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Hierarchical analysis of multiple noisy abundance
indices

Paul B. Conn

Abstract: Fisheries analysts often rely on relative abundance indices for assessing stock status. However, trends in abun-
dance can be difficult to discern when there are multiple indices or when correlation among indices is weak or negative.
In this paper, I present a hierarchical framework for analyzing multiple, noisy indices with the goal of estimating a single
time series of relative abundance. An implicit assumption is that each index is measuring the same quantity (relative abun-
dance) but that each is subject to process error (attributable to variation in catchability, spatial distribution, etc.) in addition
to an estimable level of within-survey variance (i.e., sampling error). I use simulation to explore estimator performance
under a number of scenarios, including several that violate underlying assumptions. In general, the hierarchical approach
produced estimators with reasonable properties. I illustrate the method with an analysis of seven fishery-dependent catch-
per-unit-effort indices of Spanish mackerel (Scomberomorus maculatus) off the US Atlantic coast and provide several sug-
gestions for how this approach can be used in practice.

Résumé : Les analystes des pêches se fient souvent sur les indices d’abondance relative pour évaluer le statut des stocks.
Il peut cependant être difficile de discerner les tendances dans l’abondance lorsqu’il y a plusieurs indices ou lorsque la
corrélation entre les indices est faible ou négative. Ce travail présente un cadre hiérarchique pour l’analyse d’indices multi-
ples et contenant beaucoup de bruit dans le but d’estimer une seule série chronologique d’abondances relatives. Une pré-
supposition implicite veut que chaque indice mesure la même entité quantifiable (l’abondance relative), bien que chacun
soit sujet à une erreur de processus (attribuable à la variation de la capturabilité, la répartition spatiale, etc.) en plus
d’avoir un niveau évaluable de variation dans les inventaires (c’est-à-dire une erreur d’échantillonnage). La simulation per-
met d’explorer la performance de l’estimateur dans divers scénarios, dont plusieurs qui violent les présuppositions sous-
jacentes. En général, l’approche hiérarchique produit des estimateurs avec des propriétés acceptables. Une analyse de sept
indices de CPUE dépendant de la pêche chez des thazards atlantiques (Scomberomorus maculatus) de la côte est des É.-U.
illustre la démarche; plusieurs suggestions facilitent l’utilisation concrète de la méthode.

[Traduit par la Rédaction]

Introduction

Relative abundance indices are a critical component of
most fisheries stock assessment models. A common but key
assumption of these models is that each index is propor-
tional to some measure of abundance or biomass. For in-
stance, if abundance is of interest, an analyst might assume
that It = qNt, where It is the index value in year t, Nt is abun-
dance in year t, and q is a time constant catchability coeffi-
cient. Unfortunately, catch-per-unit-effort (CPUE) time
series are often deficient for making inferences about rela-
tive abundance because of fluctuations in q. For instance,
catch rates can vary as a function of fishing vessel, wind
speed, population density, spatial distribution of the popula-
tion, and other biotic or abiotic factors (Byrne et al. 1981;
Collie and Sissenwine 1983; Poulard and Trenkel 2007).
The situation can be worse for fishery-dependent CPUE in-
dices, where catch rates often remain high even when popu-
lations are declining (cf. Harley et al. 2001).

Given the importance of catchability changes for interpre-
tation of indices, a focus of recent research has been to de-
velop methods of index construction that relax the constant
catchability assumption. One common approach is to use
generalized linear models (GLMs) to control for covariates
thought to influence catchability (e.g., Lo et al. 1992; Ste-
fánsson 1996; Maunder and Punt 2004). Although this ap-
proach can control for measured quantities such as
stochastic changes in environment, fishing vessels, or gear,
etc., it cannot diagnose changes in q due to changes in spa-
tial distribution of the target population, to a nonlinear rela-
tionship between catch rates and abundance, or even when
there are trends in environmental covariates (cf. Nichols et
al. 2009). Comparisons of interannual variation of indices
with estimates of sampling variance (as computed from the
design of a fishery-independent survey or as a by-product
of model fitting) often indicate that there is overdispersion
in index values that cannot adequately be explained by sam-
ple size alone (Byrne et al. 1981; Pennington 1985). When
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the magnitude of interannual changes in index values is con-
sistently larger than that expected from knowledge of life
history and theoretical variances, this suggests a residual,
unexplained source of variation in index values (Stock-
hausen and Fogarty 2007). Several approaches have been
advanced to deal with this unexplained variance. For in-
stance, Pennington (1985) and Stockhausen and Fogarty
(2007) suggested using time series methods to smooth indi-
ces. Several authors have extended this framework to incor-
porate relevant life history information or other data sources
as auxiliary information within state–space models (Besbeas
et al. 2002; Mazzetta et al. 2007). However, each of these
approaches assumed that inference was based on one index.

In contrast, many assessments include multiple indices,
which may provide additional information with which to es-
timate error components. For instance, in a recent assess-
ment of Spanish mackerel (Scomberomorus maculatus) off
the US Atlantic coast, a total of seven indices of abundance
were computed from commercial and recreational fishery
databases, few of which correlated well with each other
(SouthEast Data, Assessment, and Review (SEDAR)
2008a). Although time series methods could be used to
smooth each individual index, this would do little to resolve
differences in population trend if there were shifts in migra-
tion patterns that involved ‘‘trade-offs’’ between fisheries.
Indeed, commercial fishermen recently observed increased
catch rates in some Spanish mackerel fisheries (e.g., com-
mercial gillnet) and decreases in others (e.g., commercial
handlines), which they attributed to shifts in wintering distri-
butions (B. Hartig, South Atlantic Fisheries Management
Council, 9277 SE Saron Street, Hobe Sound, FL 33455, per-
sonal communication, 2008).

In this paper, I introduce a hierarchical modeling ap-
proach for estimating a single time series of relative abun-
dance values from multiple noisy indices. The method
works by assuming that each CPUE index is attempting to
sample relative abundance but is subject to both sampling
and process errors, with the latter due to temporal variation
in index-specific catchability (and possibly to differences in
selectivity between gear types). I start by providing a de-
scription of model structure, demonstrating how Markov
chain Monte Carlo (MCMC) can be used to fit the model to
data. I then explore a number of different simulation scenar-
ios to evaluate estimator performance and illustrate an ex-
ample application to Spanish mackerel off the US Atlantic
coast. Finally, I discuss some of the benefits and limitations
of the method as currently proposed and make several sug-
gestions about how to use resultant estimates in stock as-
sessments. I also propose several future research directions.

Materials and methods

Model development
Consider the case in which an investigator has access to I

different time series of relative abundance (each of which is
referred to individually as ‘‘an index’’). Each index Ui is
composed of {Uit} for t [ {ti1, . . ., tiT}, where i distinguishes
the index and t is a time subscript (T gives the ending year
of the study). Each index may be computed in any number
of ways, including CPUE sample means from fishery-
independent surveys, as well as estimates from GLMs that

control for a large number of covariates. Whatever indices
are available, the fundamental issues with conducting joint
inference are that (i) indices are measured with error, (ii) the
indices may be on different scales, and (iii) true abundance is
rarely known. Each index is related to absolute abundance
through the relationship Uit = qitNt + 3it, where qit gives
catchability of index i in year t, Nt is vulnerable biomass or
abundance in year t, and 3it is an error term (hopefully ran-
dom!). The problem is that given multiple index time series,
it is difficult to determine whether differences in indices are
due to differences in qit, differences in 3it, or actual changes
in abundance (e.g., Fig. 1). This problem is reduced, but not
eliminated, when constant catchability is assumed (i.e., qit =
qi).

Ultimately, inference based on relative abundance indices
is concerned with proportional changes in abundance over
time rather than absolute abundance. That is, if we assume
that relative abundance is known at a fixed reference point,
all we really desire is to be able to estimate proportional
change from that point in any other year of the study. Alter-
natively, we might set mean relative abundance to a fixed
value and estimate annual deviations. Given these types of
constraints (which are needed to make parameters identifi-
able), multiple indices provide exactly the sort of replication
that is needed to estimate both the error term and an addi-
tional scaling term for each index, as will be shown below.

Let m = m1,m2, . . .,mT represent a scaled abundance time
series in which annual changes in mt are reflective of changes
of abundance at the population scale (that is, mt = cNt for
some unknown constant c). A lognormal error structure is
often assumed for indices of abundance. Adopting this con-
vention and assuming that indices are subject to independent
and multiplicative process and sampling errors, we may write

logðUitÞ � NormalðlogðmtÞ þ logðq0itÞ; ðs
p
itÞ2 þ ðssitÞ2Þ

Here, spit and ssit give the standard deviation associated with
process and sampling errors, respectively, and q

0
it is a scaling

factor for index i in year t (e.g., Fig. 1). I assume that the
investigator has access to estimates of survey sampling error
as could be computed from knowledge of the sampling de-
sign (in the case of fishery-independent surveys) or from
standard output of model fitting exercises (e.g., from the
Hessian in delta-GLM analysis). Assuming a lognormal er-
ror structure, the precision attributable to sampling error
may be written as a function of the estimated coefficient of
variation on the absolute scale, so that
ssit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð½CVðUitÞ�2 þ 1Þ

p
. Making the substitutions

cit ¼ logðq0itÞ and nt ¼ logðmtÞ results in the model

ð1Þ logðUitÞ � Normalðnt þ cit; ðsp
itÞ2 þ ðss

itÞ2Þ

If catchability is assumed to be stationary (e.g., no trends in
catchability), the model may be further simplified to

ð2Þ logðUitÞ � Normalðnt þ ci; ðsp
itÞ2 þ ðss

itÞ2Þ

Likelihood and constraints
The model in eq. 1 implies a joint likelihood function for

the index data that is conditional on known values of sam-
pling error, namely
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ð3Þ ½Ujc; n; sp; ss�

¼
YI
i¼1

YT
t¼1

f logðUitÞj nt þ cit; ðspitÞ2 þ ðssitÞ2
� �

where bold–italic symbols denote vectors, and f(x | q1, q2) de-
notes a Gaussian probability density function with mean q1
and variance q2. In this form, the constraint needed to scale
the problem can be made in a number of ways, including
setting vk to a fixed value for an arbitrary k, or by setting nk
to a fixed value. For this paper, I implemented a variant of
the second approach, based on hierarchical centering (Chen
et al. 2000; see Bayesian analysis section). Although analy-
sis using classical likelihood approaches is certainly possible
with additional constraints (e.g., constant process errors
among indices), a Bayesian analysis via MCMC provides in-
creased flexibility. At present, it appears necessary to have
some of the the s

p
it constant over time. However, it may be

possible to consider autoregressive models for process error
in certain circumstances, or to consider mixture models that
allow for the possibility that individual indices are noninfor-
mative (e.g., Schnute and Hilborn 1993). Further considera-
tion of possible extensions is deferred to the discussion;
subsequent analysis proceeds by making the constraint that
process errors are time-invariant (i.e., using eq. 2).

Bayesian analysis
Performing a Bayesian analysis requires that one specify

prior distributions for [vt], [cit], and ½spi �. The following pri-
ors were chosen for use throughout this paper as they con-
formed to scenarios chosen for simulation analyses, as well
as perceived dynamics of Spanish mackerel (Fig. 2); how-
ever, they may deserve revisiting in other circumstances.
First, I specified a Normal(log(100), 1) distribution for [nt].
The mean of this distribution, log(100), was chosen so that
the mean of the relative abundance time series (m) would
be approximately 100. This number is completely arbitrary,
but some such constant is needed to scale the problem. In
the end, it is not this number that we care about; rather, it
is the deviations from this mean value that are of interest.

Next, recalling that cit specifies the natural logarithm of
catchability relative to the latent abundance time series m
(where the mk are centered near 100) and assuming that in-
dividual indices are standardized to their mean (and thus
have a mean value of 1.0), we might expect an ‘‘average’’
value for the scaling parameter q

0
i of 0.01. However, estima-

tion is performed in ci ¼ logðq0iÞ space, so I chose to set the
prior for ci as [ci] = Normal(log(0.01), 0.5), which gives
reasonable support to plausible parameter values. Finally,
for s

p
i , Gelman (2006) suggests that a Uniform(0, m) distri-

bution may outperform other choices when there is a small
number of group effects. For purposes of this paper, I speci-
fied a Uniform(0, 5) prior distribution for ½spi �, which gives
equal weight to all plausible precision values.

Given the choice of prior distributions (here assumed in-
dependent), the posterior distribution is specified up to a
proportionality constant:

ð4Þ ½c; n; sp jU; ss� / ½U jc; n; sp; ss�½c�½n�½sp�

Provided an index data set and estimates of sampling error,
eq. 4 can be sampled with a technique such as Markov chain
Monte Carlo (MCMC). I performed all posterior simulation
using the software package WinBUGS (Lunn et al. 2000),
with the package R2WinBUGS (Sturtz et al. 2005) used to
pass data sets between WinBUGS and the R programming
environment (R Development Core Team 2007) (see Com-
putation section).

Simulation testing
To demonstrate that the hierarchical approach produces a

combined index with reasonable properties, I conducted sim-
ulations to quantify performance under a number of scenar-
ios.

Simulations scenarios 1 and 2: all assumptions met
Simulation scenarios 1 and 2 measured estimator perform-

ance when index data were simulated according to the same
probabilistic structure assumed for analysis (that is, lognor-
mally distributed process and sampling errors where the
sampling errors are assumed known). To generate abun-
dance time series, I set abundance in year 1 of each simula-
tion to N1 = 100 and then allowed it to follow a random
walk subject to a boundary condition. More specifically, I
let Nt = max(20, Nt–1 + 3t–1), where 3t ~ Normal(0, 152). The
value of 15 for the standard deviation of the random walk
was subjective but permitted abundance to vary quite sub-

Fig. 1. A hypothetical, pictorial depiction of the inferential problem
with trying to estimate a common population trend from multiple
CPUE indices. Unknown true abundance is represented by the con-
tinuous black line, relative abundance (denoted by mit in modeling
efforts) by the continuous shaded line, and three hypothetical CPUE
index time series with broken and dotted lines. In practice, there is
an infinite number of possible relative abundance time series (any
time series that preserves proportional changes in abundance), so
one must ‘‘anchor’’ it by setting its mean or the value in a reference
year to a fixed value. Inference can then focus on process errors
and scaling parameters (q

0
i; represented by arrows in part a) needed

to best explain relative abundance (e.g., part b).
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stantially throughout the time series. In simulation sce-
nario 1, all indices had the same number of years and error
levels, but these could vary from simulation to simulation.
For each simulation in this scenario, the number of years T
was drawn from a Uniform(10, 20) distribution, the number
of indices I was drawn from a Uniform(4, 10) distribution,
and the CVs for sampling and process errors were drawn
from Uniform(0.1, 0.3) and Uniform(0.0, 0.3) distributions,
respectively. Each index was assumed to have a catchability
coefficient of q = 0.01, was sampled with lognormally dis-
tributed error, and was scaled to its mean prior to analysis.

In simulation scenario 2, the number of indices was set to
five for all simulations, and there was increased heterogene-
ity among the indices. In particular, the first index was as-
sumed to span a 20-year time period, with the remaining
indices spanning anywhere from 5 to 15 years. Once the du-
ration of an index was sampled (according to a uniform dis-
tribution), its placement within the 20-year time series was
randomly sampled. Each index had a process error CV
sampled from a Uniform(0, 0.3) distribution and a sampling
error CV sampled from a Uniform(0.1, 0.3) distribution. This
scenario included the increased realism of different levels of
precision and indices that spanned different time periods.
One thousand data sets were simulated for each scenario.

Simulation scenario 3: spatial dynamics
One possible source of process variation in index values

is a difference in spatial coverage among indices. This is
particularly the case when the proportion of fish using a
given area varies annually. To investigate consequences of
this dynamic on estimator performance, I simulated data for
the extreme case in which the range of the stock was broken

into multiple "regions’’, and an index was computed for
each. Note that this is a highly idealized case; the entire
population is still sampled in its entirety.

To simulate dynamics, I first generated abundance values
for the entire population using the same random walk model
as in the previous section. I then let the proportion of fish
that use spatial area i at time t be given by pit, where the
distribution of pit is defined by a multinomial logit link
function:

pit ¼

expðbitÞ

1þ
XI�1

i¼1

expðbitÞ
; i < I

1�

XI�1

i¼1

expðbitÞ

1þ
XI�1

i¼1

expðbitÞ
; i ¼ I

0
BBBBBBBBBBBBB@

Values for bi1 were initialized by drawing from a
Normal(0, 0.04) distribution at the start of the time series,
while later values were determined according to a bounded
random walk:

bi;tþ1 ¼ bit þ Zit

where Zit * Normal(0, s2
spatial). This simple generating

model constrains the proportion of fish using different areas
to sum to 1.0 and allows for serial autocorrelation in these
proportions. The level of autocorrelation is defined by
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Fig. 2. Prior distributions used in MCMC analysis (log space; left panels) together with implied priors (real space; right panels).
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sspatial; variation in this quantity implies very different spa-
tial dynamics (e.g., Fig. 3). In Fig. 3 and throughout simula-
tions, the bit were resampled any time that a pit value was
less than 0.1 to keep mixing proportions at reasonably high
values.

For each of 1000 simulations, sspatial was drawn from a
Uniform(0.0, 0.3) distribution. Each simulation assumed five
indices, 20 years of data, and a sampling error CV of 0.2 for
each index. No process error was included in the model
apart from that generated by annual changes in mixing pro-
portions. Individual indices were calculated as

Uit ¼ expðZitÞ

where Zit * Normal(log(Ntpit qi), 0.2) and qi was set to
0.01. Each index was scaled by its mean prior to analysis.

Simulation scenario 4: selectivity variation
To investigate whether the combined index approach is

robust to differences in gear selectivity, I simulated data
from an age-structured population model (Table 1) that dif-
fered by recruitment variability and by the selectivity pattern
used to construct various indices. In all cases, index values
were determined by

Uit ¼ expð3itÞ
X
a

Nta sia wa

where Nta is abundance of age class a in year t, sia is selec-
tivity of gear i to individuals in age class a, wa is weight at
age, and 3t * Normal(0, 0.2) is Gaussian noise associated
with the sampling process. Each index was standardized to
its mean prior to analysis.

Four functional forms for selectivity were considered, in-
cluding (A) 100% selection, (B) logistic, (C) dome-shaped
(double logistic), and (D) recruits only (Table 1; Fig. 4). In-
terest focused on performance of the hierarchical approach
when different combinations of these functional forms (and
different slope parameters) were used to generate index
data. In each simulation, the comprising functional form for
each index was sampled with replacement from the above
list; if logistic or dome-shaped functions were selected, the
parameters of these distributions were sampled as follows:
h * Uniform(1, 3), a1 * Uniform(1, 4), and a2 *
Uniform(4, 6). Random selection of parameters increased
heterogeneity in indices.

Several options for population trajectory and recruitment
variability were also considered. In particular, fishing mor-
tality could be constant at the same level as natural mortal-
ity (‘‘stable’’ population; Ft = M), could increase linearly
from F1 = M to FT = 2M (‘‘decreasing population’’), or
could decrease linearly from F1 = M to FT = 0.5M (‘‘in-
creasing population’’). For recruitment variability, I consid-
ered two possibilities: sR = 0.3 or sR = 0.8.

Simulations in scenario 4 were conducted according to a
factorial design, with three levels for population trajectory
and two levels for recruitment. For each of 100 simulations
at each design point, I initialized N1 (the abundance at age
vector in year 1 of the study) by simulating the dynamics of
an exploited population for 11 years (number of age classes
plus 1) prior to the first year of data. The population was set
to the stable age distribution at the beginning of the initiali-

zation phase (cf. Caswell 2001). All simulations assumed
that total mortality in the initialization phase was Z = 2M,
where M = 0.2. Ten indices were generated for each simula-
tion, each of which was assumed to be sampled for 20 years.

Post hoc scenario
Following analysis of scenarios 1–4, I conducted an addi-

tional simulation scenario to highlight differences between
the hierarchical index and the arithmetic mean index (when
calculable). This scenario assumed five indices, each of
which was monitored for 20 years. In this case, each index
was assumed to be subject to different levels of sampling
and process errors. In particular, s

p
i * Uniform(0.0, 0.5)

and ssi * Uniform(0.1, 0.8). These values were resampled
for each of 1000 simulations.

Computation
For each simulation scenario, I fit four independent Mar-

kov chains of length 60 000 to each simulated data set. Each
chain was started at random starting values, and the first
10 000 iterations were treated as a burn-in phase and dis-
carded. The remaining 50 000 iterations from each chain
were combined to yield a sample of the posterior, with one
in every 10 values recorded to save disk space. The result
was 20 000 posterior samples for each simulated time series.
Several sets of Gelman–Rubin statistics (Gelman et al. 2004)
were examined to confirm that Markov chains were indeed
converging to the posterior distribution. Chains appeared to
converge after several thousand iterations for the most
highly parameterized simulations, suggesting that chain
lengths were relatively conservative.

Several measures of posterior performance were recorded,
including bias of the posterior mean and 95% credible inter-
val coverage for mt and s

p
i . Because the posterior is written

in terms of nt, inference about mt was made by calculating
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Fig. 3. Mixing proportions for five indices simulated using a ran-
dom walk on parameters subject to a multinomial logit transforma-
tion. (a) A small standard deviation for the random walk (e.g.,
sspatial = 0.05) resulted in relatively constant mixing proportions,
whereas (b) larger annual variations are possible with sspatial = 0.30.
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posterior moments for transformed samples (i.e.,
m
ðjÞ
t ¼ expðnðjÞt Þ for MCMC iteration j. For simulation sce-

narios 1–3, I also calculated bias and coverage with respect
to the observed values of a single index (this was done for
the longest running index in simulation scenario 2 and a ran-
domly selected index for scenarios 1 and 3). For simulation
scenarios 1, 3, and 4 (as well as the post hoc scenario), I
calculated performance relative to an arithmetic mean index,
which was calculated by (i) standardizing each index to its
mean, and (ii) calculating the average index value in year t.
Comparisons of the performance of the combined index with
that of a single, unbiased index and with the arithmetic

mean index provide one measure of how much one ‘‘gains’’
by employing the hierarchical modeling approach. For simu-
lation scenario 4, I recorded performance statistics using all
indices, and also for the case in which recruitment indices
were censored prior to analysis.

Analysis of simulation output
For each scenario, I used a variety of graphical and statis-

tical approaches to examine percent relative bias, mean
squared error (MSE), and 95% credible interval coverage
(95% COV) resulting from different simulation scenarios.
Examination of bias was difficult to do in a statistical sense
because each estimated index was scaled to its mean before
computation of performance statistics. As such, mean bias is
zero by definition; thus, bias was primarily examined visu-
ally. For MSE and 95% COV, I used GLMs to investigate
factors influencing performance. In particular, I used step-
wise Akaike’s information criterion (AIC) with both forward
and backward selection (Venables and Ripley 2002) to eval-
uate potential predictor variables. Potential predictor varia-
bles used in each analysis are identified below.

For simulation scenario 1, MSE analysis was done with
MSE0.25 as the dependent variable and T, I, sp, ss, and IT as
predictor variables. Here, IT is an indicator variable that
equals 1.0 when the estimate is from the final year of the
study and 0.0 otherwise. The inclusion of IT was suggested
by visual inspection of simulation results. The 0.25 exponent
on MSE was necessary for residuals to be approximately nor-
mally distributed (as confirmed by inspection of quantile–
quantile plots). The most complicated model in stepwise
AIC selection included all main effects. I did not consider
higher order terms because (i) they were more difficult to
interpret, and (ii) estimates of MSE in individual time ser-
ies were not truly independent, and thus AIC could be ex-
pected to erroneously choose models that were too
complicated (i.e., assumed sample sizes were overinflated).
I examined 95% COV in an analogous fashion, this time

Table 1. Formulation of population dynamics model used to simulate index data in simulation scenario 4.

Quantity Symbol Description or definition
Weight at age wa wa ¼ 5

1þexp½�ða�3Þ�; note that the maximum weight is 5.0 and the age at 50% of maximum weight is
3.0

Maturity ma ma ¼ 1
1þexp½�ða�3Þ�; note that the age at 50% maturity is 3.0

Fishery selectivity sa Three models are considered:
(A) all selected; sia = 1
(B) logistic; sia = 1/[1 + exp(– h(a – a1))]

(C) dome-shaped (double logistic); sia ¼ 1
1þexp½�hða�a1Þ�

� �
1� 1

1þexp½�hða�½a1þa2 �Þ�

� �
(D) recruitment index; si1 = 1, sia = 0 for a > 1

Fishing mortality
rate

Fa,y Fa,y = sa,y Fy, where Fy is the fully selected fishing mortality rate

Total mortality rate Za,y Za,y = M + Fa,y

Abundance at age Na,y N1;yþ1 ¼ 0:8R0 h Sy
0:2F0 R0 ð1�hÞþðh�0:2Þ Sy expð3Ry Þ

Naþ1;yþ1 ¼ Na;y expð�Za;yÞ 8 a 2 ð1; . . . ; A� 1Þ
NA;y ¼ NA�1;y�1

expð�ZA�1;y�1Þ
1�expð�ZA;y�1Þ, where 3Ry � Normalð0; sRÞ and F0 gives unfished spawning stock bio-

mass per recruit. The latter quantity is a function of growth and mortality schedules. For purposes
of this simulation study, I set h = 0.75 and R0 = 10 000

Mature biomass Sy Sy ¼
P

a Na;y wa ma; also referred to as spawning stock biomass
Population biomass By By ¼

P
a Na;y wa
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Fig. 4. Functional forms for selectivity used in simulation sce-
nario 4. Recruitment to the fishery was assumed to occur at age 1.
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assuming that COV was a Bernoulli response variable. Pre-
dicted 95% COV that was higher than 95% indicated that
credible intervals were too conservative (that is, include
true parameter values >95% of the time), whereas predic-
tions less than 95% indicate that estimated precision is
overstated. I also examined bias and COV of the estimator
of process standard deviation, sp. Again, GLMs were used
to examine factors influencing bias and coverage. In this
case, the highest dimensional model included additive ef-
fects of T, I, sp, and ss, as well as an interaction between
sp and ss. The importance of the interaction was apparent
when examining simulation data visually.

For simulation scenario 2, the length and placement of in-
dices varied considerably; in this case, overall bias, MSE,
and 95% COV were examined to make sure that the poste-
rior mean still had reasonable performance. For simulation
scenario 3 (spatial dynamics), effort was made to relate the
three performance measures to sspatial, which controlled au-
tocorrelation in spatial mixing proportions. This was done
via GLMs in addition to plotting and comparison with indi-
vidual indices. This same approach was used for simulation
scenario 4 (selectivity differences), although in this case,
possible predictors were the expected population trend (three
levels: increasing, constant, decreasing) and recruitment var-
iability (sR: low or high).

Spanish mackerel example
Traditionally, Spanish mackerel off the Atlantic coast

have been split into Gulf and Atlantic stocks for manage-
ment purposes. Here, I focus on the Atlantic stock, which
overwinters off the eastern coast of Florida and migrates
north in the summer. The bulk of the commercial fishery oc-
curs off the Florida coast in winter, but landings occur all
the way to southern New England in the summer (landings
this far north are rare).

I gathered Spanish mackerel indices of abundance from a
recent stock assessment of Spanish mackerel (SEDAR
2008a) for hierarchical analysis. The fishery-dependent indi-
ces had all been adjusted to account for an assumed linear
increase in catchability thought to result from technology
creep prior to use in the assessment, an adjustment which I
retained here. A total of nine indices were available, repre-
senting a number of fishing gears, data sources, time peri-
ods, and geographical areas (Table 2). I performed analysis
on all seven fishery-dependent CPUE indices, electing not to
use two fishery-independent index time series because these
only selected for small fish (young-of-year and some one-
year-olds). In contrast, estimated selectivities from a statisti-
cal catch-at-age model (SEDAR 2008b) were similar for
fishery-dependent gear types, at least for high abundance
age classes. However, there was poor correlation between
indices, with individual Pearson’s correlation coefficients
ranging from –0.64 to 0.44. Assessment panelists were un-
able to justify why one index should be favored over the
rest. Analysts were also concerned about numerical stability
when using multiple, conflicting indices in assessment mod-
els, particularly for auxiliary analyses such as surplus pro-
duction and stochastic stock reduction models. The
collection of indices thus seemed ideally suited for hierarch-
ical analysis. For model fitting, I employed the same
MCMC configuration and set of prior distributions used in

the simulation study with the exception that the chains were
not thinned (apart from saving disk space, there is little rea-
son to do so; Spiegelhalter et al. 2003).

Results

Simulation performance

Scenario 1: all assumptions met
When indices were continuous and data were simulated

according to the same error distribution assumed during esti-
mation, the combined index was unbiased, with a similar
MSE as the arithmetic mean of indices (when all indices
have the same level of process and sampling error; Fig. 5).
Inspection of bias in relation to simulation inputs suggested
that the index was approximately unbiased in all cases. The
spread of relative bias over individual data points appeared
Gaussian and exhibited less spread than when inference
about relative abundance was based on one index alone.
Computations of MSE agreed, with MSE significantly lower
for the posterior mean from the hierarchical analysis (0.011;
SE < 0.001) and the arithmetic mean index (0.011; SE <
0.001) than for the single index (0.071; SE = 0.005). Step-
wise model selection procedures using AIC (Venables and
Ripley 2002) suggested that only the number of indices and
the levels of process and sampling errors were important
predictors of MSE. Point estimates from the highest ranked
linear model suggested that MSE decreased with the number
of indices available for analysis and increased as the as-
sumed level of process and sampling error increased.

Analysis of 95% COV suggested that uncertainty about m
was overestimated using the hierarchical approach, with true
coverage around 99.9% (SE = 0.1%). In contrast, coverage
for the arithmetic mean index was underestimated at 91.8%
(SE = 0.9%). The highest ranked AIC model provided no
evidence that 95% COV was a function of simulation inputs.

Overall, bias in the posterior mean for process error was
positive (0.039; SE = 0.002), which may reflect the adoption
of a flat prior for sp. When investigating bias using a GLM,
diagnostics indicated a substantial lack of fit when bias was
related to predictor variables. This problem was not easily
remedied by transformations of the predictor variable, so an
overdispersion parameter (bc ¼ Deviance=df) was estimated
to adjust model selection criterion (i.e., model selection was
based on quasi-likelihood formulation of Akaike’s informa-
tion criterion (QAIC); Burnham and Anderson 2002). Using
this approach, bc ¼ 2:33, and the highest ranked QAIC model
included effects for the number of years, sp, and ss, along
with an interaction between sp and ss. Bias under this model
was positive when the CV of true process error was less
than about 0.2 and negative otherwise. In general, the mag-
nitude of bias increased as the CV of sampling error in-
creased (Fig. 6). Overall, 95% COV for sp was greater than
nominal at 96.8% (SE = 0.6%). However, there was consid-
erable variation in coverage depending on simulation inputs.
For instance, the highest ranked AIC model fit to the simu-
lation data included all simulation inputs as predictor varia-
bles and suggested that coverage was higher than nominal
when errors were high (e.g., 0.998 when sp = ss = 0.3) and
lower than nominal when errors were low (e.g., 0.860 when
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sp = ss = 0.1. Coverage also increased with the number of
indices, whereas the number of years had a negligible effect.

Scenario 2: all assumptions met, heterogeneous indices
When there was a small number of heterogeneous indices,

the hierarchical approach resulted in a lower MSE (0.028)
than a single index that spanned the entire period (MSE =
0.075). There was no obvious way to compute an arithmetic
mean index for comparison, as indices were available for
different lengths of time and did not all overlap at a com-
mon time point. There was no visible bias pattern (the esti-
mators were unbiased throughout simulated time series), but
COV was again substantially greater than the 95% nominal
level, this time at 99.7% (SE = 0.2%), suggesting that credi-
ble intervals were overly conservative.

Scenario 3: spatial dynamics
A visual inspection of bias from simulations employing

variation in mixing proportions suggested that there was po-
tential for positive bias in the hierarchical index estimator at
the beginning of the time series, particularly when the pro-
portion of fish using each area could vary considerably over
time (Fig. 7). Over all simulations, there was a spurious
6.1% decline in relative abundance. However, post hoc ex-
perimentation with the study design suggested that this bias
was at least partly an artifact of the random walk process
occurring in multinomial logit space, as it was relatively
common for indices with the least variable mixing propor-
tions to also be those with mixing proportions that were de-
clining (e.g., Fig. 3). It appears that the hierarchical

estimator may have been keying in on the least variable
(and also declining) indices.

Perhaps reflecting this bias, MSE was lower for the arith-
metic mean index (0.009) than the hierarchical index estima-
tor (0.012). Both of these options were substantially better
than basing inference on a randomly selected index (MSE =
0.083). In general, mean squared error increased substan-
tially for simulations employing higher levels of variation
in spatial mixing proportions. Overall COV was 99.9% for
a nominal 95% interval, suggesting that the estimation pro-
cedure (or selected set of prior distributions) is overly con-
servative. Model selection provided no evidence that
coverage was related to sspatial. In comparison, asymptotic
coverage for the arithmetic mean index was 93.2%, thus
much closer to nominal.

Scenario 4: selectivity differences
Randomly selected plots of individual indices and the hi-

erarchical index suggested that estimates of relative abun-
dance were fairly insensitive to selectivity differences
among indices, although recruitment indices could be quite
variable (e.g., Fig. 8). A comparison of MSE for (i) analyses
including recruitment indices (MSE = 0.013) and (ii) those
censoring recruitment indices prior to analysis (MSE =
0.010) indicated that there was a slight benefit to censoring
recruitment indices. I thus only report results for case ii.

Bias of the posterior mean for m appeared negligible. The
highest ranked AIC model for mean squared error did not
include any simulation inputs, suggesting that neither popu-
lation trend nor recruitment variability seriously impacted
overall model performance. Mean squared error was similar

Table 2. Spanish mackerel indices used in hierarchical analysis (sampling error CV in parentheses).

Year FL.GN1 FL.GN2 FL.CN FL.HL MRFSS LB.GN LB.HL
1985 0.46 (0.07) 0.69 (0.08)
1986 0.59 (0.07) 0.94 (0.08)
1987 0.83 (0.07) 1.03 (0.08) 0.84 (0.07)
1988 0.64 (0.07) 1.21 (0.08) 1.17 (0.06)
1989 0.93 (0.07) 1.16 (0.07) 1.00 (0.08)
1990 0.79 (0.06) 1.12 (0.07) 0.90 (0.06)
1991 0.65 (0.06) 0.87 (0.06) 0.77 (0.05)
1992 0.63 (0.07) 0.85 (0.07) 0.83 (0.04)
1993 2.1 (0.19) 0.87 (0.08) 0.66 (0.06)
1994 2.4 (0.12) 0.68 (0.07) 1.01 (0.06)
1995 0.69 (0.07) 0.81 (0.08)
1996 1.25 (0.17) 0.63 (0.08) 1.06 (0.07)
1997 0.77 (0.34) 0.67 (0.07) 1.09 (0.06)
1998 1.05 (0.17) 0.95 (0.06) 0.93 (0.07) 0.79 (0.13) 0.87 (0.14)
1999 1.05 (0.17) 0.77 (0.15) 0.82 (0.07) 1.16 (0.06) 0.72 (0.13) 1.12 (0.15)
2000 1.09 (0.14) 0.77 (0.13) 0.92 (0.06) 1.07 (0.06) 0.92 (0.12) 0.88 (0.16)
2001 0.88 (0.14) 0.83 (0.13) 1.40 (0.07) 1.13 (0.07) 1.23 (0.13) 0.97 (0.15)
2002 0.85 (0.15) 0.95 (0.12) 0.85 (0.06) 1.36 (0.07) 1.34 (0.12) 1.19 (0.18)
2003 0.94 (0.15) 1.39 (0.12) 1.22 (0.07) 1.19 (0.08) 1.20 (0.12) 0.93 (0.19)
2004 0.62 (0.15) 1.48 (0.13) 1.52 (0.06) 0.99 (0.07) 1.00 (0.12) 1.00 (0.21)
2005 1.11 (0.14) 1.17 (0.12) 1.22 (0.07) 1.29 (0.07) 0.85 (0.12) 0.86 (0.14)
2006 1.17 (0.14) 0.86 (0.13) 1.46 (0.06) 0.82 (0.07) 0.90 (0.11) 1.16 (0.19)
2007 1.21 (0.13) 0.78 (0.13) 1.22 (0.06) 0.88 (0.06) 1.06 (0.11) 0.80 (0.15)

Note: The indices include four standardized trip ticket indices for the state of Florida: gillnet prior to net ban in state waters
(FL.GN1); gillnet after state net ban (FL.GN2); castnet (FL.CN); and hook-and-line (FL.HL). Also available were indices based on
recreational survey data (MRFSS) and from logbooks in states north of Florida, which included standardized CPUE from gillnet
(LB.GN) and hook-and-line (LB.HL) fisheries. For details on index construction, see SEDAR (2008a).
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for the hierarchical approach when compared with the arith-
metic mean index, suggesting similar performance (Fig. 4).
Overall COV was 0.997 for the hierarchical approach, com-
pared with 0.848 for the arithmetic mean index.

Post hoc scenario
In this scenario, the hierarchical analysis produced more

precise estimates of population trends than the arithmetic
mean index (Fig. 5). Overall MSE for the hierarchical ap-
proach was 0.044 (SE = 0.003), compared with 0.076 (SE =
0.006) for the arithmetic mean index. Credible interval cov-
erage was 98.9% (SE = 0.3%) for the hierarchical index and
85.9% (SE = 1.1%) for the arithmetic mean index.

Spanish mackerel analysis
The hierarchical model produced posterior estimates of m

suggestive of two ‘‘peaks’’ in abundance from 1985 to
present (Fig. 9). The first appears around 1988, shortly after
the first catch quotas were imposed by emergency rule. The
second occurs in 2002–2003 following a period of increase
that started in the early 1990s. For reference, a moratorium
on gillnets was imposed in Florida state waters starting in
1995, a move that is widely thought to have resulted in an
increase in abundance. The posterior mean of relative abun-
dance in 2007 suggests that relative abundance has de-
creased somewhat from its peak in the early 2000s.

In addition to estimates of the index itself, one also can
examine estimates of process error variance associated with
each of the indices (Fig. 10). For instance, the analysis sug-
gests that process errors for the Florida gillnet index
(FL.GN1) prior to the state gillnet ban were sampled from a
distribution that was quite diffuse. This likely is due to the
two large FL.GN1 index values in 1993 and 1994 that were
incongruous with the other time series and suggests that the
FL.GN1 index may be a poor index of abundance in its own
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index estimators for different simulation scenarios: (a) simulation
scenario 1 (all assumptions met); (b) post hoc simulations (noisy,
heterogeneous indices); (c) simulation scenario 3 (spatial dy-
namics); and (d) simulation scenario 4 (selectivity differences). The
continuous line shows the distribution resulting from hierarchical
analysis, the dotted line shows results for the arithmetic mean in-
dex, and the broken line shows the distribution of bias when a sin-
gle time series is chosen as an index of abundance. Because time
series are all scaled to their mean, the mean percent relative bias is
0 by definition.
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Fig. 7. The distribution of percent relative bias of the combined in-
dex as a function of the year of simulation for simulation scenario 3
(spatial dynamics): (a) bias from simulations with smaller annual
variation in mixing proportions (sspatial < 0.1); (b) bias from simu-
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quantiles.
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right. In contrast, the estimates of process error for the Ma-
rine Recreational Fisheries Statistics Survey (MRFSS) and
logbook indices were quite low (<0.15), suggesting that
these indices may better represent abundance (or, at least,

that discrepancies between these indices were easier to rec-
oncile).

Discussion
Relative abundance indices are a crucial component of

many stock assessments. However, when catchability varies
over time and space, different indices may provide conflict-
ing signals. In this paper, I have shown how hierarchical
analysis can be used to estimate a common population trend
from multiple indices. This framework separates compo-
nents of index variation into process error and sampling er-
ror. In this manner, analysts can calculate a single, ‘‘most
probable’’ index prior to stock assessment analyses. Such an
index may be of interest in its own right or may be advanta-
geous in model fitting because it reduces the dimensionality
of the likelihood and precludes numerical problems that can
arise when fitting data to multiple, conflicting indices. It
also has the potential to reduce the number of subjective de-
cisions that are typically made about which indices to in-
clude in the analysis. The approach differs considerably
from other approaches used to combine indices, e.g., area-
or catch-weighting (cf. Quinn and Deriso 1999), which re-
quire that available habitats be correctly delineated (in the
case of area-weighting) or that fishing mortality be uni-
formly applied across the population (in the case of catch-
weighting).

In general, the simulation study suggested that hierarchi-
cal relative abundance estimates were reasonable. The hier-
archical approach appeared robust to model assumption
violations, including those resulting from differences in se-
lectivities and trends in spatial mixing proportions. For the
spatial scenario, there was a tendency to estimate a slight
but spurious population decline (6.4% over 20 years). How-
ever, this phenomenon was likely an artifact of the way in
which data were simulated. Notably, it was often the case
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Fig. 8. An example simulation in which indices are generated as-
suming different selectivities: circles denote true biomass; the con-
tinuous line is an index with all ages sampled; the broken line is an
index with a dome-shaped selectivity function; the dotted line is an
age-1 recruitment index; and the shaded continuous line gives rela-
tive abundance as estimated via hierarchical analysis of 10 indices
(only three of which are pictured here). The hierarchical index had
a lower MSE than any of the individual indices, a feature common
to most simulations.
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Fig. 9. Time series of Spanish mackerel relative abundance as esti-
mated from hierarchical analysis. The continuous line gives the
posterior mean, and the shaded area represents a 95% credible in-
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that the random walk in multinomial logit space led to the
situation in which the least variable indices all exhibited
population declines.

When indices all covered the same time span, simple cal-
culations of an arithmetic mean index (standardizing each
index to its mean and then taking the average index value
in each year) performed surprisingly well as a relative abun-
dance estimator. Mean squared error for the arithmetic mean
index was statistically indistinguishable from the hierarchi-
cal index in simulation scenarios 1 and 4, slightly outper-
formed the hierarchical index in simulation scenario 3
(spatial dynamics), but exhibited worse performance when
sampling and process errors varied substantially between in-
dices (post hoc scenario). The hierarchical approach thus ap-
pears to have the greatest utility when applied to a group of
noisy, heterogeneous indices. It can also be applied in a
greater range of circumstances, for example, when the time
series is made up of indices that span different time periods
(e.g., simulation scenario 2).

Credible intervals for the hierarchical index were fre-
quently wider than nominal for all simulation scenarios, sug-
gesting that the estimation procedure was overly
conservative with regards to mt. Process error variance was
frequently overestimated, which may have contributed to
this phenomenon. Also, diffuse prior distributions were
chosen for most parameters and reflected considerable un-
certainty; more informative priors should decrease coverage.
In contrast, the arithmetic mean index consistently had cov-
erage that was below nominal.

Although hierarchical analysis appears attractive, it is im-
portant to reflect on the utility of the approach when evalu-
ating a collection of indices. For instance, Schnute and
Hilborn (1993) caution that estimates of population trend
from a ‘‘compromise’’ fit can be misleading, particularly if
one admits the possibility that models are misspecified or
certain data sources are invalid. For the former, model selec-
tion and (or) model averaging (Hoeting et al. 1999; Burn-
ham and Anderson 2002; Spiegelhalter et al. 2002) may
reduce the chances of basing inference on a poorly specified
error distribution. However, the problem of erroneous data is
a bit more insidious. For instance, consider the case in
which a specific index reflects some quantity other than rel-
ative abundance (e.g., an unmeasured environmental varia-
ble). Schnute and Hilborn (1993) suggest that analysts
should often consider the case in which there is some finite
probability (say, pi) that data source i is noninformative.
This mixture modeling approach will tend to decrease preci-
sion but may better reflect uncertainty about parameter esti-
mates.

To some degree, estimation of process error by the hier-
archical model will tend to reduce the influence of
‘‘garbage’’ indices, provided that the hierarchical model can
key in on indices that are providing similar (and presumably
correct) signals on relative abundance. However, problems
can still occur. For instance, consider the hypothetical case
of several spatially referenced indices following implemen-
tation of a marine reserve in a stock that experienced over-
fishing. In this case, indices calculated with data outside the
reserve may all suggest a decreasing stock, whereas relative
abundance estimates inside the reserve may indicate stock
increases. In an effort to reconcile these indices, the hier-

archical model may compensate by overestimating process
error for the index within the reserve, thus reducing its influ-
ence. It is thus critical that inference be based on indices
collected from properly designed sampling programs (in-
cluding adequate spatial balance). No amount of statistical
wizardry will remedy problems with poorly collected data.

As with any modeling exercise, violations of model as-
sumptions can invalidate results. At present, I suggest that
analysts carefully prescreen indices before any sort of hier-
archical analysis is attempted to make sure that sampling de-
signs are adequate for measuring relative abundance. Even
then, one should also investigate the sensitivity of model re-
sults to index choice and should make sure that process er-
ror estimates are reasonable given prior knowledge.
Unfortunately, stock assessment scientists are often put in
the position of selecting a ‘‘base’’ model run to inform man-
agement, and some sort of compromise fit is often unavoid-
able. To reduce problems with invalid indices, future
research might consider attempting to merge the hierarchical
modeling approach with the theory presented by Schnute
and Hilborn (1993). For instance, each index i could be sub-
ject to some probability pi of being uninformative. If the
same index is used to standardize CPUE for multiple spe-
cies, pi might even be estimable (using meta-analysis, for in-
stance).

The approach developed in this paper shares many fea-
tures with other statistical methods such as those that em-
ploy autoregressive integrated moving-average (ARIMA)
models to smooth individual CPUE indices (e.g., Pennington
1985; Stockhausen and Fogarty 2007). However, though the
latter implicitly assume constant or randomly varying selec-
tivity to maintain constant variance throughout the time ser-
ies, the multiple-index approach requires a number of
additional selectivity assumptions. Fundamentally, we must
assume that each time series is attempting to measure a sim-
ilar quantity. This issue is perhaps best looked at along a
continuum. In a theoretical age- or stage-structured popula-
tion that is growing, shrinking, or staying the same with a
constant rate of increase (l), there is a well defined stable
age or stage distribution (Caswell 2001). In this case, the
relative proportion of the population in each age class re-
mains constant, and it does not matter if different selectiv-
ities are associated with different indices. At the other end
of the spectrum is a population exhibiting large variation in
annual recruitment, as is typical of many fish populations. In
this case, annual changes in an index that is solely selective
of new recruits would often differ dramatically from one
that selects for older age classes (and, indeed, simulation re-
sults suggest that recruitment indices should not be com-
bined with those from older ages). However, there is likely
a middle ground. In particular, results from simulation sce-
nario 4 suggest that combining indices with different selec-
tivities often results in a reasonable ‘‘combined’’ index.
Ostensibly, variation among indices due to different selectiv-
ities is absorbed by the process error component in the
model. That is, estimated process error likely represents
both variation in catchability, as well as variation between
indices due to selection of different age or stage classes.

Although further investigation of the selectivity question
certainly seems warranted, a few comments and suggestions
may help in practice. First, I note that index-specific selec-
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tivities are entirely ignored in age-aggregated stock assess-
ment models such as tuned surplus production models (e.g.,
Prager 1994). In this context, ignoring selectivities is some-
thing routinely done in fisheries science. Second, I suggest
that the hierarchical approach should be applied only to in-
dices that have similar selectivities. This was precisely the
reason why fishery-independent SEAMAP indices were re-
moved prior to the Spanish mackerel analysis. A further
consideration addresses the best way to use the ‘‘combined’’
index within stock assessments. For instance, when multiple
selectivity curves are estimated, one must decide how best
to model selectivity of the combined index. One possibility,
which was used in a recent Spanish mackerel assessment,
was to use an F-weighted selectivity vector.

Further inferences about the components of process var-
iance may be possible if the hierarchical model is embedded
in a statistical catch-age model. Because selectivities are
often estimated within assessment models, it should be pos-
sible to separate process variance into two components: one
due to differences in the age or stage structure sampled by
different indices, and one attributable to annual fluctuations
in catchability. This would be somewhat similar to the ‘‘ad-
ditional variance’’ approach suggested by several authors
(e.g., Geromont and Butterworth 2001; Wade 2002)
whereby an extra precision parameter was estimated for
each index above and beyond the sampling error input to
the model. Another interesting extension would be to con-
sider the possibility of trends in catchability (e.g., Wilberg
and Bence 2006). For instance, if catchability was assumed
to be stationary for fishery-independent data, it should be
possible to estimate catchability trends for fishery-dependent
indices when multiple CPUE time series are available. As
one reviewer noted, an autoregressive model for q

0
it might

also be used to stabilize estimation in this case.
As a final note, in speaking about variation in catchabil-

ity, I do not mean to imply that the hierarchical approach is
capable of controlling for long-term trends in catchability
such as those attributable to population density, trends in
global sea surface temperatures, or other biotic or abiotic
factors (particularly when these factors affect fishery-
independent catchability). Where possible, covariates may
be used to control for factors influencing catchability prior
to analysis, but long-term trends in even measurable quanti-
ties may be confounded with trends in abundance (Nichols
et al. 2009). This is not really a criticism of the method per
se, as it is a feature of most methods that do not include in-
dependent estimates of catchability (e.g., from tagging stud-
ies).
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