be substantial behavioral differences). If 
different vessels, or gear, are used, we might obtain larger 
differences in vuv. 

Materials and methods 

Data 

Two types of New Zealand data were examined: those from 
stock assessments and those from random trawl surveys. 

Assessment data We gathered data from all recent stock 
assessments that used biomass indices from either trawl 
surveys or CPUE. One data set was constructed for each 
separate series of biomass indices (so that an assessment 
using two different series provided two data sets). Each 
data set consisted of the following variables: 

• the biomass indices input to the assessment; 
• the years associated with these indices; 
• the CV(s) assumed for these indices; 
• a description of the assumed error distribution type; 
• the model estimates of (absolute) biomass that cor­

respond to each biomass index; and 
• the model estimate of catchability, q, for the indices. 

For each stock the latest available assessment (usually car­
ried out in 2000) was used. Data sets with fewer than four 
annual indices were discarded. 

A total of 48 such data sets was constructed (30 with 
CPUE indices and 18 with trawl survey indices), ranging 
in length from 4 to 40 indices, with CVs between 0.02 and 
0.61 (Fig. 1A) (details of the individual assessments are 
given in Francis et al., 2001). In most data sets (43 of 48) 
a single CV was assumed for all indices. Two rock lobster 
assessments used a time step of six months; all other as­
sessments used a one-year time step. Amongst these data 
sets there were three different error-distribution assump­
tions; these determine how standardized residuals are 
calculated (Table 1). 

We refer to the CVs for the assessment data sets as “as­
sumed,” rather than “estimated,” because we can estimate 
only one component of these CVs, that due to observation 
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error. By setting a value for one of these CVs we are im­
plicitly making an assumption about the other component: 
annual variation in catchability.We did not solicit informa­
tion on how these CVs were set for individual assessments. 
However, the most common way is based on a subjective 
assessment of the “reliability” of the associated biomass 
indices: the less reliable the indices are judged to be, the 
higher the assumed CV (by “reliability” we mean the com­
bination of two very different properties of an index, its 
precision, and its “quality”—the extent to which it is likely 
to be proportional to biomass). This is why almost half of 
the CPUE series (13 out of 30) have assumed CVs of 0.35, 
and many of the trawl survey series (13 of 18) have CVs 
of 0.25. In most cases, the CVs assumed for trawl survey 
indices differ from the observation error CVs calculated 
from the trawl survey data (Fig. 1B). 

Trawl survey data Data from all New Zealand random 
trawl surveys were considered. The surveys were grouped 
into series, each of which contained surveys covering 
(approximately) the same area at about the same time of 
year and using the same (or similar) vessel(s) and gear. 
Some series were split into two, by area, because they were 
deemed to survey two distinct fish communities. Series 
with fewer than four surveys were rejected. This left 17 
series, with between four and 11 surveys per series. 

For each trawl survey series a list of “suitable” species 
was generated by listing all species caught in the series and 
then excluding species deemed to be “unsuitable” for any of 
the following reasons: 

• species caught in only a small percentage of tows; 
• species caught in small quantities (low mean catch per 

tow); 
• species not well caught by the net because they are too 

small, too large, too close to the sea floor, or too high in 
the water column; 

• species for which identification was poor, or inconsis­
tent over time; 

• species whose range was poorly covered by the surveys 
(e.g. those occurring mostly on rough ground, or mostly 
in water shallower or deeper than that covered by the 
series). 

The idea was to include as many species as possible for 
each series. In considering a particular species in a spe­
cific trawl survey series, the following question was useful: 
“If this were a valuable commercial species would it be 
appropriate to use this series of trawl surveys to generate 
biomass indices to put into a stock assessment?”An answer 
of “yes” (or even “maybe”) was a good reason to include this 
species. The CVs of biomass estimates were not considered 
in making this decision. For each series the list of suitable 
species was compiled by people with an intimate knowledge 
of that series and the associated species. No attempt was 
made to derive consistent objective criteria (e.g. exclude 
all species that occurred in fewer than 30% of tows) for all 
series. The exclusion of a species from one series was no 
barrier to its inclusion in another. The number of accept-
able species in a series varied between 4 and 25. 
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Figure 1 
Descriptive statistics for the assessment data sets: 
assumed CV plotted against (A) the number of indi­
ces (all data sets) and (B) the median observation 
error CV (data sets with trawl survey indices only). 
Each point represents one data set; in A the points 
are jittered slightly to separate coincident points; 
where different indices in a data set had different 
assumed CVs the median of these is plotted. 

Biomass indices, and CVs, were calculated for each suit-
able species in each survey. In all series but two, vulner­
ability, areal availability, and vertical availability were set 
to 1. There was a wide range of estimated CVs. Even when 
the CVs for each species in a series were averaged over all 
surveys, these averaged values spanned an order of mag­
nitude, from 0.07 to 0.70 (Fig. 2). 

Analyses 

Our analyses addressed a series of questions, which are 
given as subheadings in this section. 
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Table 1 
Three alternative error-distribution assumptions for biomass indices in stock assessments, and the associated form of the stan­
dardized residuals. Notation: Ii is the ith biomass index and Bi is the corresponding model estimate of (absolute) biomass; for 
assumption lnorm, σ2 

i = log (c2 
i + 1). 

Label Standardized residual 

norm Ii is normally distributed with mean qBi and assumed CV ci 

lnorm Ii is lognormally distributed with mean qBi and assumed CV ci 

lognorm Ii) is normally distributed with mean log(qBi) and s.d. ci 
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Figure 2 
Mean CVs, by species, of biomass indices in the trawl survey data sets. 
Each plotted point relates to one species in a trawl survey series, and 
indicates the mean of all estimated CVs for that species in that series. 
Points are jittered vertically to avoid overlap. 

Description 

log(

x

x 

x 

Are the assessment CVs the right size? 
were too large (too small), and thus CVs were too small 

We constructed a residual statistic, κ, that was designed (too large). The statistic is based on the median absolute 
to indicate whether the CVs assumed in the stock assess- standardized residual (MASR), rather than the residual 
ment (the ci) were too small or too large in each data set. A variance, because the latter is not very robust (it is easily 
positive (or negative) value of κ suggests that the residuals inflated by outliers). We defined 
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2(µ µ0 5 ) / (µ0 5  − µ . . − . . 0 025 ) if µ < µ0 5κ =  − . . 0 5 ) if µ > µ0 5

, 
2(µ µ0 5 ) / (µ0 975 − µ . . 

where µ = the MASR from the assessment data; and 
µr = the rth quantile of the sampling distribution 

of µ. 

To calculate the µr we assumed that the standardized resid­
uals follow a Student’s t-distribution with n–2 degrees of 
freedom, where n is the number of indices in the data set. 
[We assumed n–2 degrees of freedom because, in an assess­
ment with only a single series of relative biomass indices, 
only two parameters can be estimated, e.g. initial biomass 
and q (Francis, 1992). When there are many data inputs 
there may be many more than two parameters estimated.] 
For each value of the sample size n, the µr were estimated 
by simulating 1000 data sets of size n from a t-distribution 
with n–2 degrees of freedom, calculating the median abso­
lute value for each simulated data set, and taking the rth 
quantile of this set of 1000 medians. 

We used the κ statistics in two ways. We tested the null 
hypothesis that the CVs were, on average, of the correct 
size by using a simple signs test (under this hypothesis 
we would expect about 50% of the κ’s to be of each sign). 
If significantly more than half are positive (or negative) 
this shows a tendency to use CVs that are too large (or 
too small). This test considers all the CVs at once. We also 
tested each CV separately; a value of κ greater than 2 (less 
than –2) is statistically significant. 

Next, we investigated how much, if at all, we should 
change the assumed CVs to make their size appropriate. 
This was done by changing the assumed CVs, recalculat­
ing the residual statistic and checking to see whether the 
new values of κ were evenly distributed about zero. We did 
this separately for the CPUE and trawl survey indices. For 
the former we simply set them all to a single default value 
and searched for the default value that produced an even 
distribution. For the latter, we assumed that the CV asso­
ciated with annual variation in catchability was the same 
for all stocks and “added” this CV to the observation error 
CVs to obtain assumed CVs for the stock assessments. Note 
that CVs are “added” as squares, so that when we “add” 
CVs of 0.2 and 0.3 we get 0.36 [= (0.22+0.32)0.5]. Here we 
were searching for the value of the catchability CV that 
produced an even distribution of κ. 

Strictly speaking we should rerun each assessment each 
time we change a CV. However, it is not practical to do this 
for so many assessments. Thus we have to assume that 
changing a CV will not change the model estimates too 
much. Our experience is that this is true for assessments 
with only one series of biomass indices. It is least likely 
when there are more than one series and these show mark­
edly different trends. 

Can we detect years of extreme trawl survey 
catchability? 

First, as an informal procedure to identify possible years of 
extreme trawl survey catchability, the trawl survey biomass 

Table 2 
Example, using trawl survey series-3 data, of the stages in 
the procedure for calculating a mean rank and rank devia­
tion for each survey year in a trawl survey data set. 

Survey year 

Species 1983 1985 1990 1992 1996 1999 

Biomass A 125 482 1565 1141 969 1644 
indices B 355 47 365 

C 63 48 89 
D 113 176 

Ranks A 1 6 
B 4 5 
C 2 3 
D 2 4 

Mean ranks, ri 2.25 4.5 4.5 

Rank 
deviations, di 1.25 1.00 

320 272 413 
118 257 131 
191 236 157 111 

3 4 5 2 
3 2 6 1 
4 6 5 1 
5 6 3 1 

4.75 1.25 3.75 

0.25 1.00 1.25 2.25 

indices were standardized (by dividing each time series for a 
particular species by its mean) and plotted by survey. Next, 
the following more formal procedure was used to identify 
extreme years. For each species in a trawl survey data set, 
the survey years were ranked in order of increasing biomass 
index, and then these ranks were averaged across species to 
obtain a mean rank for each year.Then the rank deviations, 
di = |ri – 0.5(n+1)|, were calculated, where ri is the mean 
rank for year i, n = the number of survey years, and 0.5(n+1) 
is the overall mean of the mean ranks (Table 2). 

The following simulation procedure was used, for each 
series, to determine which years should be labeled as ex­
treme (i.e. how large the di’s need to be to be statistically 
significant). 

1 	 The actual biomass indices were replaced by ran­
domly generated indices (by using a uniform distri­
bution [because our statistic is based on ranks it does 
not matter what distribution is used to generate the 
biomass indices]); 

2 	 Mean ranks, and rank deviations, were calculated for 
each survey year by using these simulated biomass 
indices; 

3 The largest of these rank deviations, dmax,1, was 
stored; 

4 Steps 1 to 3 were repeated 999 times, generating 
dmax,j, for j = 2,...,1000; 

5 Year i was labeled as extreme if di was greater than 
or equal to at least 95% of the dmax,j. 

In other words we asked, for each rank deviation di, how 
likely we would be to observe a deviation at least as large 
as this if there were no between-species correlations. If the 
probability were less than or equal to 0.05, we would label 
the year as extreme. 

As a diagnostic tool, to examine possible reasons for 
these extreme years, we calculated between-year changes 
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in biomass indices, expressed as ratios. This was done for 
all species and for each pair of consecutive surveys that 
included one extreme year. 

Are there consistencies between data sets? 

Three types of consistency were sought in the data. First, 
is the range of estimated trawl survey catchabilities plau­
sible? Second, is there any consistency, between trawl 
survey series, in the years that are labeled as having high 
or low catchability? Third, is there consistency between 
the extreme years in the trawl survey data and the CPUE 
indices in the assessment data? To address the latter ques­
tion, each person who provided CPUE data was asked, for 
each series, which, if any, of the trawl survey data sets were 
“comparable” in that they related to similar areas, depths, 
and seasons. For “comparability” it was not necessary that 
the CPUE species be a target for the trawl survey. We were 
interested in knowing whether the person thought that 
the fact that the catchability seemed to be extreme for 
many species in the trawl survey in some year would be 
reasonable grounds to believe that this would affect their 
CPUE index in a similar way (but this person was not told 
which trawl survey years were considered extreme). For 
each match that was found between a CPUE index and 
a trawl survey extreme year we asked whether the two 
were consistent: that is, whether high (or low) trawl survey 
catchability corresponded to a positive (or negative) CPUE 
residual. 

Results 

Are the assessment CVs the right size? 

Results were different for the two types of assessment data 
(Fig. 3). For those with CPUE indices, there was a tendency 
for CVs to be too large: κ was negative for 21 of the 30 data 
sets (this is significantly more than half, P=0.02) and was 
less than –2 for 9 of them. In contrast, κ was positive for 
13 out of the 18 data sets with trawl survey indices (again, 
significantly more than half, P=0.02) and was greater than 
2 for 2 of them. Median CVs for data sets for which the CVs 
were found to be significantly too large ranged from 0.3 to 
0.5; where CVs were significantly too small the median CVs 
were between 0.02 and 0.24. 

If a default CV is to be used for all CPUE series, the 
best value lies between 0.15 and 0.2; values in this range 
give approximately equal numbers of positive and negative 
values of κ (Table 3). The best default value for a trawl 
survey annual variation CV appears to be about 0.2; this 
gives approximately equal numbers of positive and nega­
tive values of κ (Table 4). 

Figure 3 
The residual statistic, κ, plotted against assumed CV for 
each of the assessment data sets: those with CPUE indices 
in the upper panel, those with trawl survey indices in the 
lower panel. Each point represents one data set; where dif­
ferent indices in a data set had different assumed CVs, the 
median of these is plotted. 
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in catchability. Two clear examples are shown in Figure 4: 
Our informal graphical procedure showed that, for some for series 5, the biomass indices for many species follow the 
trawl survey series, the biomass indices for many species same up-down-up pattern; for series 6, the opposite pat-
fluctuate synchronously, which suggests annual variation tern (down-up-down) is followed by many species (but not 
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Figure 4
Standardized biomass indices, plotted against year, for 
trawl survey series 5 and 6. For each species in a series, the 
biomass indices were standardized by dividing by the mean 
index for that species.

Table 3
Effect of using different default CVs for the 19 assessment 
data sets with CPUE indices and assumed CVs of either 
0.3 or 0.35. Each line of the table gives the number of these 
data sets for which   κ falls in the given range for the given 
default CV.

 Number of data sets

Default CV κ < –2 –2 < κ  < 0 0 < κ  < 2 2 < κ

0.1  1 9 9
0.15  8 6 5
0.2 11 5 3
0.25 10 5 1
0.3 10 3 0
0.35  9 3 0

Table 4
Effect of using different default annual variation CVs for 
the 18 assessment data sets with trawl survey indices. 
Each line of the table gives the number of these data sets 
for which κ  falls in the given range when the assumed 
CV in the assessment is calculated by “adding” the given 
default CV to the observation error CVs.

Default CV Number of data sets
for annual
variation κ  < –2 –2 < κ  < 0 0 < κ  < 2 2 < κ

0  4 10 4
0.1 0  6  9 3
0.15  6 11 1
0.2 0  9  8 1
0.25 1  9  8 0
0.3 11  6 0

in the same years). These patterns would be very unlikely 
to occur by chance alone if there were no between-species 
correlations. For series 5, 14 of the 22 species had their two 
highest biomass indices in the same years (1994 and 1996). 
The probability that an outcome as extreme as this would 
occur by chance alone (assuming no correlations) is only 
6.4 × 10−6. For series 6, the probability is 9.8 × 10–8 (here 
17 of 25 species had their two highest years in 1996 and 
1998). These very low probabilities are clear evidence that 
there are sometimes strong between-species correlations in 
a survey series. We will argue below that the main cause 
of these correlations is that catchability was extreme (for 
many species) in some years.

In our more formal analysis, 16 of a total of 94 survey 
years were found to be signifi cantly extreme (nine with 
high catchability, and seven with low), and there were 
eight survey series for which no years were extreme (Fig. 5). 
(Note that the vertical distance between the broken lines in 

Figure 5, which indicates how extreme a mean rank needs 
to be to be judged signifi cant, decreases with increasing 
number of species and with decreasing number of survey 
years.) We also investigated three modifi cations to the above 
procedure for identifying extreme years to see whether they 
might be useful. None was (see Appendix for details).

For some extreme years the biomass ratio statistics 
(Table 5) are so large that it is unlikely that actual bio-
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Figure 5 
Mean ranks (calculated as illustrated in Table 2) for each trawl survey data set. The solid horizontal line in each panel indicates the 
overall mean rank; mean ranks outside the broken lines (circled points) indicate extreme survey years. 

x 

masses changed by so much. For example, for series 1 
the median change in biomass index between 1979 and 
1980 (calculated over 10 species) was a factor of 3.4. It is 
not plausible to say that the biomass of so many species 
changed by that much in just one year. A second example 
is years 1988 to 1990 for series 9. Here the median change 
(over 25 species) was a halving, from 1988 to 1999, followed 
by a doubling, from 1989 to 1990. Again, it is not plausible 
to say that the actual biomasses changed by this much. 

Are there consistencies between data sets? 

The range of estimated trawl survey catchabilities is very 
wide, covering more than two orders of magnitude, from 
0.0035 to 1.6 (Fig. 6). Although the theoretical maximum 
value for a trawl survey q is 1, the two values that exceed 
this may not be of concern if we allow for estimation error. 
However, the lowest values are of concern. If these are accu­
rate, then it would seem inappropriate to use trawl surveys 
to assess these stocks. For example, a q that is less than 
0.01 means that more than 99% of the stock is, in some 
sense, not available to the trawl survey—either because 

it is outside the survey area (low areal availability), does 
not encounter the trawl (low vertical availability), or easily 
avoids it (low vulnerability). For two species the range of 
values was implausibly wide: for species F the four esti­
mates varied by a factor of 79 (0.0039 to 0.31); for species 
E the factor was 49 (0.0035 to 0.17) (the next widest range 
was for species C, a factor of just 2.8). 

There is only limited scope for between-series com­
parisons because the years or seasons covered by different 
series may not overlap and, in any case, only about one 
in six years is labeled as extreme. There are three years 
which were labeled as extreme for more than one series: 
1984, 1989, and 1995. In two of these three, the labels are 
consistent: series 9 and 15 (both of which were deepwater 
surveys targeting orange roughy, Hoplostethus atlanticus, 
in different areas) agree in finding catchability to be high 
in winter 1984 and low in winter 1989. For 1995, two 
surveys found low catchability (series 5 in depths 20–400 
m in February and March, and series 8 in 200–800 m in 
January) and two found high (series 10 in 750–1500 m in 
October and November, and series 13 in depths 20–400 m 
in March and April). Given the differences in depth ranges 
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Table 5 
Biomass ratio statistics for “extreme” years (as identified 
in Fig. 5) in the trawl survey data. For each series, the 
table has one row for each pair of consecutive surveys that 
includes one extreme year (extreme years are underlined). 
A biomass ratio for the two years is calculated for each 
species; the table presents the median of these ratios, as 
well as the number of species for which this ratio exceeds 
1.5. In each row, the order of the years is such that the 
expected biomass ratio is greater than 1. 

Median Number of species 
Series Years ratio where ratio exceeds 1.5 

1 1980/1979 3.4 8/10 
3 1983/1985 1.2 1/4 

1990/1985 3.0 3/4 
5 1994/1993 1.8 12/22 

1994/1995 1.6 14/22 
1996/1995 1.9 13/22 

6 1997/1998 1.4 11/25 
1999/1998 1.5 14/25 
1999/2000 1.9 18/25 

8 1994/1995 1.4 8/18 
1996/1995 1.6 10/18 

9 1984/1985 1.7 15/25 
1988/1989 2.0 16/25 
1990/1989 2.1 19/25 

10 1995/1993 1.4 7/16 
13 1995/1994 1.1 1/18 

1995/1997 1.4 8/18 
15 1984/1987 1.4 11/25 

1987/1988 2.3 16/25 
1990/1989 1.9 13/25 

and months for these series, it is unclear how much consis­
tency in catchability could be expected. 

In comparing the trawl survey and CPUE series, we 
found only 12 matches, and the data were consistent at 
8 of these (67%). This is not significantly different from 
the value of 50% that we would expect if the data were 
uncorrelated (P=0.39). Another place one might look for 
consistency is between biomass trends for the same species 
in different survey series. We made plots of biomass trends 
for every instance where there were at least three survey 
series with that species and at least three years in common. 
A few of the 16 such plots showed strong consistency but it 
was difficult to judge the significance of this because of the 
possibility of obtaining agreement by chance. 

Discussion 

It is difficult to make inferences about catchability because 
we cannot measure it directly. Instead, we must estimate it 
indirectly with stock assessment models. These estimates 
are compromised by the weakness of our models, which 

Figure 6 
Estimates of trawl survey catchability by species. 
Each point corresponds to an assessment data set; 
estimates for different stocks of the same species 
are plotted in the same horizontal line. 
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provide only crude representations of population dynam­
ics (because the data to develop more complex models are 
not available). With trawl survey data alone we cannot 
estimate catchability; we can only detect years when 
catchability was extreme for many species. Nevertheless, 
the large data sets we have assembled do allow us to draw 
some conclusions about New Zealand catchabilities. 

Are the assessment CVs the right size? 

Our results imply that, on average, the CVs used for CPUE 
in New Zealand are too large, and those used for trawl 
surveys are too small. For CPUE, the common (but usually 
tacit) assumption that catchability varies from year to year 
is supported. It is clear from Figure 3 and Table 3 that, had 
the CPUE CVs been set equal to the observational error 
(typically less than 0.1, Francis2), the associated stock 
assessment residuals would have been much too large. 
However, too much allowance for annual variability seems 
to have been made: the CVs that are used in stock assess­
ments are, more often that not, too large. In other words, 
the annual variability in CPUE catchability is not as large 
as is implied by these CVs. Where the use of a default CV 
is appropriate, it would seem that values around 0.15–0.2 
would be better than the values of 0.3–0.35 that are cur­
rently used. This implies that annual variability in CPUE 
catchability is less that 0.2. For trawl survey indices, the 

2 Francis, R. I. C. C. 1999. The impact of correlations in stan­
dardised CPUE indices. N.Z. Fish. Assess. Res. Doc. 99/42, 30 p. 
National Institute of Water and Atmospheric Research, P.O. Box 
14901, Wellington, New Zealand. 
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results of Table 4 suggest that 0.2 is a reasonable default 
CV for annual variability in survey catchability. This CV 
should be “added” to the observation error CVs to obtain a 
CV for use in stock assessments. 

The blanket use of default CVs is clearly undesirable. It 
is obviously wrong to assume that all CPUE indices have 
the same CV, regardless of which species or fishery they 
describe, or the quality and quantity of data from which 
they are calculated. Similarly, we should expect that an­
nual variability in trawl survey catchability will vary from 
stock to stock. However, we have little choice in this matter. 
In most stock assessments we do not have the information 
to depart from a default value (although there is some-
times evidence that CPUE data sets were unusually weak, 
Doonan et al.3). The above default values imply smaller 
CVs for CPUE than for trawl surveys. This is surprising 
and contrary to the prevailing view that trawl surveys are 
more “reliable” than the CPUE (in the sense defined in the 
above section on the assessment data). Nevertheless, it is 
clearly indicated by the data sets examined here. 

Can we detect years of extreme trawl survey 
catchability? 

There is clear evidence of extreme years in New Zealand 
trawl surveys, i.e. years in which the biomass indices for 
many species are extreme (all low, or all high). However, 
can we be confident that these extreme years are caused by 
extremes in catchability? There are two other factors that 
could cause these extremes. 

The first is sampling error, which is associated with the 
element of chance involved in whether there happen to be 
many fish at a randomly chosen location at the time it is 
sampled by the trawl. Because some pairs of species co-oc­
cur, we can expect that if we are “lucky” with one species 
(i.e. we happen to hit dense concentrations of it), then we 
will tend to be “lucky” with its co-occurring species. Thus, 
the sampling errors of co-occurring species will be cor­
related. It seems unlikely that the extreme mean ranks 
shown in Figure 5 (or the biomass ratios in Table 5) were 
caused solely by correlated sampling errors. In principle, 
we should be able to quantify this likelihood. From the sur­
vey tow-by-tow data we could infer the extent of between-
species correlations at the level of individual stations, from 
which we could calculate correlations for whole surveys (we 
would expect more correlations in surveys covering a wider 
range of species). This information could then be used to 
calculate the probability of generating biomass ratios as 
large as those in Table 5. However, to do so would be a 
major multilevel simulation exercise which is beyond the 
scope of the present work. What we do know, from other 
studies, is that between-species correlations, when they 
exist, are not large. Values of 0.2 to 0.4 seem to be typi­
cal (for square-root–transformed catch rates in the same 

3 Doonan, I. J., P. J. McMillan, R. P. Coburn, and A. C. Hart. 
1999. Assessment of OEO 3A black oreo for 1999–2000. N.Z. 
Fish. Assess. Res. Doc. 99/52, 30 p. National Institute of Water 
and Atmospheric Research, P.O. Box 14901, Wellington, New 
Zealand. 

depth stratum, Bull4). It does not seem at all likely that 
such small correlations would cause the very substantial 
synchronous fluctuations we see in Figure 5 and Table 5. 

A second interpretation of the extreme years is that 
they occur because changes in abundance of co-occurring 
species are correlated (because fishing that reduces the 
abundance of one species is likely to do the same for co-oc­
curring species). Table 5 allows a subjective evaluation of 
the likelihood that biomasses in the extreme years changed 
by as much as the survey biomass indices suggest. This 
evaluation is complex because the likelihood depends on 
the magnitude of the ratios, the number of years between 
surveys, the number of species involved, and any “adja­
cent” changes (e.g. for series 9, a large drop in biomass in 
1989 is less plausible because it appears to be followed by 
a large rise in the next year). Thus it is not easy to provide 
a threshold and say that some changes are plausible but 
others are not; but there is a clear range of plausibility. At 
one extreme are the changes associated with 1980 in series 
1 and 1989 in series 9; we have argued above that these 
changes are clearly implausible. At the other extreme the 
changes for 1995 in series 13 are not as implausible, but it 
is a matter of judgment as to whether one could call them 
plausible. 

Another point to bear in mind is that if we use observa­
tion error CVs (as routinely calculated from trawl survey 
data) in stock assessments, we obtain residuals that are, 
more often than not, larger than they ought to be. 

We are left with the conclusion that the trawl survey 
data contain clear evidence that research-vessel catch-
ability does vary significantly from year to year. In most, if 
not all, of the circled years in Figure 5 the catchability of 
many species appears to have been either much higher or 
much lower than normal. This finding is consistent with 
those of Myers and Cadigan (1995), who expressed this 
variation in terms of between-age within-year correlations 
in trawl-survey estimates of numbers at age. Also, Millar 
and Methot (2002) found evidence of significant departures 
from mean catchability in four of eight years in the trien­
nial series of trawl surveys carried out on the Pacific coast 
of the United States. This variation in catchability may be 
environmentally driven. It would not be difficult to find 
plausible environmental variables that were extreme in 
the right years. However, because most of our trawl-survey 
time series were short we could have little confidence that 
this correlation was indicative of causation. Another pos­
sible cause of variation in catchability is between-survey 
changes in gear and fishing practice (although care is taken 
to avoid such changes). 

Are there consistencies between data sets? 

Our only important result under this heading is that some 
estimates of trawl survey catchability are not credible. For 
two species, we found that some estimates were implausi-

4 Bull, B. 2000. Personal commun. National Institute of 
Water and Atmospheric Research, P.O. Box 14901, Wellington, 
New Zealand. 



Francis et al.: Quantifying annual variation in catchability 303 

bly low and the variation amongst stocks of the same spe­
cies was implausibly high. Where possible, this variability 
should also be examined for CPUE catchabilities (as long 
as they are comparable—note that we should not compare 
trawl and long-line catchabilities). We did not make this 
comparison in our study because it involves adjusting for 
different reference units of of effort in different CPUE 
series, which requires specialist knowledge about the indi­
vidual fisheries and data sets. 

Concluding comment 

Our analyses have not been able to take account of the 
practice, in some stock assessments, of using CVs as a 
measure of the “quality” of a biomass index, rather than 
its precision. This practice happens when a high CV is 
assigned to a series (often of CPUE) that is believed not 
to index biomass well. The intention is to lessen the con­
tribution of the series to the assessment. A problem with 
this practice is that the judgment of quality is subjective, 
as is the decision as to how high a CV to assign to repre­
sent poor quality. It would be very rare that we had suf­
ficient information to determine whether the judgment of 
poor quality was justified, and whether the assigned CVs 
were appropriate. It may be that some of the assessments 
analyzed above produced a biomass trajectory that was a 
very good fit to a CPUE series (suggesting that a low CV 
should have been used) but that the trajectory was wrong 
because, in this case, CPUE was not proportional to abun­
dance. We cannot distinguish such an outcome from one 
in which a precise CPUE series indexed abundance well. 
The practice of assigning CVs subjectively is not desirable. 
Ideally, we should change the model assumption of propor­
tionality between biomass and index rather than inflate 
CVs. However, we acknowledge that stock assessment is a 
very pragmatic discipline in which many compromises are 
necessary, and we hope that the above results will provide 
practitioners with empirical evidence to support some of 
their subjective decisions. 
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Appendix 

Alternative mean rank calculations 

In this Appendix we describe some alternative (but unfruit­
ful) mean rank calculations referred to in the “Results” sec­
tion under the subheading “Can we detect years of extreme 
trawl survey catchability?” 

We tried three variations on the above procedure for 
identifying extreme years. In each case we were evaluat­
ing an alternative hypothesis about the nature of between-
species correlations. Each hypothesis leads to a different 
method of calculating mean ranks (or alternative statis­
tics), and we applied the new method to both the survey 
data, and to simulated data (to calculate threshold values 
for the new statistics). If the hypothesis were true we would 
expect to see more extreme years. In fact, we saw fewer 
extreme years for all of these alternatives. 

First, we repeated the above calculations after omitting 
species for which the mean CV (see Fig. 2) exceeded 0.4.The 
idea here is that, for species with high CVs, there is little 
information in the year-to-year changes in their biomass 
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indices.Thus these indices may mask the synchronous fluc­
tuations in the other species, so that omitting them would 
produce more extreme years. In some cases it did make the 
most extreme rank deviations more extreme. However, it 
also had the effect of increasing the threshold (because the 
number of species decreased).The net effect was to produce 
slightly fewer extreme years. There was one additional ex­
treme year—1993 for series 7. However, the following years 
were no longer deemed extreme: 1980 for series 1; 1994 and 
1996 for series 5; and 1988 for series 15. 

Our second alternative was based on the idea that envi­
ronmental changes may affect different species differently. 
That is, an environmental extreme produces extreme catch-
ability, but this may be high for some species and low for 
others. To test this we calculated rank deviations for each 
species and then averaged the rank deviations (rather than 
averaging the ranks and then calculating deviations). This 
method identified only four extreme years—three were as 
in Figure 5 (1984 and 1989 for series 9 and 1995 for series 
10) and one was new (1979 for series 1). 

The third alternative was a variant on the second. We as­
sumed that the species for each series fall into two groups: 
one group whose catchabilities are all affected in the same 
way by environmental changes, and a second group for which 
the effect is opposite. That is, when catchability is high for 
the first group it will be low for the second, and vice versa.We 
calculated the mean ranks as above and then determined, 
for each species, the Euclidean distance between these mean 
ranks and 1) the species ranks, and 2) the “inverse” of the 
species ranks (if a species ranks are, say, 1, 4, 2, 3, then the 
inverse ranks are 4, 1, 3, 2). When the latter distance was 
smaller, the species was said to fall into the second group. 
The ranks for all group-two species were replaced by their in-
verse ranks and the mean ranks (and thus rank deviations) 
were recalculated. With this method only two extreme years 
were found, both of which are extreme in Figure 5 (1984 
and 1989 for series 9). Often there was no clear separation 
between groups one and two. Sometimes (but only when 
there were few species) group two was empty. We also tried 
a cluster analysis approach to the identification of groups one 
and two but this produced no better results. 
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