# A review of the biology and fishery for Gray Triggerfish, *Balistes capriscus*, in the Gulf of Mexico

Douglas E. Harper and David B. McClellan

# SEDAR41-RD44

6 August 2014



A Review of the Biology and Fishery for Gray Triggerfish, *Balistes capriscus*, in the Gulf of Mexico

by

Douglas E. Harper and David B. McClellan

September 1997

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center Miami Laboratory 75 Virginia Beach Drive Miami, Florida 33149

Miami Laboratory Contribution Report No. MIA-96/97-52

#### Introduction

The gray triggerfish, *Balistes capriscus*, is an important component of the Gulf of Mexico reef fish fishery, particularly for the recreational sector, and ranks eighth in total reef fish landings during the period 1986 through 1991 (Goodyear and Thompson, 1993). In the Gulf of Mexico, gray triggerfish are principally caught by recreational fishers using handlines, while commercial fishers harvest this species with various gears including handlines, longlines, traps, and trawls. Based on National Maine Fisheries Service (NMFS) data, the 1986 through 1996 gray triggerfish ex-vessel commercial value from the Gulf of Mexico ranged from \$51.5 thousand in 1986 to a record in \$545.7 thousand in 1993 and averaged \$282.7 thousand during this time period. Until recently, gray triggerfish were not prized by most fishers. An increased targeting of this species by both recreational and commercial fishers with a resultant increase in total gray triggerfish landings has occurred over this period. This increase may be due to reduction in other reef fish stocks and more restrictive regulations on other reef fish species.

Gray triggerfish in the Gulf of Mexico EEZ are managed under the 1981 Fishery Management Plan (FMP) for Reef Fish Resources and subsequent amendments. In addition to the management measures applicable for this FMP, gray triggerfish taken by recreational fishers from state territorial waters in Florida are subject to a 12 inch total length minimum size limit. Effective management of this species is hindered by a lack of complete life history information. The potential effects of overfishing gray triggerfish populations are assumed to be similar to the effects of overfishing on other reef fish species because of similar mortality rates (Johnson and Saloman, 1984).

Due to concern caused by recent increased landings of this resource, an evaluation of data on size and catch limits for gray triggerfish in the Gulf of Mexico was prepared by Goodyear and Thompson (1993). They estimated that from 1986 to 1991 total landings increased to approximately 3 million pounds and average annual landings were about 2 million pounds. The objectives of this report are to: (1) examine trends in the commercial and recreational harvests, and (2) summarize biological, life history, and population parameters presented in the literature.

# **Data Sources and Methods**

Gray triggerfish landings statistics in the Gulf of Mexico since 1986 were available for both the recreational and commercial sectors. Recreational harvest estimates were obtained from: (1) National Marine Recreational Fishery Statistics Survey (MRFSS), (2) Southeast Fisheries Science Center (SEFSC) Beaufort Laboratory Headboat Survey, and (3) Texas Parks and Wildlife Department Recreational Creel Survey. Estimates of recreational catches from the MRFSS represent the most current revisions available in the database at this time. Commercial landings estimates were provided from the SEFSC General Canvass Program as presented in the Accumulated Landings Data Files of the Southeast Fisheries Information Network.

An extensive literature search for information pertaining to the gray triggerfish, Balistes capriscus = Balistes carolinesis, was performed. This search included, but was not limited to: (1) computerized bibliographic and information services such as FishBase96, Aquatic Sciences and Fisheries Abstracts, Current Contents, and Carl Uncovered; (2) library resources at the SEFSC Miami facility and the Rosensteil School of Marine and Atmospheric Sciences; and (3) efforts to glean information provided in the "gray literature".

# **Results and Discussion**

# Fishery

The fishery for gray triggerfish is described in the FMP for reef fish resources in the Gulf of Mexico (GMFMC, 1981). The Gulf of Mexico reef fish fishery is a multi-species fishery in which catches and landings for individual trips consist of several to many species. Historically the reef fish fishery began in 1865, targeting red snapper. Participants in this fishery primarily target groupers and snappers, and occasionally amberjack. The current fishery provides both commercial and recreational fishing opportunities in the Gulf of Mexico. Commercial fishers use longlines and power reels or handlines to harvest reef fish for sale as food. Recreational fishers include persons fishing, primarily with handlines, from privately owned craft, charter and headboat vessels, and shore or pier. A large number of species associated with reefs not managed or targeted are taken incidentally by some gear and frequently discarded.

In recent years, the well known species (e.g., red snapper and grouper) targeted by recreational fishers have been less available and effort has shifted to what used to be called under-utilized species, of which the gray triggerfish is a member. Charter and headboat captains in the Panhandle of Florida now consider the "trigger snapper" to be a desirable catch, and it is possible to see large numbers mounted on the fish racks after fishing trips. In the past it has been known to be impossible to get a bait to the bottom for snapper and grouper because the triggerfish meet the bait in the water column.

Total Gulf of Mexico gray triggerfish landings by weight were estimated for

both the recreational and commercial sectors for 1986 through 1996 (Table 1, Figure 1). Total landings were dominated by the recreational sector which averaged 82.9% of total landings estimated during this time period. Total landings increased from 1.54 million pounds in 1986 to a peak harvest of 2.85 million pounds in 1990. Since 1990, estimated total gray triggerfish landings from the Gulf of Mexico have steadily declined to .88 million pounds during 1996. The proportion of total estimated gray triggerfish landings the 1986-1996 period was: Florida 67.2%, Alabama 18.7%, Louisiana 8.2%, Texas 5.1%, and Mississippi 0.8%.

The recreational gray triggerfish harvest by fishing mode from the Gulf of Mexico in numbers and weight was estimated for 1986-1996 (Table 2). Estimated recreational gray triggerfish landings reached a peak of 2.39 million pounds in 1990 and have since declined to 0.63 million pounds in 1996 (Figure 2). For the period 1986-1996 landings from the charter boat mode have dominated the recreational sector averaging 59.1% by number and 63.4% by weight of total recreational landings.

Annual gray triggerfish landings by weight from the Gulf of Mexico for the period 1986-1996 were estimated for the commercial sector (Table 3, Figure 3). The majority of commercial landings were reported from Florida with 71.2 % of total commercial landings during this time period. Proportional representation for the other Gulf states was: Louisiana 21.5%, Texas 2.6%, Alabama 2.4%, and Mississippi 2.3%. Within the Gulf, commercial gray triggerfish landings were stratified by statistical grid (Table 4, Figure 4). Four statistical grids accounted for more than 50% of total estimated commercial landings for 1986-1996. These statistical grids and proportional representation were: Grid 10 - 19.%, Grid 11 - 12.7%, Grid 6 - 10.6%, and Grid 14-9.5%.

# **Biological and Population Information**

#### Distribution

The gray triggerfish, *Balistes capriscus* (Gmelin, 1788), is a member of the Family Balistidae and is widely found in tropical and temperate waters throughout the Atlantic (Moore, 1967; Tyler, 1978). In the Eastern Atlantic it is found from the British Isles to Mocamedes, Angola, including Madeira, Canary, Cape Verde Is., Ascension and St. Helena north to the Mediterranean, Adriatic, and Black Seas (Harmelin-Vivien and Quero, 1990). In the Western Atlantic it ranges from Nova Scotia through the Gulf of Mexico to Argentina and also found in Bermuda (Robins and Ray, 1986).

Gray triggerfish are important members of reef fish assemblages and are commonly associated with coral reefs, wrecks, outcroppings, artificial structures, and hard bottom areas (Bohlke and Chapman, 1993; Aiken, 1983; Manooch, 1984). A diurnally active species (Vose and Nelson, 1994), it is usually solitary except for spawning but does form large schools (Caveriviere, 1982). It occurs from shallow water down to about 50-100 meter depth (Froese and Pauly, 1996). In the Gulf of Mexico the gray triggerfish inhabits areas between 12 and 42 m in depth (Smith, 1976), except for the first year of life when it is planktonic and associated with sargassum or other drifting debris (Dooley, 1972; Johnson and Saloman, 1984). They are known to refuge in reef cavities when disturbed (Frazer and Lindberg, 1994). Triggerfishes commonly associate with artificial reef structures and are a successful early colonizer of artificial reefs (Frazer et al, 1991; Vose and Nelson, 1994). Even though the literature describes them to be solitary individuals, large numbers are known to congregate over offshore reefs, wrecks, and artificial reefs. Caveriviere (1982) describes how the subsurface concentrations extend as far as the continental shelf, with day-night variations of abundance observed, individuals on the bottom during the day move towards the surface at night. Seasonal abundance variations occur off Senegal in upwelling areas, where they may disappear during the cold season (Caveriviere, 1982).

# Reproduction and early life history

Early life history of gray triggerfish has been reviewed from the mid Atlantic Bight (Martin and Drewry, 1978), off Senegal (Caveriviere et al., 1981; Caveriviere, 1982), and off Brazil (Matsuura and Katsuragawa, 1981). Dooley (1972) estimated the spawning season from July-October in the Gulf of Mexico based on sizes of fish captured. Gray triggerfish spawn in the northern Gulf of Mexico during the late spring (March) and early summer (August), with a peak in June (Wilson et al, 1995). Caveriviere et al. (1981) reported gray triggerfish spawned off Senegal from the late Spring to early Fall based on sexual maturity and gonadal index stage 4-5 in July and August. Ofori-Danson (1990) defined the breeding season as October to December, the warmer months off Ghana. Garnaud (1960) observed the spawning of gray triggerfish in captivity and showed a figure of a yolk-sac larvae. Matsuura and Katsuragawa (1981) described the larvae and juveniles. Since intromittent organs are absent it is assumed that fertilization is external (Aiken, 1983). Egg incubation period has been reported as 2 days (Lythgoe and Lythgoe, 1975; Caveriviere, 1982). Some distinct pairing of gray triggerfish have been observed, usually offshore in shallow seas (Breder and Rosen, 1966). Loebel and Johannes (1980) reported spawning aggregations of Balistes undulatus.

Most studies indicate gray triggerfish reach sexual maturity at 2 years, but may mature at 1 year (Wilson et al, 1995; Ofori-Danson, 1981), 1.5 years (Ofori-Danson, 1990), to up to 3 years (Manooch, 1984). Estimated length at time of first spawning has been reported to be 14-15 cm FL (Ofori-Danson, 1981), 13.3-15.7 cm FL and 50.0 - 70.5 grams (Ofori-Danson, 1990), 13-14 cm from Senegal and Guinean waters (Gerlotto et al., 1979), and 17-21 cm (Ofori-Danson, 1989). Manooch (1984) reports 30 cm as length at first spawning. No evidence of sex change was found by Wilson et al., (1995).

Balistid eggs may be pelagic and non-adhesive or demersal and adhesive. Some parental care may take place if the eggs are demersal and adhesive (Breder and Rosen, 1966; Fricke, 1980). Lythgoe and Lythgoe (1975) reported *B. carolinensis* (= *B. capriscus*) excavating a shallow nest in sand, depositing of an egg mass in it, and the adults guarded the embryos which hatched in two days. Caveriviere (1982) reported gray triggerfish off Senegal as being nestbuilders, the eggs hatching in 50-55 hours, the larvae being planktonic. Two species in the Pacific are nest builders and Aiken (1983) describes two Pacific species which attaches to corals. Fricke (1980) describes courtship, mating, and parental care in two species from the Red Sea. Gray triggerfish may be multiple batch spawners (Wilson et al, 1995), but it is not known whether they are pelagic spawners or nest builders (Aiken, 1983; Wilson et al, 1995). Richards and Lindeman (1987) in a review of reef fish recruitment dynamics list the triggerfishes as either pelagic or demersal spawners but having pelagic larvae that have no standard term of planktonic life.

Nesting, eggs and larvae for the Balistids are discussed by Lobel and Johannes (1980), Bertolini et al (1956), and Fricke (1980). Not much is known about fecundity except 73 eggs/gram for *Balistes vetula* and 217 eggs/ gram for *Cantherhines sufflamen* are estimated (Aiken, 1983). Gray triggerfish fecundity has been estimated as 49 thousand for a 30 cm fish, 66 thousand for a 41 cm fish, and more than 90,000 for a 56 cm fish (Manooch, 1984). Ofori-Danson (1990) for triggerfish off Ghana described a linear regression log F (fecundity) =  $1.176 + 1.642 \log FL$ . Caveriviere et al. (1981) reported a linear relation for gray triggerfish off Senegal between the gonad weight on fish weight as : Y(pounds of gonads) =  $0.55 + (6.36 \times 10^{-2})X(pounds of fish)$ ; r = 0.82. They also provide a relation for fecundity on gonad weight as Y(pounds of gonads) =  $8.2 + (9.2 \times 10^{-5})X(number of eggs)$ ; r=0.85 and fecundity on fish weight as Y(number of eggs) = -83000 + 690X (pounds of fish).

The descriptive biology of larvae and juveniles of gray triggerfish was reviewed from Brazil by Matsuura and Katsagawa (1981). Longley and Hildebrand (1942) describe gray triggerfish up to 10 cm common in *Sargassum spp.* and about

bits of flotsam and some were described as hiding inside bits of bamboo. Nugent (1970) found juveniles in mangrove estuaries . Aiken's (1983) study in Jamaica found them among mangroves and in sargassum and suggests the larvae are transported by oceanic currents. At approximately 16-17 cm SL, it appears that gray triggerfish colonize hard bottom habitat (Vose and Nelson, 1994).

# **Movements and Migration**

Aiken (1983), based upon the results of several tropical Atlantic tagging studies, reported no indications of migration for triggerfishes. However, he did indicate that a similar species, the queen triggerfish *Balistes vetula*, appears to move to deeper water as they grow older based upon size composition of fish captured by depth. Most literature indicates that gray triggerfish settle out of a planktonic larval stage on artificial reefs and natural substrates, and move to offshore reefs as they grow.

Gulf of Mexico tagging studies {Beaumariage, 1969; Johnson and Saloman, 1984; R. L. Shipp, pers. comm.) suggest that gray triggerfish have very high site fidelity. The NMFS tagging database only has records of six releases and one recapture with incomplete release data (D. Rosenthal, NMFS, SEFSC, pers. comm.). Beaumariage (1964) found that 38 of 103 fish (36.9%) remained in the approximate area of release in the northern Gulf of Mexico. In an ongoing northern Gulf of Mexico tagging study, 18 of the 25 (72%) recaptured gray triggerfish (153 releases) demonstrated high site fidelity (R.L. Shipp, pers. comm.).

#### Diseases

Hepatomegaly (enlargement of the liver) occurs in gray triggerfish collected near platforms, which act as artificial reefs (Grizzle, 1986). Aiken (1983) describes known diseases found in Balistids.

#### **Predation and Mortality**

One of the major sources of natural mortality of balistids would be predation on the pelagic stages (Dragovich 1969, 1970) and by groupers or sharks upon demersal fish (Aiken, 1983). Aiken (1983) noted that tunas feed on post-larval and juvenile triggerfish, and reports other authors identifying blue marlin, dolphinfish, sailfish, and sharks also preying upon juvenile Balistidae. Caveriviere et al. (1981) reported greater amberjack, sharks, and grouper are important predators. Extreme cases of infestation by cestode parasites would also cause death (Aiken, 1983).

# Food and feeding

Triggerfishes feed diurnally (Randall, 1968), are mainly bottom feeders (Aiken, 1983), and are particularly adapted to prey upon hard shelled invertebrates which are consumed by few other reefdwelling fishes (Frazer et al, 1991). Vose and Nelson (1994) describe feeding of the gray triggerfish. They are adapted for feeding on well armored prey but are not specialized feeders. The species are opportunistic feeders whose morphology provide the ability to feed on both unarmored and armored prey. Attached fauna are the main food on both artificial and natural substrate and reef-produced prey items are the most important. Greater amount of bivalves from natural reefs and more barnacles on artificial reefs are consumed. They have been reported to feed on a variety of sand dwelling invertebrates, including decapod crustaceans, echinoderms, scyllarid (slipper) lobsters, clams, and sand dollars, many of which were planktonic (Randall, 1967; Aiken, 1983; Sedberry, 1984; Tortonese, 1986; Nelson et al, 1986; Nelson, 1988; Vose, 1990; Frazer et al, 1991; Robert and Parra, 1991; Barshaw and Spanier, 1994; Frazer and Lindberg, 1994; Kurz, 1995). Dooley (1972) found juveniles relied heavily on the sargassum complex for food and that algae, hydroids, barnacles and polychaetes were important in the diet of small gray triggerfish.

McClanahan (1990,1994,1995) indicated a relationship between the number of gastropods and sea urchins, and triggerfish (*Balistes undulatus*) in Kenyan waters where triggerfish are the main predator on sea urchins. He examined the ecology of overfishing and the upswings of prey and predator densities. Sand dollars and gray triggerfish have been extensively studied (Frazer et al, 1991; Frazer and Linberg, 1994; Vose and Nelson, 1994; Kurz, 1995). The abundance of dead sand dollars decreased as distance from the artificial reefincreased reef, and prey densities increase with distance from reef units.

#### **Morphometrics**

The possibility of intraspecific differentiation exists within populations of gray triggerfish as noted by Sazonov and Galationova (1984) in the Central-eastern Atlantic.

The following relationships were available from the literature:

| Total Weight on Gutted Weight |                    |       |
|-------------------------------|--------------------|-------|
| $TW = GW \times 1.0669$       | Coull et al., 1989 | N = 3 |

| $\frac{\text{Fork Length on Total Length}}{\text{FL}(\text{mm}) = 29.704 + 0.774 \text{TL}(\text{mm})}$ $\text{FL}(\text{in}) = 0.621 + 0.824 \text{ TL}(\text{in})$ | ) Johnson and Saloman, 198<br>Goodyear and Thompson, 1993 | 4 N=100<br>N=243 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|
| Fork Length on Standard Length<br>FL(mm) = 22.823 +1.171SL(mm)                                                                                                       | ) Johnson and Saloman, 1984                               | N=100            |
| Total Length on Standard Length<br>TL (mm) = 9.666 +1.446 SL(mm)                                                                                                     | ) Johnson and Saloman, 198                                | 84 N=100         |
| $\frac{\text{Total Length on Fork Length}}{\text{TL}(\text{in}) = 1.214\text{FL}(\text{in})754}$                                                                     | Goodyear and Thompson, 1993                               | N=243            |
| Weight on Fork Length - Unsexed                                                                                                                                      |                                                           |                  |
| $Wt(g) = 4.13 \times 10^{-5} FL(mm)^{2.87}$                                                                                                                          | Caveriviere et al., 1981                                  | N=1584           |
| $Wt(lbs) = 8.975 \times 10^{-4} FL(in)^{2.96}$                                                                                                                       | Goodyear and Thompson, 1993                               | N=9138           |
| $Wt(kg) = 4.168 \times 10^{-5} FL(cm)^{2.9057}$                                                                                                                      | Wilson et al., 1995                                       | N=318            |
| $Wt(g) = 2.911 \times 10^{-5} FL(mm)^{2.9352}$                                                                                                                       | Bohnsack and Harper, 1988                                 | N=233            |
| $Wt(g) = 2.146x10-5FL(mm)^{2.992}$                                                                                                                                   | Johnson and Saloman, 1984                                 | N=175            |
| Weight on Fork Length - Males<br>Wt(g)=6.7105x10-6FL(mm) <sup>3.187</sup>                                                                                            | Johnson and Saloman, 1984                                 | N=169            |
| $\frac{\text{Weight on Fork Length - Females}}{\text{Wt}(g) = 1.393 \text{x} 10-5 \text{FL}(\text{mm})^{3.065}}$                                                     | Johnson and Saloman, 1984                                 | N=169            |

Available length frequency distributions from 1979 are presented in Saloman and Fable (1981); and Goodyear and Thompson (1993). Bohkle and Chapman (1993) and Randall (1968) both reported maximum length was 30.5 cm (12 inches) as reported by Aiken (1983). The species is considered a gamefish with a world record all tackle weight of 6.165 kg (13.563 pounds) caught in 1989 off South Carolina (IGFA, 1997).

#### Age and Growth

Limited information exists about age and growth of the gray triggerfish, but they indicate that males live longer and females attain larger sizes . Johnson and Saloman (1984) reported that female ranged up to 12 years and 13 years for males in the northeastern Gulf of Mexico. The von Bertalanffy growth equations were as follows: males  $l_t = 491.9$  (1-e<sup>-3.82(t-0.227</sup>); females  $l_t = 437.5(1-e^{-0.383(t-0.150)})$ , where l = fork

length in millimeters and t = age in years. These calculations were based upon weighted means for a sample of 742 male and 625 female fish. Wilson et al, (1995) aged their fish up to 11 years and found length at age to be similar to those reported by Johnson and Salomon (1984). Based on these two studies from the Gulf of Mexico, gray triggerfish are slow growers and moderately long lived, achieving ages of 11-13 years.

Average back-calculated lengths-at-age calculated as weighted means were presented in Johnson and Saloman (1984) as 11.3 cm, 23.7 cm, 30.6 cm, 35.4 cm, and 39.3 cm for age I, II, III, IV, and V respectively. Anonymous (1980) gave estimated values of 14.8 cm, and 20.3 cm for age I and II for fish off southwest Africa. Caveriviere et al. (1981) gave range values from 9-15.3 cm, 17.0-23.1 cm, 23.8-28.5 cm, 29.0-32.2 cm, and 32.4-34.8 cm for ages I, II, III, IV, and V years, respectively for Senegal. Ofori-Danson (1989) presents length-at-age estimates of 14.4 cm, 23.6 cm, 29.2 cm, and 33.0 cm for age groups I, II, III, and IV. From these, estimates of L = 0.43 year<sup>-1</sup> were obtained for gray triggerfish from Ghana. Approximate average lengths for fish aged 1, 2, 3, 4, 5, 10, and 12 years are 10.9 cm, 22.6 cm, 30.2 cm, ( 0.59 kg), 35.6 cm (1.45 kg), 54.6 cm, and 55.9 cm (Manooch, 1984). The studies above indicate that size-at-age for African fish are different than the Gulf of Mexico. These differences may be the result of different environments, biology, methods of capture, or ageing (Johnson and Salomon, 1984). Population parameters are summarized in Table 5.

# Summary

Total Gulf of Mexico gray triggerfish landings increased from 1.54 million pounds in 1986 to a peak harvest of 2.85 million pounds in 1990. Since 1990, estimated total gray triggerfish landings from the Gulf of Mexico have steadily declined to .88 million pounds during 1996. It is unclear if fishery restrictions or changes in target species preferences alone could explain this decline. The recreational sector accounts for the majority of gray triggerfish landings with an annual average of 82.9% as compared to an annual average of 17.1% for the commercial sector. The charter boat fishing mode dominates the recreational sector harvest and accounts for 59.1% by number and 63.4% by weight of recreational harvest for the 1986-1996 period.

Concerns and observations made by scientists, ie; Caveriviere (1979,1981,1982) off Senegal, Ofori-Danson (1989) off Ghana, Matsuura and Katsuragawa (1981) off Brazil, and others off Africa, should be carefully examined. In these geographical areas, gray triggerfish exploitation concerns have existed since the 1970's. Gray triggerfish management experiences from other regions may serve

as a useful model and valuable source of information in any attempts to manage gray triggerfish in the Gulf of Mexico.

# Acknowledgments

We thank Harriet Corvino, SEFSC Miami Facility librarian, for her assistance with library and bibliographic services; and Patty Phares, SEFSC Miami Laboratory, for her assistance and insights relating to data contained within NMFS recreational statistical databases. We also thank Jim Bohnsack and Gerry Scott, SEFSC Miami Laboratory, for their critical review and comments.

#### Literature cited

# Aiken, K. A.

1983. The biology, ecology, and bionomics of the triggerfishes, Balistidae. Chapter 15 (pages 191-205) <u>In</u>: J.L. Munro (ed.). Caribbean coral reef fishery resources. ICLARM Stud. Rev. 7. 276 pp.

### Anonymous.

1980. Report of the *ad hoc* working group on <u>Sardinella</u> off the coast of Ivory Coast-Ghana-Togo. FAO, CECAF/ECAF Series 8012 (EN). 72 pp.

# Barshaw, D. E. and E. Spanier.

1994. Anti-predator behaviors of the Mediterranean slipper lobster, <u>Scyllarides</u> <u>latus</u>. Bull. Mar. Sci. 55(2-3): 375-382.

# Beaumariage, D. S.

1964. Returns from the 1963 Schlitz tagging program. Fla. Dept. Nat. Res., Mar. Res. Lab., Tech. Ser. 43. 34 pp.

# Beaumariage, D. S.

1969. Returns from the 1965 Schlitz tagging program including a cumulative analysis of previous results. Fla. Dept. Nat. Res., Mar. Res. Lab., Tech. Ser. 59. 38 pp.

Bertolini, F., U. D'Ancona, E. Padoa S. Ranzi, L. Sanzo, A. Sparta, E. Tortonesse, and M. Vialli.

1956. Uova, larve, e stadi giovanili di Teleostei. Fauna Flora Golfo Napoli, Monogr. 38: 1-1064. Böhlke, J. E. and C. C. G. Chaplin.

1993. Fishes of the Bahamas and adjacent tropical waters, 2nd edition. University of Texas Press, Austin. 771 pp.

Bohnsack, J. A. and D. E. Harper.

1988. Length-weight relationships of selected marine reef fishes from the southeastern United States and the Caribbean. NOAA Tech. Mem. NMFS-SEFC-215. 31 pp.

# Breder, C. M., Jr. and D. E. Rosen.

1966. Modes of reproduction in fishes. Natural History Press, New Jersey. 941 pp.

# Caveriviere, A.

1979. Estimations des potentiels de pêche des stocks démersaux ivoriens par les modèles globaux effets de la prolifération du Baliste (<u>Balistes capriscus</u>). Doc. Sci. Centre Rech. Océanogr. Abidjan 10(2): 95-164.

# Caveriviere, A., M. Kulbicki, J. Konan, and F. Gerlotto.

1981. Bilan des connaissances actuelles sur <u>Balistes carolinensis</u> dans le Golfe de Guinée. Doc. Sci. Centre Rech. Océanogr. Abidjan 12(1): 1-78.

#### Caveriviere, A.

1982. Le baliste des côtes africaines, (<u>Balistes caroliinensis</u>). Biologie, prolifération et possibilitiés d'exploitation. Oceanologica Acta 5(4): 453-459.

Coull, K. A., A. S. Jermyn, A. W. Newton, G. I. Henderson, and W. B. Hall.
1989. Length/weight relationships for 88 species of fish encountered in the North Atlantic. Scottish Fish. Res. Rep. 43. 80 pp.

# Dooley, J. K.

1972. Fishes associated with the pelagic Sargassum complex, with a discussion of the Sargassum community. Contr. Mar. Sci. 16: 1-32.

#### Dragovich, A.

1969. Review of studies of tuna food in the Atlantic Ocean. U.S. Fish Wildl. Serv. Spec. Sci. Rep. Fish. 593. 21 pp.

#### Dragovich, A.

1970. The food of skipjack and yellow fin tunas in the Atlantic Ocean. Fish. Bull. 68: 445-460.

### Escorriola, J. I.

1991. Age and growth of the gray triggerfish, <u>Balistes capriscus</u>, from the southeastern United States. M.Sc. thesis, University of North Carolina at Wilmington.

# Frazer, T. K. and W. J. Lindberg.

1994. Refuge spacing similarly affects reef-associated species from three phyla. Bull. Mar. Sci. 55(2-3): 388-400.

# Frazer, T. K., W. J. Lindberg, and G. R. Stanton.

1991. Predation on sand dollars by gray triggerfish, <u>Balistes capriscus</u>, in the northeastern Gulf of Mexico. Bull. Mar. Sci. 48(1): 159-164.

# Fricke, H. W.

1980. Mating systems, maternal and biparental care in triggerfish (Balistidae). Z. Tierpsychol. 53: 105-122.

# Froese, R. and D. Pauly (editors).

1996. FishBase96: concepts, design, and data sources. ICLARM, Manila, Philippines. 179 pp.

#### Garnaud, J.

1960. La pont, l'éclosion, la larvae du baliste <u>Balistes capriscus</u> Linné 1758. Bull. Inst. Océanogr., Monaco 1169: 1-6, figs. 1-2.

# Goodyear, C. P. and N. B. Thompson.

1993. An evaluation of data on size and catch limits for gray triggerfish in the Gulf of Mexico. NOA A/NMFS/SEFSC/Miami Lab. Contrib. 7pp., 14 Tabs., 23 Figs.

# Grizzle, J.M.

1986. Lesions in fishes captured near drilling platforms in the Gulf of Mexico. Mar. Environ. Res. 18: 267-276.

# Gulf of Mexico Fishery Management Council (GMFMC)..

1981. Fishery management plan for the reef fish resources of the Gulf of Mexico. Gulf of Mexico Fishery Management Council, 881 Lincoln Center, 5401 W. Kennedy Blvd., Tampa, FL, 33069. 154 pp.

Harmelin-Vivien, M. L. and J. C. Quero.

1990. Balistidae. p. 1055-1060. <u>In</u>: J. C. Quero, J. C. Hureau, C. Karrer, A. Post, and L. Saldanha (eds.). Checklist of the fishes of the eastern tropical Atlantic (CLOFETA). JNICT, Lisbon. SEI, Paris and UNESCO, Paris, Vol. 2.

# Heincke, F.

1913. Investigations on the plaice, General report. I. Plaice fishery and protective measures. Preliminary brief summary of the most important points of the report. Rapp. P-V Reun. Cons. Perm. Int. Explor. Mer. 16:1-67.

### International Game Fish Association (IGFA).

1997. World Record Game Fishes. International Game Fish Association, Florida, USA.

# Jackson, C.H.N.

1939. The analysis of an animal population. J.Anim. Ecol. 8:238-246.

# Johnson, A.G. and C. H. Saloman.

1984. Age, growth, and mortality of gray triggerfish, <u>Balistes capriscus</u>, from the northeastern Gulf of Mexico. Fish. Bull. 82(3): 485-492.

# Kurz, R. C.

1995. Predator-prey interactions between gray triggerfish (<u>Balistes capriscus</u> Gmelin) and a guild of sand dollars around artificial reefs in the northeastern Gulf of Mexico. Bull. Mar. Sci. 56(1): 150-160.

# Lobel, P. S. and R. E. Johannes.

1980. Nesting, eggs, and larvae of triggerfishes (Balistidae). Env. Biol. Fish. 5(3): 251-252.

# Longley and Hildebrand.

1942. Systematic catalogue of the fishes of Tortugas, Florida, with observations on colour, habits, and local distribution. Pap. Tortugas Lab. 34. 331 pp.

# Lythgoe, J. and G. Lythgoe.

1975. Fishes of the sea: The coastal waters of the British Isles, northern Europe, and the Mediterraean. Anchor Press, New York. 320 pp.

Manooch, C. S., III.

1984. Fishermans Guide. Fishes of the southeastern United States. North Carolina Museum of Natural history, Raleigh, NC.

#### Martin, F. D. and G. E. Drewry.

1978. Developement of fishes of the mid-Atlantic Bight. An atlas of egg, larval and juvenile stages. Vol. 6 Stromateidae through Ogcocephalidae. Biol. Serv. Prog., Fish and Wldlf. Serv., U.S. Dept. Int., FWS/OBS-78/12. 416p, 205 Figs.

# Matsuura, Y. and M. Katsuragawa.

1981. Larvae and juveniles of grey triggerfish, <u>Balistes</u> <u>capriscus</u>, from southern Brazil. Jap. J. Ichthyol. 28(3): 267-275.

# McClanahan, T.R.

1990. Kenyan coral reefassociated gastrpod assemblages: distribution and diversity patterns. Coral Reefs 9: 63-74.

# McClanahan, T. R.

1994. Kenyan coral reef lagoon fish: effects of fishing, substrate complexity, and sea urchins. Coral Reefs 13: 231-241.

# McClanahan, T. R.

1995. Fish predators and scavengers of the sea urchin <u>Echinometra mathaei</u> in Kenyan coral-reef marine parks. Env. Biol. Fish. 43: 187-193.

#### Moore, D.

1967. Triggerfishes (Balistidae) of the western Atlantic. Bull. Mar. Sci. 17(3): 689-722.

# Nelson, R. S.

1988. A study of the life history, ecology and poulation dynamics of four sympatric reef predators (<u>Rhomboplites aurorubens</u>, <u>Lutjanus campechanus</u>, Lutjanidae; <u>Haemulon melanurum</u>, Haemulidae; and <u>Pagrus pagrus</u>, Sparidae) on the East and West Flower Garden Banks, Northwestern Gulf of Mexico. P.hD Dissertation, NC State Univ., Raleigh, NC.

Nelson, R. S., C. S. Manooch, III, and D. L. Mason.

1986. Ecological effects of energy developement on reef fishes of the Texas Flower Garden Banks: Reef fish bioprofiles. Final report. EPA/NMFS Contract No. AA851-CTO-15, Galveston, TX. 239 pp.

# Nugent, R. S.

1970. The effects of thermal effluent on some of the macrofauna of a tropical estuary. PHd Dissertation. Univ. of Miami, Fla. 198 pp.

### Ofori-Danson, P.K.

1981. The biology of the triggerfish, <u>Balistes capriscus</u> (Gmel.) in Ghanian waters. M.S.Thesis, University of Ghana, Legon.

### Ofori-Danson, P. K.

1989. Growth of grey triggerfish, <u>Balistes capriscus</u>, based on growth checks of the dorsal spine. Fishbyte 7(3): 11-12.

# Ofori-Danson, P. K.

1990. Reproductive ecology of the triggerfish, <u>Balistes capriscus</u>, from the Ghanian coastal waters. Trop. Ecol. 31: 1-11.

# Randall, J. E.

1967. Food habits of reef fishes in the West Indies. Stud. Trop. oceanogr., Univ. Miami 5: 655-847.

# Randall, J. E.

1968. Caribbean reef fishes. T.F.H. Publ., Neptune City, New Jersey.

# Richards, W. J. and K. C. Lindeman.

1987. Recruitment dynamics of reef fishes: planktonic processes, settlement and demersal ecologies, and fishery analysis. Bull. Mar. Sci. 41(2): 392-410.

# Robert, R. and R. Parra.

1991. Étude expérimentale de la prédation de la palourde japonaise, <u>Ruditapes</u> <u>philippinarum</u>, par la dorade royale, <u>Sparus</u> <u>aurata</u>, et le baliste, <u>Balistes</u> <u>capriscus</u>. Aquat. Living Resour. 4: 181-189.

# Robins, C. R. and G. C. Ray.

1986. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co., Boston, USA. 354 pp.

# Robson, D.S. and D.G. Chapman.

1961. Catch curves and mortality rates. Trans. Am. Fish. Soc. 90:181-189.

Sazonov, Y. G. and A. I. Galaktionova.

1987. Some data on the morphometrics of the grey triggerfish, <u>Balistes</u> carolinensis, of the central-eastern Atlantic. J. Ichthyol. 27(3): 173-176.

# Sedberry, G. R.

1984. South Atlantic OCS area, living marine resources study, Phase III, Vol. I. Mar. Res. Res. Inst., SC Wildl. and Mar. Res. Dept., Charleston, SC. 223 pp.

# Smith, J. L. B.

1965. The sea fishes of southern Africa. 5th ed. Central News Agency, Capetown, South Africa..

# Smith, G. B.

1976. Ecology and distribution of eastern Gulf of Mexico reef fishes. Fla. Mar. Res. Publ. 19. 78 pp.

# Tortonese, E.

1986. Balistidae. pp. 1335-1337. <u>In</u>: P. J. P. Whitehead, M. L. Bauchot, J. C. Hureau, J. Nielsen, and E. Tortonese (eds.). Fishes of the north-eastern Atlantic and the Mediterranean. UNESCO, Paris. Vol III.

# Tyler, J. C.

1978. Balistidae. <u>In</u>: W. Fischer (ed.). FAO species identification sheets for fishery purposes. West Atlantic (Fishing Area 31). Vol. 1. FAO, Rome.

# Vose, F.E.

1990. Ecology of fishes on artificial and rock outcrop reefs off the central east coast of Florida. Ph. D. Dissertation, Fla. Inst. Tech., Dept. of Oceanogr. and Ocean Eng.. Melbourne, FL.

# Vose, F. E. and W. G. Nelson.

1994. Gray triggerfish (<u>Balistes capriscus</u> Gmelin) feeding from artificial and natural substrate in shallow A tlantic waters of Florida. Bull. Mar. Sci. 55(2-3): 1316-1323.

# Went, A. E. J.

1978. Trigger or fil;e-fish (<u>Balistes carolinensis</u>) in Irish waters. J. Fish Biol. 13: 489-492.

Wilson, C. A., D. L. Nieland, and A. L. Stanley.

1995. Age, growth, and reproductive biology of gray triggerfish (<u>Balistes</u> <u>capriscus</u>) from the northern Gulf of Mexico commercial harvest. MARFIN Final Report, 19 pp., 8 Figs.

Zama, A. and J. Hattori.

1975. Sexual dimorphism of a triggerfish, <u>Sufflamen fraenatus</u>, and record of its juvenile from Kominato, Chiba Prefecture, Japan. Jap. J. Icthyol. 22(3): 171-174.

Table 1. Estimated Gulf of Mexico gray triggerfish landings (pounds), 1986-1996. Data sources: Recreational sector - MRFSS estimate files Commercial sector - Accumulative Landings data files on SEFHOST

|         |               |           |             |           |         | Total    |
|---------|---------------|-----------|-------------|-----------|---------|----------|
| Year    | Florida       | Alabama   | Mississippi | Louisiana | Texas   | Gulf     |
|         |               |           |             |           |         |          |
| 1986    | 1,295,155     | 76,442    |             | 33,564    | 35,606  | 1,440,76 |
| 1987    | 1,647,995     | 47,998    | 2,225       | 8,928     | 35,593  | 1,742,73 |
| 1988    | 1,273,235     | 231,517   | 1,671       | 20,270    | 66,930  | 1,593,62 |
| 1989    | 1,020,319     | 413,598   | 4,875       | 98,632    | 98,960  | 1,636,38 |
| 1990    | 947,303       | 1,099,739 | 24,309      | 257,581   | 61,376  | 2,390,30 |
| 1991    | 1,740,748     | 340,797   | 1,234       | 147,791   | 59,907  | 2,290,47 |
| 1992    | 1,003,740     | 368,024   | 9,611       | 64,217    | 200,208 | 1,645,80 |
| 1993    | 853,044       | 381,913   | 4,152       | 54,580    | 152,448 | 1,446,13 |
| 1994    | 931,600       | 232,968   | 8,337       | 87,892    | 101,560 | 1,362,35 |
| 1995    | 515,175       | 415,673   | 18,238      | 147,633   | 100,829 | 1,197,54 |
| 1996    | 300,021       | 223,749   | 9,720       | 25,694    | 66,066  | 625,250  |
| 1000    | 000,021       | 220,710   | 0,120       | 20,001    | 00,000  | 020,200  |
|         |               |           |             |           |         |          |
| MMERCIA | L SECTOR      |           |             |           |         |          |
|         |               |           |             |           |         | Total    |
| Year    | Florida       | Alabama   | Mississippi | Louisiana | Texas   | Gulf     |
| 1000    | 70.070        | F 004     | 4.000       | 11.100    | 570     | 05 000   |
| 1986    | 70,978        | 5,881     | 4,008       | 14,493    | 572     | 95,932   |
| 1987    | 92,742        | 3,778     | 5,550       | 21,941    | 289     | 124,300  |
| 1988    | 140,790       | 7,641     | 8,242       | 36,980    | 1,885   | 195,538  |
| 1989    | 238,974       | 10,389    | 7,682       | 60,856    | 429     | 318,330  |
| 1990    | 359,553       | 16,613    | 9,027       | 69,798    | 6,951   | 461,942  |
| 1991    | 332,674       | 6,993     | 7,991       | 90,572    | 6,242   | 444,472  |
| 1992    | 321,883       | 6,551     | 12,433      | 101,495   | 7,941   | 450,303  |
| 1993    | 374,260       | 10,413    | 27,045      | 123,484   | 11,287  | 546,489  |
| 1994    | 247,156       | 8,389     | 50          | 96,757    | 15,428  | 367,780  |
| 1995    | 208,449       | 5,268     | 3           | 75,736    | 26,168  | 315,624  |
| 1996    | 158,511       | 2,867     | 198         | 76,151    | 17,226  | 254,953  |
|         |               |           |             |           |         |          |
| TAL COM | BINED SECTORS |           |             |           |         |          |
|         |               |           |             |           |         | Total    |
| Year    | Florida       | Alabama   | Mississippi | Louisiana | Texas   | Gulf     |
| 1000    | 4 000 400     | 00.000    | 4.000       | 40.057    | 00 470  | 4 500 00 |
| 1986    | 1,366,133     | 82,323    | 4,008       | 48,057    | 36,178  | 1,536,69 |
| 1987    | 1,740,737     | 51,776    | 7,775       | 30,869    | 35,882  | 1,867,03 |
| 1988    | 1,414,025     | 239,158   | 9,913       | 57,250    | 68,815  | 1,789,16 |
| 1989    | 1,259,293     | 423,987   | 12,557      | 159,488   | 99,389  | 1,954,71 |
| 1990    | 1,306,856     | 1,116,352 | 33,336      | 327,379   | 68,327  | 2,852,25 |
| 1991    | 2,073,422     | 347,790   | 9,225       | 238,363   | 66,149  | 2,734,94 |
| 1992    | 1,325,623     | 374,575   | 22,044      | 165,712   | 208,149 | 2,096,10 |
| 1993    | 1,227,304     | 392,326   | 31,197      | 178,064   | 163,735 | 1,992,62 |
| 1994    | 1,178,756     | 241,357   | 8,387       | 184,649   | 116,988 | 1,730,13 |
| 1995    | 723,624       | 420,941   | 18,241      | 223,369   | 126,997 | 1,513,17 |
| 1996    | 458,532       | 226,616   | 9,918       | 101,845   | 83,292  | 880,203  |

Table 2. Recreational harvest estimates for Gulf of Mexico gray triggerfish by state and fishing mode, 1986-1996. Data Sources: MRFSS estimate files

| SHORE | EMODE  |          |        |          |             |          |           |          |       |          |            |          |
|-------|--------|----------|--------|----------|-------------|----------|-----------|----------|-------|----------|------------|----------|
|       | Flo    | orida    | Alal   | oama     | Mississippi |          | Louisiana |          | Texas |          | TOTAL GULF |          |
| Year  | N      | Wt.(lbs) | N      | Wt.(lbs) | Ν           | Wt.(lbs) | Ν         | Wt.(lbs) | Ν     | Wt.(lbs) | N          | Wt.(lbs) |
| 1000  |        |          |        |          |             |          |           |          |       |          |            |          |
| 1986  |        |          |        |          |             |          |           |          |       |          |            |          |
| 1987  |        |          |        |          |             |          |           |          |       |          |            |          |
| 1988  |        |          |        |          |             |          |           |          |       |          |            |          |
| 1989  |        |          |        |          |             |          |           |          |       |          |            |          |
| 1990  | 27,485 | 60,405   | 30,765 | 73,397   |             |          |           |          |       |          | 58,250     | 133,802  |
| 1991  | 41,830 | 116,116  | 5,664  | 17,482   |             |          |           |          |       |          | 47,494     | 133,598  |
| 1992  | 27,981 | 20,523   |        |          |             |          |           |          |       |          | 27,981     | 20,523   |
| 1993  | 4,192  | 4,199    |        |          |             |          |           |          |       |          | 4,192      | 4,199    |
| 1994  |        |          | 1,265  | 3,381    |             |          |           |          |       |          | 1,265      | 3,381    |
| 1995  | 2,728  | 3,634    |        |          |             |          |           |          |       |          | 2,728      | 3,634    |
| 1996  |        |          |        |          |             |          |           |          |       |          |            |          |

# HEADBOAT

|      | Flo    | orida    | Alal   | bama     | Mis | sissippi | Lou   | isiana   | Te     | xas      | ΤΟΤΑΙ   | L GULF   |
|------|--------|----------|--------|----------|-----|----------|-------|----------|--------|----------|---------|----------|
| Year | N      | Wt.(lbs) | N      | Wt.(lbs) | Ν   | Wt.(lbs) | N     | Wt.(lbs) | N      | Wt.(lbs) | N       | Wt.(lbs) |
|      |        | -        |        |          |     | :        |       | :        |        |          |         | :        |
| 1986 | 17,419 | 42,434   | 11,604 | 24,008   |     |          | 407   | 907      | 15,611 | 21,771   | 45,041  | 89,120   |
| 1987 | 13,732 | 23,796   | 8,301  | 15,992   |     |          | 612   | 1,010    | 16,085 | 22,436   | 38,730  | 63,234   |
| 1988 | 15,818 | 26,848   | 11,304 | 20,232   |     |          | 1,927 | 3,013    | 39,511 | 39,826   | 68,560  | 89,919   |
| 1989 | 36,101 | 79,963   | 19,516 | 33,146   |     |          | 1,355 | 2,617    | 23,536 | 35,470   | 80,508  | 151,196  |
| 1990 | 58,506 | 84,948   | 46,829 | 69,020   |     |          | 3,915 | 7,023    | 21,650 | 37,390   | 130,900 | 198,381  |
| 1991 | 31,612 | 51,791   | 26,507 | 43,979   |     |          | 7,028 | 13,434   | 24,100 | 43,526   | 89,247  | 152,730  |
| 1992 | 37,720 | 58,843   | 31,204 | 50,814   |     |          | 5,862 | 10,844   | 35,890 | 49,197   | 110,676 | 169,698  |
| 1993 | 32,276 | 53,648   | 26,511 | 44,487   |     |          | 5,958 | 14,020   | 38,226 | 70,529   | 102,971 | 182,684  |
| 1994 | 28,837 | 44,632   | 24,629 | 37,527   |     |          | 6,678 | 13,465   | 50,034 | 90,024   | 110,178 | 185,648  |
| 1995 | 24,731 | 38,289   | 21,093 | 33,622   |     |          | 3,916 | 7,967    | 47,925 | 91,505   | 97,665  | 171,383  |
| 1996 | 19,687 | 30,918   | 16,508 | 26,539   |     |          | 2,828 | 5,355    | 37,501 | 61,819   | 76,524  | 124,631  |

# CHARTER

|      | Flo     | orida     | Alab    | oama     | Miss  | issippi  | Loui   | isiana   | Te    | exas     | TOTA    | L GULF    |
|------|---------|-----------|---------|----------|-------|----------|--------|----------|-------|----------|---------|-----------|
| Year | N       | Wt.(lbs)  | Ν       | Wt.(lbs) | Ν     | Wt.(lbs) | N      | Wt.(lbs) | Ν     | Wt.(lbs) | N       | Wt.(lbs)  |
|      |         |           |         |          |       |          |        |          |       |          |         |           |
| 1986 | 394,156 | 1,177,180 | 13,958  | 49,658   |       |          | 1,725  | 5,443    |       |          | 409,839 | 1,232,281 |
| 1987 | 463,119 | 1,287,557 | 10,266  | 21,460   | 13    | 20       | 1,803  | 3,907    | 1,388 | 3,008    | 476,589 | 1,315,952 |
| 1988 | 320,627 | 698,851   | 85,830  | 208,796  | 909   | 1,671    | 1,341  | 2,857    | 203   | 432      | 408,910 | 912,607   |
| 1989 | 247,969 | 394,354   | 129,322 | 321,138  | 4,655 | 4,875    |        |          | 102   | 217      | 382,048 | 720,584   |
| 1990 | 278,075 | 552,423   | 319,421 | 805,368  | 82    | 201      | 5,093  | 13,337   | 315   | 825      | 602,986 | 1,372,154 |
| 1991 | 552,408 | 1,438,373 | 94,231  | 261,052  |       |          | 56,612 | 132,430  | 137   | 320      | 703,388 | 1,832,175 |
| 1992 | 245,722 | 504,452   | 91,477  | 204,164  | 72    | 140      | 14,409 | 25,243   | 1,870 | 3,276    | 353,550 | 737,275   |
| 1993 | 269,817 | 552,749   | 95,899  | 204,504  | 930   | 2,072    | 16,834 | 37,177   |       |          | 383,480 | 796,502   |
| 1994 | 420,498 | 779,447   | 64,069  | 150,909  | 1,361 | 2,720    | 22,272 | 40,031   | 30    | 54       | 508,230 | 973,161   |
| 1995 | 273,115 | 451,957   | 131,656 | 243,842  | 1,029 | 2,156    | 27,739 | 60,708   |       |          | 433,539 | 758,663   |
| 1996 | 110,406 | 191,902   | 77,498  | 143,508  | 4,560 | 6,870    | 4,980  | 16,609   | 26    | 87       | 197,470 | 358,976   |

Table 2 (cont.). Recreational harvest estimates for Gulf of Mexico gray triggerfish by state and fishing mode 1986-1996. Data Sources: MRFSS estimate files

PRIVATE/RENTAL

|      | Flo     | orida    | Alal   | oama     | Miss  | issippi  | Loui   | isiana   | Te     | xas      | TOTA    | GULF     |
|------|---------|----------|--------|----------|-------|----------|--------|----------|--------|----------|---------|----------|
| Year | N       | Wt.(lbs) | Ν      | Wt.(lbs) | Ν     | Wt.(lbs) | N      | Wt.(lbs) | Ν      | Wt.(lbs) | N       | Wt.(lbs) |
|      |         |          |        |          |       |          |        |          |        |          |         |          |
| 1986 | 34,769  | 75,541   | 2,222  | 2,776    |       |          | 8,643  | 27,214   | 4,394  | 13,835   | 50,028  | 119,366  |
| 1987 | 144,246 | 336,642  | 4,224  | 10,546   | 1,429 | 2,205    | 2,029  | 4,011    | 5,134  | 10,149   | 157,062 | 363,553  |
| 1988 | 272,252 | 547,536  | 941    | 2,489    |       |          | 7,449  | 14,400   | 13,797 | 26,672   | 294,439 | 591,097  |
| 1989 | 395,900 | 546,002  | 38,941 | 59,314   |       |          | 49,453 | 96,015   | 32,589 | 63,273   | 516,883 | 764,604  |
| 1990 | 110,496 | 249,527  | 75,262 | 151,954  | 9,291 | 24,108   | 89,753 | 237,221  | 8,763  | 23,161   | 293,565 | 685,971  |
| 1991 | 47,553  | 134,468  | 10,177 | 18,284   | 1,399 | 1,234    | 1,055  | 1,927    | 8,793  | 16,061   | 68,977  | 171,974  |
| 1992 | 209,148 | 419,922  | 57,702 | 113,046  | 3,607 | 9,471    | 13,435 | 28,130   | 70,559 | 147,735  | 354,451 | 718,304  |
| 1993 | 110,028 | 242,448  | 52,531 | 132,922  | 983   | 2,080    | 1,619  | 3,383    | 39,204 | 81,919   | 204,365 | 462,752  |
| 1994 | 50,259  | 107,521  | 24,761 | 41,151   | 3,022 | 5,617    | 18,788 | 34,396   | 6,272  | 11,482   | 103,102 | 200,167  |
| 1995 | 15,102  | 21,295   | 74,389 | 138,209  | 7,868 | 16,082   | 37,592 | 78,958   | 4,439  | 9,324    | 139,390 | 263,868  |
| 1996 | 50,010  | 77,201   | 29,748 | 53,702   | 1,828 | 2,850    | 2,054  | 3,730    | 2,291  | 4,160    | 85,931  | 141,643  |

#### ALL MODES

|      | Flo     | orida     | Alal    | bama      | Miss  | issippi  | Loui   | isiana   | Te      | xas      | TOTA      | L GULF    |
|------|---------|-----------|---------|-----------|-------|----------|--------|----------|---------|----------|-----------|-----------|
| Year | N       | Wt.(lbs)  | Ν       | Wt.(lbs)  | Ν     | Wt.(lbs) | N      | Wt.(lbs) | N       | Wt.(lbs) | N         | Wt.(lbs)  |
|      |         |           |         |           |       |          |        |          |         |          |           |           |
| 1986 | 446,344 | 1,295,155 | 27,784  | 76,442    | 0     | 0        | 10,775 | 33,564   | 20,005  | 35,606   | 504,908   | 1,440,767 |
| 1987 | 621,097 | 1,647,995 | 22,791  | 47,998    | 1,442 | 2,225    | 4,444  | 8,928    | 22,607  | 35,593   | 672,381   | 1,742,739 |
| 1988 | 608,697 | 1,273,235 | 98,075  | 231,517   | 909   | 1,671    | 10,717 | 20,270   | 53,511  | 66,930   | 771,909   | 1,593,623 |
| 1989 | 679,970 | 1,020,319 | 187,779 | 413,598   | 4,655 | 4,875    | 50,808 | 98,632   | 56,227  | 98,960   | 979,439   | 1,636,384 |
| 1990 | 474,562 | 947,303   | 472,277 | 1,099,739 | 9,373 | 24,309   | 98,761 | 257,581  | 30,728  | 61,376   | 1,085,701 | 2,390,308 |
| 1991 | 673,403 | 1,740,748 | 136,579 | 340,797   | 1,399 | 1,234    | 64,695 | 147,791  | 33,030  | 59,907   | 909,106   | 2,290,477 |
| 1992 | 520,571 | 1,003,740 | 180,383 | 368,024   | 3,679 | 9,611    | 33,706 | 64,217   | 108,319 | 200,208  | 846,658   | 1,645,800 |
| 1993 | 416,313 | 853,044   | 174,941 | 381,913   | 1,913 | 4,152    | 24,411 | 54,580   | 77,430  | 152,448  | 695,008   | 1,446,137 |
| 1994 | 499,594 | 931,600   | 114,724 | 232,968   | 4,383 | 8,337    | 47,738 | 87,892   | 56,336  | 101,560  | 722,775   | 1,362,357 |
| 1995 | 315,676 | 515,175   | 227,138 | 415,673   | 8,897 | 18,238   | 69,247 | 147,633  | 52,364  | 100,829  | 673,322   | 1,197,548 |
| 1996 | 180,103 | 300,021   | 123,754 | 223,749   | 6,388 | 9,720    | 9,862  | 25,694   | 39,818  | 66,066   | 359,925   | 625,250   |

Table 3. Estimated Gulf of Mexico gray triggerfish commercial landings by gear type. Data source: Accumulated Landings data files on SEFHOST

| HANDLINES |                |               |               |           |        |         |  |  |  |  |  |
|-----------|----------------|---------------|---------------|-----------|--------|---------|--|--|--|--|--|
|           |                |               |               |           |        | Total   |  |  |  |  |  |
| Year      | Florida        | Alabama       | Mississippi   | Louisiana | Texas  | Gulf    |  |  |  |  |  |
| 1000      | 50 517         | <b>F</b> 00 4 | 4.000         | 7 470     | 05     | 75 570  |  |  |  |  |  |
| 1986      | 58,517         | 5,834         | 4,008         | 7,178     | 35     | 75,572  |  |  |  |  |  |
| 1987      | 69,375         | 3,687         | 5,550         | 21,593    |        | 100,205 |  |  |  |  |  |
| 1988      | 127,241        | 7,470         | 7,269         | 35,956    |        | 177,936 |  |  |  |  |  |
| 1989      | 195,848        | 9,598         | 7,682         | 51,254    |        | 264,382 |  |  |  |  |  |
| 1990      | 275,944        | 13,835        | 9,027         | 60,291    | 2,443  | 361,540 |  |  |  |  |  |
| 1991      | 286,488        | 5,474         | 7,991         | 78,236    | 1,414  | 379,603 |  |  |  |  |  |
| 1992      | 286,362        | 6,041         | 12,218        | 87,670    | 4,882  | 397,173 |  |  |  |  |  |
| 1993      | 311,693        | 9,240         | 27,045        | 106,644   | 4,074  | 458,696 |  |  |  |  |  |
| 1994      | 222,101        | 8,139         | 50            | 83,578    | 5,589  | 319,457 |  |  |  |  |  |
| 1995      | 180,865        | 4,557         | 3             | 65,420    | 9,445  | 260,290 |  |  |  |  |  |
| 1996      | 133,779        | 2,600         | 198           | 65,779    | 6,217  | 208,573 |  |  |  |  |  |
|           |                |               |               |           |        |         |  |  |  |  |  |
| LONGLII   | NES            |               |               |           | 1      | Total   |  |  |  |  |  |
| Year      | Florida        | Alabama       | Mississippi   | Louisiana | Texas  | Gulf    |  |  |  |  |  |
| i cai     | TIOTIUA        | Alabama       | IVIISSISSIPPI | Louisiana | TEXAS  | Gui     |  |  |  |  |  |
| 1986      | 12,461         |               |               | 7,315     | 537    | 20,313  |  |  |  |  |  |
| 1987      | 23,339         |               |               | 348       | 289    | 23,976  |  |  |  |  |  |
| 1988      | 13,051         |               |               | 613       | 1,885  | 15,549  |  |  |  |  |  |
| 1989      | 30,166         |               |               | 9,512     | 429    | 40,107  |  |  |  |  |  |
| 1989      | 71,299         | 2,581         |               | 9,247     | 4,500  | 87,627  |  |  |  |  |  |
| 1990      | 9,918          | 95            |               | 11,999    | 4,828  | 26,840  |  |  |  |  |  |
| 1991      | 5,142          | 90            | 215           | 13,446    | 3,055  | 21,858  |  |  |  |  |  |
| 1992      | 9,049          | 303           | 215           | 16,359    | 7,208  | 32,919  |  |  |  |  |  |
| 1993      | 9,049<br>1,144 | 11            |               | 13,119    | 9,831  | 24,105  |  |  |  |  |  |
|           |                | 11            |               |           |        |         |  |  |  |  |  |
| 1995      | 4,783          |               |               | 10,033    | 16,440 | 31,256  |  |  |  |  |  |
| 1996      | 11,975         |               |               | 10,089    | 11,000 | 33,064  |  |  |  |  |  |
|           |                |               |               |           |        |         |  |  |  |  |  |
| TRAPS     |                |               |               |           |        |         |  |  |  |  |  |
|           |                |               |               |           | _      | Total   |  |  |  |  |  |
| Year      | Florida        | Alabama       | Mississippi   | Louisiana | Texas  | Gulf    |  |  |  |  |  |
| 1000      |                |               |               |           |        |         |  |  |  |  |  |
| 1986      |                |               |               |           |        |         |  |  |  |  |  |
| 1987      | 00             |               |               |           |        |         |  |  |  |  |  |
| 1988      | 33             |               |               |           |        | 33      |  |  |  |  |  |
| 1989      | 12,537         |               |               |           |        | 12,537  |  |  |  |  |  |
| 1990      | 12,050         |               |               |           |        | 12,050  |  |  |  |  |  |
| 1991      | 34,150         |               |               |           |        | 34,150  |  |  |  |  |  |
| 1992      | 29,780         |               |               |           |        | 29,780  |  |  |  |  |  |
| 1993      | 52,406         |               |               |           |        | 52,406  |  |  |  |  |  |
| 1994      | 22,815         |               |               |           |        | 22,815  |  |  |  |  |  |

19,900

12,185

1995

1996

19,900

12,185

Table 3 (cont.). Estimated Gulf of Mexico gray triggerfish commercial landings by gear type. Data source: Accumulated Landings data files on SEFHOST

| TRAWLS | 5       |         |             |           |       |       |
|--------|---------|---------|-------------|-----------|-------|-------|
|        |         |         |             |           |       | Total |
| Year   | Florida | Alabama | Mississippi | Louisiana | Texas | Gulf  |
|        |         |         |             |           |       |       |
| 1986   |         | 47      |             |           |       | 47    |
| 1987   |         | 91      |             |           |       | 91    |
| 1988   |         | 171     | 973         | 411       |       | 1,555 |
| 1989   |         | 791     |             | 90        |       | 881   |
| 1990   | 139     | 197     |             | 260       | 8     | 604   |
| 1991   | 350     | 1,424   |             | 338       |       | 2,112 |
| 1992   |         | 510     |             | 379       | 4     | 893   |
| 1993   | 80      | 870     |             | 461       | 6     | 1,417 |
| 1994   | 41      | 239     |             | 60        | 8     | 348   |
| 1995   | 71      | 711     |             | 283       | 283   | 1,348 |
| 1996   | 19      | 267     |             | 284       | 9     | 579   |

# OTHER

| <b>U</b> |         |         |             |           |       |       |
|----------|---------|---------|-------------|-----------|-------|-------|
|          |         |         |             |           |       | Total |
| Year     | Florida | Alabama | Mississippi | Louisiana | Texas | Gulf  |
|          |         |         |             |           |       |       |
| 1986     |         |         |             |           |       |       |
| 1987     | 28      |         |             |           |       | 28    |
| 1988     | 465     |         |             |           |       | 465   |
| 1989     | 423     |         |             |           |       | 423   |
| 1990     | 121     |         |             |           |       | 121   |
| 1991     | 1,768   |         |             |           |       | 1,768 |
| 1992     | 603     |         |             |           |       | 603   |
| 1993     | 1,033   |         |             |           |       | 1,033 |
| 1994     | 1,055   |         |             |           |       | 1,055 |
| 1995     | 2,831   |         |             |           |       | 2,831 |
| 1996     | 553     |         |             |           |       | 553   |

# COMBINED ALL GEARS

|      |         |         |             |           |        | Total   |
|------|---------|---------|-------------|-----------|--------|---------|
| Year | Florida | Alabama | Mississippi | Louisiana | Texas  | Gulf    |
|      |         |         |             |           |        |         |
| 1986 | 70,978  | 5,881   | 4,008       | 14,493    | 572    | 95,932  |
| 1987 | 92,742  | 3,778   | 5,550       | 21,941    | 289    | 124,300 |
| 1988 | 140,790 | 7,641   | 8,242       | 36,980    | 1,885  | 195,538 |
| 1989 | 238,974 | 10,389  | 7,682       | 60,856    | 429    | 318,330 |
| 1990 | 359,553 | 16,613  | 9,027       | 69,798    | 6,951  | 461,942 |
| 1991 | 332,674 | 6,993   | 7,991       | 90,573    | 6,242  | 444,473 |
| 1992 | 321,887 | 6,551   | 12,433      | 101,495   | 7,941  | 450,307 |
| 1993 | 374,261 | 10,413  | 27,045      | 123,464   | 11,288 | 546,471 |
| 1994 | 247,156 | 8,389   | 50          | 96,757    | 15,428 | 367,780 |
| 1995 | 208,450 | 5,268   | 3           | 75,736    | 26,168 | 315,625 |
| 1996 | 158,511 | 2,867   | 198         | 76,152    | 17,226 | 254,954 |

Table 4. Estimated Gulf of Mexico gray triggerfish commercial landings by grid, 1986-1996.

|       |           |         |             |           |        | Total     |
|-------|-----------|---------|-------------|-----------|--------|-----------|
| Grid  | Florida   | Alabama | Mississippi | Louisiana | Texas  | Gulf      |
|       |           |         |             |           |        |           |
| 1     | 4,787     |         |             |           |        | 4,787     |
| 2     | 33,361    |         |             |           |        | 33,361    |
| 3     | 21,141    |         |             |           |        | 21,141    |
| 4     | 26,550    |         |             |           |        | 26,550    |
| 5     | 162,749   |         |             |           |        | 162,749   |
| 6     | 379,884   |         |             |           |        | 379,884   |
| 7     | 227,022   |         |             |           |        | 227,022   |
| 8     | 196,623   |         |             |           |        | 196,623   |
| 9     | 322,904   |         | 148         |           |        | 323,052   |
| 10    | 618,663   | 65,051  | 5,740       |           |        | 689,454   |
| 11    | 425,172   | 13,286  | 14,573      |           |        | 453,031   |
| 12    | 41,777    |         | 161         | 1,682     |        | 43,620    |
| 13    | 40,444    | 1,241   | 4,665       | 266,836   |        | 313,186   |
| 14    | 18,066    |         | 6,951       | 316,449   |        | 341,466   |
| 15    | 9,521     |         | 9,292       | 106,082   |        | 124,895   |
| 16    | 9,366     |         | 9,995       | 47,707    | 415    | 67,483    |
| 17    | 5,509     | 5,196   | 14,600      | 27,630    | 1,291  | 54,226    |
| 18    | 2,170     | 9       | 10,750      | 1,877     | 51,649 | 66,455    |
| 19    |           |         | 3,683       |           | 15,430 | 19,113    |
| 20    |           |         | 887         |           | 886    | 1,773     |
| 21    | 269       |         | 784         |           | 24,747 | 25,800    |
| Total | 2,545,978 | 84,783  | 82,229      | 768,263   | 94,418 | 3,575,671 |

Table 5. Population parameters for gray triggerfish available from the literature.

| Von     | Von BertaInffy Growth | wth     |      | Mc   | Mortality    |            | Maximum Maximum | Maximum | Age at   | Length at |         |             |                           |
|---------|-----------------------|---------|------|------|--------------|------------|-----------------|---------|----------|-----------|---------|-------------|---------------------------|
| -       | coefficients          |         |      | coef | coefficients |            | age             | length  | maturity | maturity  | Sex     | Area        | Reference                 |
|         |                       |         |      |      |              | Estimation | (yr)            | (cm)    | (yr)     | (cm)      |         |             |                           |
| k       | Loo (cm)              | to (yr) | а    | S    | i            | Method*    |                 |         |          |           |         |             |                           |
| 0.199   | 57.1                  | 0.015   |      |      |              |            |                 |         |          |           | unsexed | SE USA      | Escorriola, 1991          |
| 0.383   | 43.75 FL              | 0.150   | 0.36 | 0.64 | 0.45         | -          | 12              | 56.1 FL |          |           | female  | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.32 | 0.68 | 0.38         | 7          |                 |         |          |           | female  | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.45 | 0.55 | 0.59         | ო          |                 |         |          |           | female  | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.47 | 0.53 | 0.64         | 4          |                 |         |          |           | female  | NE GOM      | Johnson and Saloman, 1984 |
| 0.382   | 49.19 FL              | 0.227   | 0.33 | 0.67 | 0.40         | -          | 13              | 54.4 FL |          |           | male    | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.32 | 0.67 | 0.39         | 7          |                 |         |          |           | male    | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.44 | 0.56 | 0.57         | ო          |                 |         |          |           | male    | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.53 | 0.47 | 0.75         | 4          |                 |         |          |           | male    | NE GOM      | Johnson and Saloman, 1984 |
| 0.382   | 46.60 FL              | 0.189   | 0.34 | 0.66 | 0.41         | -          |                 |         |          |           | unsexed | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.33 | 0.64 | 0.40         | 7          |                 |         |          |           | unsexed | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.44 | 0.56 | 0.58         | ო          |                 |         |          |           | unsexed | NE GOM      | Johnson and Saloman, 1984 |
|         |                       |         | 0.49 | 0.51 | 0.67         | 4          |                 |         |          |           | unsexed | NE GOM      | Johnson and Saloman, 1984 |
| 0.43    | 40.8 FL               |         |      |      |              |            |                 |         | -        | 14.5 FL   | unsexed | Ghana       | Ofori-Danson, 1989        |
|         |                       |         |      |      |              |            | 11-12           |         | 1-2      |           | unsexed | N GOM       | Wilson et al., 1995       |
| 0.03481 | 38.0                  | -0.233  |      |      |              |            |                 |         |          |           | female  | Senegal     | Caveriere et al., 1981    |
| 0.04488 | 37.5                  | 0.217   |      |      |              |            |                 |         |          |           | male    | Senegal     | Caveriere et al., 1981    |
| 0.03058 | 40.7                  | -0.283  |      |      |              |            |                 |         |          |           | unsexed | Senegal     | Caveriere et al., 1981    |
| 0.01126 | 41.0                  | -1.800  |      |      |              |            |                 |         |          |           | unsexed | lvory Coast | Caveriere et al., 1981    |
|         |                       |         |      |      |              |            |                 |         |          |           |         |             |                           |

Legend: Mortality coefficents

\* Estimation methods( from Table 8, Johnson and Saloman, 1984)

a = annual mortality
 s = annual survival
 instantaneous mortality

Hencke, 1913
 Jackson, 1939
 Robson and Chapman, 1961
 Regression analysis

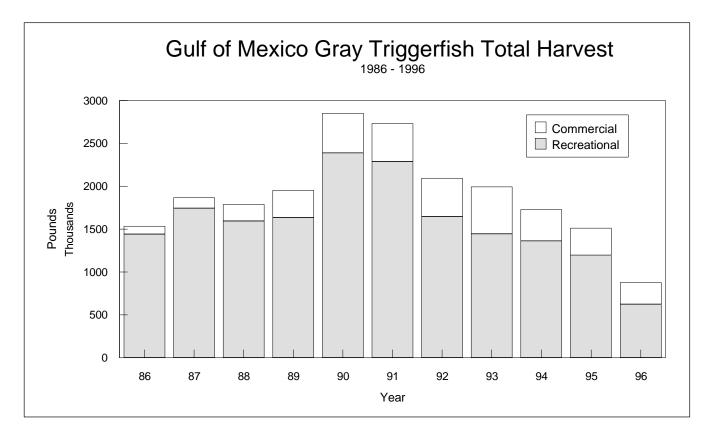



Figure 1. Estimated Gulf of Mexico gray triggerfish annual landings by weight for commercial and recreational sectors for the period 1986 through 1996.

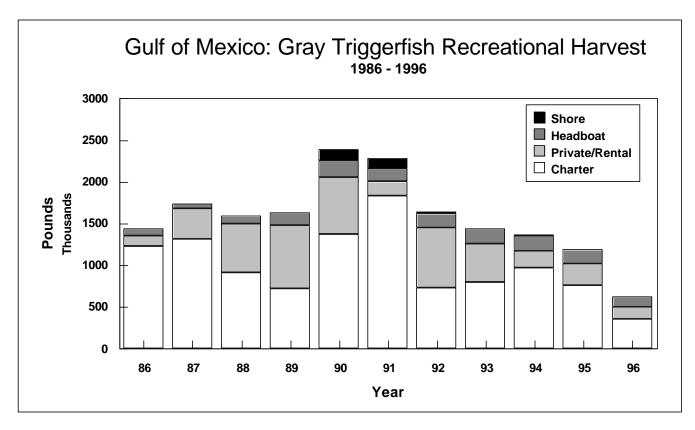



Figure 2. Estimated Gulf of Mexico gray triggerfish annual recreational landings in weight by mode for the period 1986 through 1996.

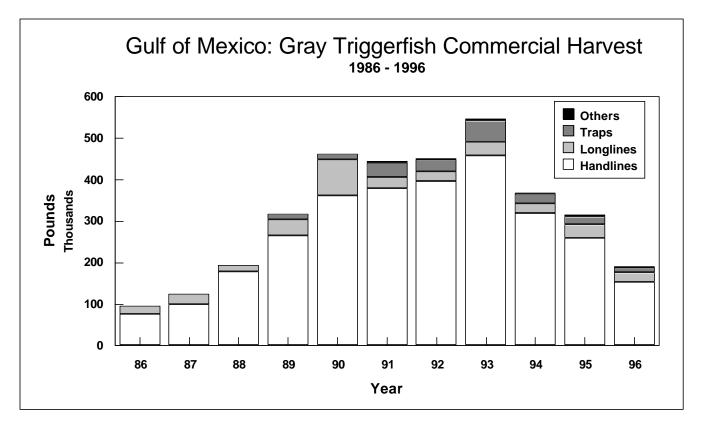



Figure 3. Estimated Gulf of Mexico gray triggerfish annual commercial landings by gear for the period 1986 through 1996.

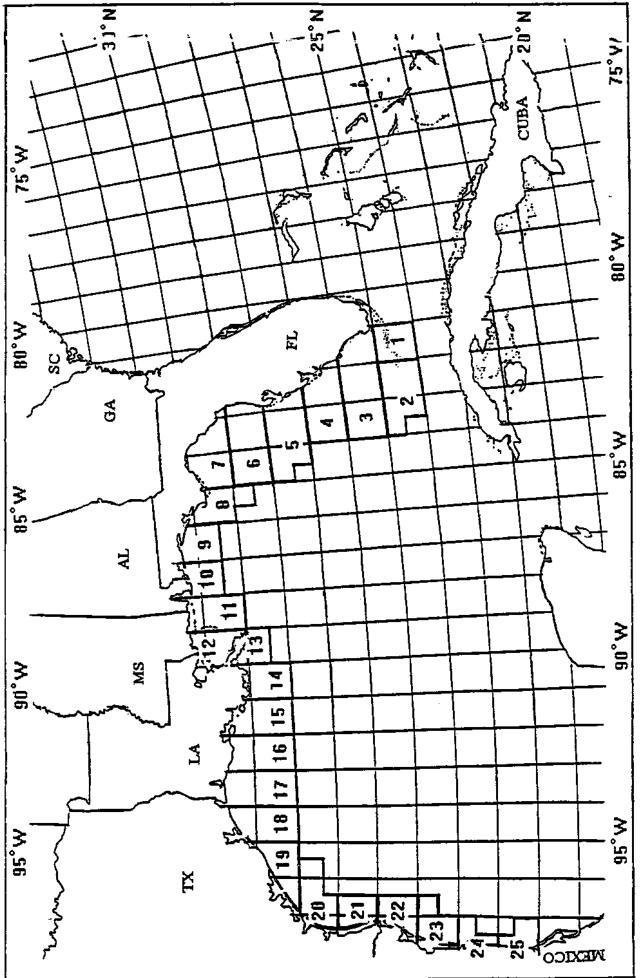



Figure 4. Gulf of Mexico statistical grid map.