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I.  EXECUTIVE SUMMARY 18 

 Genetic population structure of red snapper, Lutjanus campechanus, sampled from five 19 

localities along the southeastern coast of the United States (Atlantic) and from three localities in 20 

the northeastern Gulf of Mexico (eastern Gulf) was assessed using genotypes at16 nuclear-21 

encoded microsatellites and 590 base pairs of the mitochondrialy encoded (mtDNA) ND4 gene.  22 

Genotypes at all 16 microsatellites in all localities sampled did not deviate significantly from the 23 

expectations of Hardy-Weinberg equilibrium, following Bonferroni correction.  MtDNA 24 

haplotypes at the eight sample localities consisted primarily of two common haplotypes and 25 

numerous rare haplotypes.  Conventional approaches (i.e., global exact tests, pairwise tests of FST 26 

or ФST = 0, hierarchical analysis of molecular variance) to test homogeneity of microsatellite 27 

alleles and genotypes and mtDNA haplotypes between and among localities and between pooled 28 

localities in the Atlantic versus pooled localities in the eastern Gulf, were non-significant.  29 

Mantel tests of a correlation between genetic and geographic distance (significant for mtDNA 30 

but non-significant for microsatellites) and a nearest-neighbor analysis of mtDNA suggested an 31 

isolation-by distance effect, possibly reflecting female philopatry or limited spatial geographic 32 

movement of females relative to males.  A metric of selective neutrality of mtDNA haplotypes 33 

was significant at seven of the localities prior to Bonferroni correction and remained significant 34 

following correction at two localities, suggesting possible demographic differences among the 35 

localities.  A Bayesian approach to estimation of F-statistics produced significant, non-zero 36 

estimates of the parameters θI and θII (reflecting historical and contemporaneous variance in 37 

microsatellite allele frequencies, respectively) among sample localities in the Atlantic, among 38 

sample localities in the eastern Gulf, and between sample localities in the Atlantic (pooled) 39 

versus sample localities in the eastern Gulf (pooled).  Attempts to estimate contemporaneous 40 

effective size largely resulted in infinite point estimates or infinitely bounded confidence 41 

intervals.  Estimates of average, long-term genetic effective size (NeLT) among localities ranged 42 

from 826 to 2,111 but did not differ significantly from one another; estimates of NeLT for 43 

localities from the Atlantic (pooled) and localities from the Gulf (pooled) were 3,930 and 4,114, 44 

respectively.  The estimate of NeLT for all eight localities (pooled) was 6,267.  The sum of the 45 

estimates of NeLT for the five localities in the Atlantic was 6,450, considerably larger that the 46 

global estimate (3,930) for the region.  This is consistent with the ‘propagule pool’ model where 47 

migrants come primarily from a nearby subpopulation or stock and where a metapopulation is 48 
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subdivided into groups with different demographic rates (e.g., average survival and/or 49 

reproduction).  The sum of the estimates of NeLT for the three localities in the eastern Gulf was 50 

4,414, close to the global estimate (4,114) for that region, suggesting few demographic 51 

differences among the three eastern-Gulf localities.  The sum of the estimates of NeLT for the two 52 

regions (8,005) is larger than the global estimate for all eight localities (6,267), suggesting that 53 

the two regions differ demographically.  Estimates of average, long-term migration rates (m) 54 

between the two regions were 0.0033 (Gulf into the Atlantic) and 0.0021 (Atlantic into the Gulf) 55 

and did not differ significantly from one another.  Because the estimates of NeLT and of m for the 56 

two regions did not differ, we used an average estimate of NeLT (4,022) and of m (0.0027) to 57 

generate a long-term mNe estimate of 10.86, the effective number of migrants moving in either 58 

direction from one region to the other.  Estimates of NeLT represent a weighted harmonic mean of 59 

effective size (Ne) over a period of 4Ne generations, with greater weight on more recent 60 

generations and on smaller values of Ne.  The estimate of m (0.33%) between the two regions is 61 

considerably less than the 10% rate, suggested for contemporaneous migration, beyond which 62 

populations are not considered to be demographically independent.  Results of the study are 63 

consistent with slight genetic and demographic heterogeneity among localities within the two 64 

regions, particularly within the Atlantic, and between the two regions.  The heterogeneity may 65 

reflect the metapopulation structure hypothesized previously for red snapper in the northern 66 

Gulf.  In summary, there is evidence that genetic and demographic heterogeneity occurs among 67 

red snapper across the geographic region surveyed.  The signal, however, is weak and precludes 68 

definition of geographic boundaries of subpopulations or stocks.  More robust genetic 69 

approaches (e.g., RADseq) that utilize next-generation sequencing to screen thousands of genetic 70 

markers, and have the capability to identify genomic regions under selection are the next logical 71 

step in assessing population structure, genetic demography, and connectivity of red snapper 72 

across its range in U.S. waters. 73 

 74 

II.  PURPOSE 75 

 Red snapper Lutjanus campechanus (Poey 1860) have historically supported important 76 

commercial and recreational fisheries along the Atlantic Coast of the southeastern United States 77 

(hereafter Atlantic) and the northern (U.S.) coast of the Gulf of Mexico (hereafter Gulf) (Allman 78 

and Grimes 2002).  Commercial landings of red snapper in the Gulf, for example, averaged 2.6 79 
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million pounds between 2007 and 2011, with an average dockside value of $9.6 million; while 80 

recreational fishing in the Gulf in 2011 involved > 375,000 target trips and $52.8 million in 81 

output impact (GMFMC 2013).  Until recently, the major focus in terms of management has 82 

been red snapper in the Gulf, where the stock has been considered  over-fished and to be 83 

undergoing overfishing since at least the late 1980s when the initial rebuilding plan was 84 

formulated (Strelcheck and Hood 2007).  Although red snapper in the Gulf remain over-fished 85 

(NOAA 2012; SEDAR 2013), an assessment  of red snapper in the U.S. South Atlantic indicated 86 

that red snapper are not only overfished since 1960 but that overfishing is occurring at several 87 

times the sustainable level (SEDAR 2008).  Factors impacting the decline in red snapper are 88 

thought to include high mortality due to directed fisheries, habitat alteration and degradation and 89 

mortality of juveniles taken as unintentional harvest (bycatch) in the shrimp fishery, which 90 

appears to have been a factor in the Gulf (Schirripa and Legault 1997; Christman 1997; Ortiz et 91 

al. 2000). 92 

 Red snapper resources in the Atlantic and Gulf are currently managed as separate stocks 93 

(Cowan 2011).  Genetics studies of adult red snapper, utilizing both nuclear and mitochondrial 94 

DNA (mtDNA) markers, have found little evidence of significant population structure across the 95 

northern Gulf (Gold et al. 1997: Pruett et al. 2005; Saillant and Gold 2006); Saillant et al. (2010), 96 

however, did detect a significant, positive spatial autocorrelation of microsatellite genotypes 97 

among age 0 fish sampled within a geographic range of 50–100 km.  The lone genetic study of 98 

red snapper from both the Atlantic and the Gulf (Garber et al. 2004) involved sequences of the 99 

hypervariable, mitochondrial (mtDNA) control region among four localities in the Gulf (140 100 

fish) and one locality in the Atlantic (35 fish).  No differences in mtDNA haplotype frequencies 101 

were detected, consistent with the null hypothesis that red snapper in the five localities 102 

comprised a single, genetic population.  MtDNA haplotype diversities (the probability of 103 

randomly sampling different haplotypes) in the localities sampled, however, ranged from 0.936 104 

to 1.000 (average across localities of 0.973), indicating that most samples were comprised of 105 

unique, singleton mtDNA haplotypes.  Effective testing of statistical homogeneity (the null 106 

hypothesis) was thus seriously constrained, leaving equivocal the question of whether red 107 

snapper from the two regions comprised a unit stock. 108 

 Alternatively, life-history data, results of tagging, and/or otolith microchemistry indicate 109 

there could be different stocks both within the Gulf and between the Gulf and Atlantic.  110 



5 
 

Significant differences in red snapper reproductive biology (Jackson et al. 2007), growth rate 111 

(Fischer et al. 2004), and effective population size (Saillant and Gold 2006) have been found 112 

among localities in the Gulf, and Brown-Peterson et al. (2009) found differences in reproductive 113 

biology between red snapper sampled along the east coast of Florida and the Dry Tortugas.  114 

Studies of red snapper in the Gulf, based on tagging and/or ultrasonic telemetry, have been more 115 

equivocal as some (Fable 1980; Szedlmayer 1997; Schroepfer and Szedlmayer 2006; Strelcheck 116 

et al. 2007) have shown relatively high site fidelity, while others (Watterson et al. 1998; 117 

Patterson et al. 2001; Patterson and Cowan 2003) have reported lower site fidelity.  However, 118 

there is little to no evidence from tagging studies for movement of red snapper between the 119 

Atlantic and the Gulf, and what limited data there are indicate high site fidelity, at least in the 120 

Atlantic.  Burns et al. (2004) tagged and released roughly 5,000 red snapper in the Atlantic and 121 

Gulf (~40% were released in the Atlantic between Cape Canaveral, Florida, to Georgia).  122 

Approximately 44% of the more than 400 recaptures were taken within less than 2 km of the 123 

tagging site and only 2% or so of the recaptures had moved more than ≥160 km.  Two smaller 124 

studies carried out in the Atlantic also indicated relatively little movement away from the tagging 125 

site (SEDAR 2008). 126 

 In this study, we used nuclear-encoded microsatellites and sequences of mtDNA to assess 127 

genetic population structure of red snapper sampled in the Atlantic and the eastern Gulf.  128 

Characterizing population structure is essential because failure to recognize population structure 129 

within an exploited fishery may lead to over-exploitation and depletion of a localized, undetected 130 

stock and result in the loss of unique genetic resources inherent in that stock (Carvalho and 131 

Hauser 1994; Begg et al. 1999; Hilborn et al. 2003).  Loss of genetic resources can compromise 132 

long-term sustainability (Hilborn et al. 2003), and for fisheries undergoing rebuilding, failure to 133 
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recognize cryptic stocks can result in failure to anticipate recruitment in those non-identified 134 

units (Ruzzante et al. 1999).  We also attempted to estimate the effective number of breeders (Nb) 135 

and the average, long-term effective (NeLT) size at each sample locality.  Nb is an estimate of the 136 

effective number of breeding individuals in a subpopulation (Waples 1990), while NeLT reflects 137 

the long-term, relative effects of genetic drift and selection.  As long-term sustainability requires 138 

maintenance of sufficient genetic resources (Allendorf and Waples 1996), stocks with small Nb 139 

and/or Ne potentially may suffer reduced capacity to respond to changing or novel environmental 140 

pressures (Frankham 1995; Higgins and Lynch 2001).  Finally, we estimated the average, long-141 

term migration rates between the Gulf and the Atlantic. 142 

 143 

III.  APPROACH 144 

 A total of 669 adult red snapper were sampled dockside between 2008 and 2011 from boats 145 

fishing offshore of North Carolina (NC), South Carolina (SC), Georgia (GA), Daytona, Florida 146 

(DA), and Melbourne, Florida (ML) in the U.S. South Atlantic (hereafter Atlantic), and offshore 147 

of Sarasota, Florida (SA), the Florida Middle Grounds (MG), and Panama City, Florida (PC) in 148 

the eastern Gulf of Mexico (hereafter Gulf).  Approximate fishing localities are indicated in 149 

Figure 1.  Tissue samples (fin clips) were obtained by personnel from several state or federal 150 

agencies (see Acknowledgements), fixed in 10% DMSO buffer (Seutin et al. 1991), and mailed 151 

to our laboratory in College Station.  DNA was extracted following a modified chelex extraction 152 

protocol (Estoup et al. 1996); following final centrifugation, 1 µL of the supernatant was used as 153 

the template in subsequent polymerase-chain-reaction (PCR) amplification. 154 

 All fish were genotyped at 16 nuclear-encoded microsatellites, following multiplex PCR 155 

protocols described in Renshaw et al. (2006) and using PCR primers described in Bagley and 156 

Geller (1998) and Gold et al. (2001).  Amplicons were electrophoresed and visualized on 6% 157 
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polyacrylamide gels, using an ABI Prism 377 automated sequencer (Applied Biosystems).  158 

Allele-calling was conducted manually, using GENESCAN v.3.1.2 (Applied Biosystems Inc., 159 

Warrington, UK) and GENOTYPER v.2.5 (Perkin Elmer).  A fragment of the mitochondrially-160 

encoded NADH dehydrogenase subunit 4 (ND4) gene was amplified for 20 individuals from 161 

each locality, using primers ND4LB (Bielawski and Gold 2002) and NAP2 (Arevalo et al. 1994).  162 

Thirty microliter PCR reactions consisted of 1x reaction buffer, 1.45 mM MgCl2, 0.25 mM of 163 

each dNTP, 30 pmol of each primer, 0.1 U/µL Taq polymerase, and 2 µL of DNA template.  164 

Reaction conditions consisted of an initial denaturation at 95 °C for 3 min, followed by 35 cycles 165 

of 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 45 s, and a final extension at 72 °C for 10 min.  166 

Amplified products were purified with ExoSAP-ITTM PCR cleanup kit (GE Healthcare, 167 

Piscataway, NJ, USA) and sequenced bi-directionally, using BigDye Terminator v.3.1 Cycle 168 

Sequencing Kit (Applied Biosystems).  Five microliter sequencing reactions consisted of 10–50 169 

ng of template, 0.5 μL of BigDye master mix, 0.875 μL of BigDye 5x reaction buffer, and 32 170 

pmol of forward or reverse primer.  Sequencing conditions consisted of denaturation at 96°C for 171 

1 min followed by 25 cycles of 96°C for 10 s, 50°C for 5 s, and 60°C for 4 min.  Amplifications 172 

were electrophoresed on an ABI 3100 Sequencer (Applied Biosystems) through 50 cm 173 

capillaries.  Sequence chromatograms were aligned and trimmed to a common 590 base pair 174 

region, using SEQUENCHER 4.8 (Gene Codes Corporation). 175 

 Number of alleles, allelic richness, unbiased gene diversity (expected heterozygosity), and 176 

the inbreeding coefficient FIS (Weir and Cockerham1984)) were calculated for each 177 

microsatellite in each locality, using FSTAT v.2.9.3.2 (Goudet 2001).  Conformance to 178 

expectations of Hardy-Weinberg equilibrium (HWE) was tested for each microsatellite in each 179 

locality, using exact tests as implemented in GENEPOP v.4.0.7 (Raymond & Rousset 1995; 180 
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Rousset 2008).  Parameters of the Markov Chain employed in estimation were 10,000 181 

dememorizations, 1,000 batches, and 10,000 iterations per batch.  Sequential Bonferroni 182 

correction (Rice 1989) was applied for all multiple tests performed simultaneously.  Possible 183 

occurrence of scoring error due to stuttering, large allele dropout, and/or null alleles was 184 

evaluated for each microsatellite in each locality, using MICROCHECKER (van Oosterhout et al. 185 

2004).  Likelihood-ratio tests of genotypic disequilibrium between pairs of microsatellite within 186 

each locality were carried out using ARLEQUIN v.3.5 (Excoffier & Lischer 2010).   Homogeneity 187 

of allelic richness and unbiased gene diversity among localities was assessed using Friedman 188 

rank tests, as implemented in R (R Core Team 2013).  For mtDNA sequences, number of 189 

haplotypes, haplotype diversity (h), and nucleotide diversity (π) were obtained for each sample, 190 

using ARLEQUIN.  Selective neutrality of mtDNA sequences was assessed using Fu and Li’s 191 

(1993) D* and F* statistics and Fu’s (1997) FS statistic, as implemented in DNASP v.5 (Librado 192 

& Rozas 2009) and ARLEQUIN, respectively. 193 

 Tests of homogeneity of allele and genotype distributions (microsatellites) and haplotype 194 

distribution (mtDNA) among localities employed exact tests as implemented in GENEPOP; exact 195 

probabilities were estimated using the same Markov chain approach as above for tests of HWE.  196 

The degree of divergence in microsatellites and mtDNA between pairs of localities was 197 

estimated as FST and ФST, respectively, using ARLEQUIN.  For mtDNA, ФST values were 198 

estimated under a Tamura-Nei substitution model (Tamura and Nei 1993) with a gamma shape 199 

parameter of 0.198, as selected by JMODELTEST v.2.1.1 (Guindon and Gascuel 2003, Darriba et 200 

al. 2012).  Significance of FST and ФST values between pairs of localities was assessed by 201 

permuting individuals between localities 10,000 times.  Correction for multiple testing involved 202 

sequential Bonferroni adjustment.  Hierarchical analysis of molecular variance (AMOVA), as 203 
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implemented in ARLEQUIN, was conducted for both microsatellites and mtDNA by grouping 204 

Atlantic localities (NC, SC, GA, DA, and ML) and Gulf localities (SA, MG, and PC) separately; 205 

significance of the between-group component of variance was assessed by permuting sample 206 

localities between groups 10,000 times.  Mantel tests, implemented in ARLEQUIN, were used to 207 

test for correlation between genetic distance and geographic distance for both microsatellites and 208 

mtDNA.  Distance matrices contained pairwise measures of genetic distance, coded as FST/1-FST 209 

(microsatellites) or ФST/1- ФST (mtDNA), and linear coastline geographic distance, and were 210 

permuted 10,000 times to assess significance.  Hudson’s (2000) Snn test was applied to the 211 

mtDNA data set to determine whether ‘nearest neighbor’ haplotypes (in terms of sequence 212 

identity) were sampled within the same locality more often than would be expected in a 213 

panmictic population.  The test was performed considering each sample locality separately, the 214 

Atlantic sample localities pooled, and the Gulf sample localities pooled.  To visualize 215 

relationships among haplotypes between the Atlantic and Gulf, a minimum-spanning network of 216 

mtDNA haplotypes was constructed using NETWORK v.4.6.11 (http://www.fluxus-217 

engineering.com/). 218 

 Two alternative approaches to testing spatial genetic homogeneity, based on microsatellite 219 

data, were used to assess between/among population divergence.  The first employed the 220 

Bayesian framework in HICKORY v 1.1 (Holsinger and Lewis 2002).  This approach relaxes the 221 

assumption that allele frequencies are uncorrelated among populations, an assumption that does 222 

not necessarily hold when a small to moderately large number of populations are sampled (Song 223 

et al. 2006).  Under this framework, HICKORY estimates a number of parameters, including: θI, 224 

which corresponds to Wright’s (1951) FST and reflects variance in allele frequencies across 225 

evolutionary time, and θII, an analogue to Weir and Cockerham’s (1984) θ and which reflects 226 
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contemporaneous variation between/among populations.  HICKORY also provides estimates of 227 

rho (ρ), the among-population correlation of allele frequencies (Holsinger and Lewis 2002).  228 

Microsatellite data were separated into three partitions for separate HICKORY runs: (i) the five 229 

sample localities from the Atlantic; (ii) the three sample localities from the Gulf; and (iii) all 230 

sample localities from the Atlantic (pooled) and all sample localities from the Gulf (pooled).  231 

Each partition was were run in duplicate under the ‘full’ model in HICKORY, with a burn-in 232 

period of 500,000 steps, followed by 2 x 108 steps, with samples taken every 100 steps.  The R 233 

package BOA (Smith 2005) was used to ensure convergence of posterior distributions, combine 234 

chains between replicates, and compute 95% HPD estimates for combined chains. 235 

 Estimates of the effective number of breeders (Nb) were generated for each sample locality, 236 

using microsatellite data and the linkage disequilibrium method implemented in LDNE (Waples 237 

2006, Waples & Do 2008).  Rare alleles below a frequency of 0.02 were excluded from 238 

calculations, following Portnoy et al. (2009); confidence intervals were obtained by jackknifing.  239 

Estimates of average, long-term effective population size (NeLT) for each sample locality and for 240 

Atlantic localities (pooled) and Gulf localities (pooled) and estimates of average, long-term 241 

migration rate (m) between the Atlantic and Gulf were generated using microsatellite data and 242 

MIGRATE-N.  A random subsample (n = 50; the smallest individual sample size) was drawn from 243 

each locality and replicate runs were combined to generate parameter estimates of theta (θ) and 244 

M (mutation-scaled migration rate), where θ = 4Neμ (Ne is the average, long-term effective 245 

population size [NeLT] and μ is the modal mutation rate across all microsatellites per generation) 246 

and M = m/μ.  Estimates of µ  were obtained using the Bayesian coalescent approach 247 

implemented in MSVAR v1.3 (Beaumont 1999, Storz and Beaumont 2002).  BOA (Smith 2005) 248 

was used to estimate the 95% highest posterior density (HPD) interval for the modal value of µ .  249 
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Lower and upper bounds for NeLT and m were estimated using 95% HPD intervals of θ and M 250 

generated by MIGRATE-N.  Estimates of m (migration rate) were generated only for pooled 251 

sampled from the Atlantic versus pooled samples from the Gulf. 252 

 253 

IV.  FINDINGS 254 

 Summary statistics for microsatellite data are given in Appendix 1.  The mean (± SE) 255 

number of alleles across microsatellites ranged from 7.44 ± 1.11(PA) to 9.69 ± 1.12 (ML); mean 256 

(± SE) allelic richness ranged from 7.40 ± 1.11 (PC) to 8.12 ± 0.97 (ML); and mean (± SE) gene 257 

diversity ranged from 0.583± 0.05 (PC) to 0.596 ± 0.05 (ML).  Significant deviation from HWE 258 

equilibrium prior to Bonferroni correction was found in 13 of 128 tests; no significant deviations 259 

were found following correction.  Possible null alleles, as inferred by MICROCHECKER, were 260 

detected at Lca107 (NC), Ra6 (SA), Lca43 (MG), and Prs221 (PC).  Following Bonferroni 261 

correction, two pairwise tests of genotypic disequilibrium were significant: Lca20-Lca107 and 262 

Lca20-Prs328, both in SC.  Friedman rank tests of homogeneity across sample localities in 263 

allelic richness (AR) and gene diversity (HE) were non-significant (AR: χ2
[7,15] = 4.01, P = 0.778; 264 

HE: χ2
[7,15] = 3.12, P = 0.874).  Summary statistics for mtDNA data also are given in Appendix 1.  265 

A total of 39 haplotypes were found among the 160 individuals surveyed.  Estimates of 266 

haplotype (h) and nucleotide (π) diversity ranged from 0.658 (PC) to 0.905 (ML) and 0.050 267 

(MG) to 0.185 (ML), respectively.  Fu & Li’s (1993) D* and F* statistics were negative in all 268 

sample localities and significant prior to but not following Bonferroni correction in SC and MG; 269 

all other D* and F* statistics did not differ significantly from zero.  Fu’s (1997) FS statistic was 270 

negative and significant prior to Bonferroni correction in all sample localities except GA; 271 

following correction, FS statistics differed significantly from zero only in SC and SA. 272 
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 Global exact tests of homogeneity in microsatellite allele and genotype distributions and in 273 

mtDNA haplotype distribution across all 16 microsatellites were non-significant (allelic: P = 274 

0.072; genotypic: P = 0.150; haplotypic: P = 0.347).  Pairwise estimates of FST (microsatellites) 275 

and ΦST (mtDNA) are given in Table 1; none of the pairwise comparisons FST or ΦST values 276 

differed significantly from zero.  Hierarchical AMOVA revealed that the component of molecular 277 

variance allocated to between regions (Atlantic versus Gulf) was non-significant for both 278 

microsatellites (% variance = 0.02, P = 0.319) and mtDNA (% variance = 1.21, P = 0.106).  279 

Mantel tests of correlation between genetic and geographic distances were non-significant (P = 280 

0.161) for microsatellites, but significant (P = 0.023) for mtDNA.  Hudson’s nearest-neighbor 281 

test (mtDNA only) was non-significant (P = 0.191) when considering all sample localities 282 

separately, but significant (P = 0.038) when samples were pooled within Gulf and Atlantic 283 

regions.  The minimum-spanning network of mtDNA haplotypes by regional locality (Gulf 284 

and/or Atlantic) is presented in Figure 2.  The distribution of haplotypes in all eight sample 285 

localities (Appendix 2) consisted primarily of two common haplotypes (#2 and #4) and 286 

numerous rare haplotypes.   A total of 21 haplotypes were unique to the Atlantic, while 12 287 

haplotypes were unique to the Gulf.  At least four putative clades of two or three haplotypes were 288 

found in the Atlantic; none were found in the Gulf. 289 

 Bayesian analysis of population structure, using HICKORY, produced estimates of θI and θII 290 

(Table 2) that differed significantly from zero among sample localities in the Atlantic, among 291 

sample localities in the Gulf, and between sample localities in the Atlantic (pooled) versus 292 

sample localities in the Gulf (pooled).  Estimate(s) θI were an order of magnitude greater than 293 

estimates of θII.  For all three approaches, mean estimates of ρ from replicate runs were greater 294 

than 0.95 and differed significantly from zero. 295 
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 Estimates of Nb (not shown but available upon request) for seven of the eight sample 296 

localities had infinite upper bounds.  The lone exception was SC where the upper bound was 297 

greater than 10,000.  Estimates (and 95% confidence limits) of theta (θ) and estimates of average 298 

long-term effective size (NeLT) for each sample locality, for localities from the Atlantic (pooled) 299 

and localities from the Gulf (pooled) and for all eight localities (pooled) are given in Table 3; 300 

NeLT values were estimated according to θ = 4Neμ and a modal value of µ , obtained from MSVAR, 301 

of 3.00 x 10-4.  Estimates of NeLT across sample localities ranged from 826.15 (PC) to 2,111.28 302 

(SA); none of the estimates of NeLT differed significantly from one another.  Estimates of NeLT for 303 

Atlantic localities (pooled) and Gulf localities (pooled) were 3,930.50 and 4,114.07, respectively, 304 

and did not differ significantly from another.  The estimate of NeLT for all eight localities pooled 305 

was 6,267.08.  Finally, the estimate of average, long-term migration rate (m) from the Atlantic to 306 

the Gulf was 0.21% (95% CI: 0.04% – 0.77%), while the rate from the Gulf to the Atlantic was 307 

0.33% (95% CI: 0.07% – 1.11%).  Because the estimates of NeLT and of m for the two regions did 308 

not differ, we used an average estimate of NeLT (4,022) and of m (0.0027) to generate an average, 309 

long-term estimate of 10.86 (mNe), the effective number of migrants moving in either direction 310 

from one region to the other. 311 

 312 

V.  EVALUATION 313 

 Conventional approaches (i.e., global exact tests, pairwise tests of FST or ФST= 0, 314 

hierarchical AMOVA) to test spatial homogeneity of microsatellite alleles and genotypes and 315 

mtDNA haplotypes between and among localities and between pooled localities in the Atlantic 316 

versus pooled localities in the Gulf, were non-significant.  We also found no differences in levels 317 

of (microsatellite) variability among localities.  These findings are consistent with most prior 318 

genetics studies (Gold et al. 1997, Heist and Gold 2000, Gold et al. 2001; Pruett et al. 2005; 319 
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Saillant and Gold 2006) of adult red snapper in the northern Gulf where significant spatial 320 

heterogeneity of alleles, genotypes, or haplotypes was not detected.  Spatial genetic differences 321 

do exist in the Gulf, however, as Saillant et al. (2010) found significant heterogeneity in 322 

microsatellite allele and genotype distributions among age 0 fish sampled at small spatial scales 323 

in the western and central Gulf and a significant, positive spatial autocorrelation of microsatellite 324 

genotypes within the geographic range 50–100 km.  These findings were consistent with a 325 

metapopulation model suggested by Pruett et al. (2005) and Saillant et al. (2006).  In the latter, 326 

significant differences in variance effective size (NeV) also were reported across localities and 327 

were correlated with findings of differences in growth rates (Fischer et al., 2004) and in size and 328 

age of female maturation (Jackson e al. 2007).  The lone genetic study of red snapper sampled 329 

from both the Atlantic and Gulf (Garber et al. 2004) involved sequences of the hypervariable, 330 

mitochondrial (mtDNA) control region sampled from four localities in the Gulf (140 fish) and 331 

one locality in the Atlantic (35 fish).  No differences in mtDNA haplotype frequencies were 332 

detected, consistent with the null hypothesis that red snapper from the five localities comprised a 333 

single, genetic population.  Most of the mtDNA haplotypes in that study, however, were 334 

singleton (unique) mtDNA haplotypes, seriously constraining the power to test the null 335 

hypothesis of homogeneity. 336 

 Other approaches used to test spatial genetic homogeneity within and between the two 337 

regions (Atlantic and Gulf) were not consistent with a single, well-mixed genetic unit.  Mantel 338 

tests revealed a weak but significant correlation between genetic and geographic distance in 339 

mtDNA haplotypes, but not microsatellite genotypes, and analysis of mtDNA haplotypes 340 

indicated that ‘nearest-neighbor’ haplotypes were sampled within the same geographic locality 341 

more often than would be expected in a randomly sampled panmictic population.  These results 342 
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indicate that mtDNA haplotypes are not distributed uniformly across the two regions and that 343 

female-mediated gene flow, but not necessarily male-mediated, could be negatively correlated 344 

with coastline geographic distance.  This pattern of isolation by distance  would then suggest 345 

either female philopatry or limited spatial geographic movement of females relative to males.  346 

Most examples of philopatry, including female philopatry, in non-anadromous, marine fishes not 347 

restricted to coral reefs involve sharks (Heuter et al. 2004; Keeney et al 2005) although there is 348 

evidence of philopatry in two estuarine-dependent sciaenids (Gold et al. 1999; Thorrold et al. 349 

2001).  Pruett et al. (2005) used nested-clade analysis of red snapper mtDNA haplotypes from 350 

the Gulf and found historically restricted, female gene flow due to isolation by distance.  351 

Alternatively, Gold et al. (1997) did not find evidence of a significant spatial autocorrelation 352 

(also indicative of isolation by distance) of mtDNA haplotypes from adult red snapper sampled 353 

over three years at nine localities in the Gulf stretching from northern through the Gulf to the 354 

Florida panhandle.  The isolation-by-distance of mtDNA haplotypes found in this study covered 355 

the area from the Florida panhandle to the North Carolina coast, including samples from the west 356 

and east coasts of Florida, possibly suggesting reduced (female) gene flow around peninsular 357 

Florida.  In addition, a network of mtDNA haplotypes revealed at least four clades of two or 358 

three haplotypes occurring in the Atlantic but not the Gulf, and  Fu’s (1997) FS metric was 359 

negative and significant before Bonferroni correction at seven of the eight localities sampled and 360 

at the samples from South Carolina (Atlantic) and Sarasota (Gulf) following correction.  The 361 

difference in number of small clades detected may stem in large part from the difference in 362 

sample size (477 individuals from the Atlantic vs. 191 individuals from the Gulf).  The FS 363 

approach, however, detects population growth and/or genetic hitch-hiking (Fu 1997), and 364 

negative FS values (based on mtDNA data) indicate either a ‘selective sweep’ or a recent 365 
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reduction in female effective size , both of which can result in an excess of rare mtDNA variants 366 

over those expected under a neutral model (Kaplan et al. 1989).  Together, these observations 367 

suggest geographic limits to red snapper female gene flow and possible demographic differences 368 

affecting female effective size. 369 

 Bayesian estimates of the population parameters θI (long-term heterogeneity) and θII 370 

(contemporaneous heterogeneity) were significant and non-zero among localities in the Atlantic, 371 

among localities in the Gulf, and between Atlantic localities (pooled) and Gulf localities 372 

(pooled).  Allele frequencies in all comparison groups were highly correlated (ρ > 0.95) and 373 

significantly different from zero, violating the assumption of uncorrelated allele frequencies 374 

implicit in approaches estimating parameters such as ФST (Song et al. 2006).  That both θI and θII 375 

were significantly different than zero suggests that the pattern of genetic heterogeneity that exists 376 

today within the Atlantic, within the Gulf, and between the two likely reflects patterns that have 377 

existed historically.  Estimates of θI, however, were more than an order of magnitude greater 378 

than estimates of θII.  Song et al. (2006) found that large estimates of θI may reflect a tendency 379 

for estimators of θII to overestimate homogenizing effects of long-term gene flow, particularly if 380 

allele frequencies between populations are highly correlated, suggesting that values of θII 381 

estimated here could be underestimates.  Regardless, the non-zero estimates of θI and θII are 382 

consistent with genetic heterogeneity of red snapper within the Atlantic, within the Gulf, and 383 

between the two. 384 

 Estimates of the effective number of breeders (Nb) for all but one of the localities sampled 385 

had infinite upper bounds, suggesting a uniformly large Nb across the localities sampled (Waples 386 

and Do 2010).  However, estimates of Nb generated from adult samples are difficult to interpret 387 

because they are influenced by the effective number of breeders (Nb) that generated each cohort 388 
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in a sample (Waples 2005).  Red snapper can live for over 50 years (Wilson and Nieland 2001) 389 

and mature sexually between age two and four (Schirripa and Legault 1997; Fitzhugh et al. 390 

2004).  Almost all fish sampled here were adults, meaning that fish in our samples from different 391 

cohorts could have shared a parent or parents, severely compromising estimation of Nb. 392 

 Estimates of average, long-term genetic effective size (NeLT) among localities ranged from 393 

826 to 2,111 but did not differ significantly from one another; estimates of NeLT for localities 394 

from the Atlantic (pooled) and localities from the Gulf (pooled), respectively, were 3,930 and 395 

4,114, respectively.  The estimate of NeLT for all eight localities (pooled) was 6,267.  The sum of 396 

the estimates of NeLT for the five localities in the Atlantic was 6,450, considerably larger that the 397 

global estimate (3,930) for the region.  This is consistent with a ‘propagule pool’ model (Waples 398 

2010) where migrants come primarily from a nearby subpopulation or stock and where a 399 

metapopulation is subdivided into groups with different demographic rates (e.g., average survival 400 

and/or reproduction) (Waples 2010).  The sum of the estimates of NeLT for the three localities in 401 

the eastern Gulf was 4,414, close to the global estimate (4,114) for that region, perhaps 402 

suggesting fewer demographic differences among the three eastern Gulf localities.  The sum of 403 

the estimates of NeLT for the two regions (8,005) is larger than the global estimate for all eight 404 

localities (6,267), suggesting that the two regions differ demographically.  These comparisons 405 

also are consistent with genetic and demographic heterogeneity among localities within the two 406 

regions, particularly within the Atlantic, and between the two regions. 407 

 Estimates of average, long-term migration rates (m) between the two regions were 0.0033 408 

(Gulf into the Atlantic) and 0.0021 (Atlantic into the Gulf) and did not differ significantly from 409 

one another.  The parameter m is defined as the proportion of individuals in a subpopulation that 410 

are migrants from an outside subpopulation, and is most often expressed as the parameter mNe, 411 
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the effective number of migrants entering a subpopulation each generation (Mills and Allendorf 412 

1996).  Because the estimates of NeLT and of m for the two regions did not differ, we used an 413 

average estimate of NeLT (4,022) and of m (0.0027) to generate a long-term mNe estimate of 10.86 414 

which, theoretically, is the effective number of migrants moving in either direction from one 415 

region to the other.  Estimates of NeLT represent a weighted harmonic mean of effective size (Ne) 416 

over a period of 4Ne generations, with greater weight on more recent generations and on smaller 417 

values of Ne (Beerli 2009; Hare et al. 2011).  A final point to note is that the estimate of m 418 

(0.33%) between the two regions is considerably less than the 10% rate, suggested for 419 

contemporaneous migration (Waples 2010), beyond which populations are not considered to be 420 

demographically independent. 421 

 To summarize, there is evidence that genetic and demographic heterogeneity occurs among 422 

red snapper across the geographic region surveyed and that the species in U.S. waters is not 423 

distributed spatially as a single, panmictic population (stock).  The heterogeneity may reflect the 424 

metapopulation structure previously hypothesized for red snapper in the northern Gulf (Pruett et 425 

al. 2005; Saillant and Gold 2006) and reinforced by the study of Saillant et al. (2010) of age 0 426 

fish.  The genetic signal, however, is weak and precludes straightforward definition of 427 

geographic boundaries of individual subpopulations or stocks.  This is fairly typical for marine 428 

fishes with large population densities and high dispersal capability assayed with selectively 429 

neutral genetic markers such as microsatellites (Portnoy and Gold 2012).  More robust genetic 430 

approaches (e.g., RADseq) that utilize next-generation sequencing and allow genome-wide 431 

surveys of variation in single-nucleotide polymorphisms (Davey et al. 2011) is the next logical 432 

step in assessing population structure, genetic demography, and connectivity of red snapper (and 433 

other species) across its (their) range in U.S. waters.  These new approaches have the capability 434 
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to identify genetic markers (genome regions) that affect fitness on local scales and to quantify 435 

allele frequencies at these markers across geographic space (Nielsen et al. 2009; Allendorf et al. 436 

2010). 437 

  438 
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VI.  TABLES 439 

Table 1.  Estimates of pairwise FST (microsatellites, upper diagonal) and ΦST (mtDNA, lower 440 

diagonal) between all eight sample localities. 441 

 442 

NC SC GA DA ML SA MG PC 

NC 0 0.001 0.001 0.001 0 0 0.002 -0.001 

SC 0.046 0 -0.001 -0.001 0 -0.001 0 0.001 

GA -0.023 0.036 0 0.001 -0.001 -0.001 0 0.002 

DA 0.005 -0.018 -0.004 0 0 0.002 0 0.002 

ML -0.024 0.02 -0.036 -0.076 0 0 0 -0.001 

SA 0.015 0.027 0.011 -0.023 -0.025 0 0.001 -0.001 

MG 0.012 -0.028 0.018 -0.012 -0.087 -0.04 0 0 

PC 0.092 0.056 0.059 -0.04 -0.025 -0.019 -0.025 0 
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Table 2.  Global estimates of θI, θII, and ρ estimated using the Bayesian framework in HICKORY.  θI is an estimate of FST that 443 

corresponds to allele frequency variance across evolutionary time; θII is a measure of contemporaneous differentiation among sample 444 

locations, and ρ is the average correlation of allele frequencies among sample locations. 445 

 446 

Samples θ
I
   θ

II
  ρ 

2.5% Mode 97.5% 2.5% Mode 97.5% 2.50% Mean 97.50% 

Within Atlantic 0.0375 0.0579 0.0641 0.0015 0.0017 0.0020 0.9552 0.9670 0.9759 

Within Gulf 0.0491 0.0666 0.0861 0.0009 0.0011 0.0016 0.9750 0.9821 0.9877 

Gulf/Atlantic (pooled) 0.0387 0.0548 0.0695 0.0007 0.0009 0.0010 0.9779 0.9843 0.9893 

 447 

 448 
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Table 3.  Estimates and 95% confidence intervals for theta (θ), obtained from MIGRATE-N.  449 

Estimates of NeLT were generated from the relationship θ = 4NeLTμ. 450 

 451 

θ  NeLT 

2.5% Mode 97.5% Mode 

NC 0.86 1.61 2.36 1,343.54 

SC 0.68 1.37 2.06 1,143.26 

GA 0.52 1.21 1.90 1,009.74 

DA 1.06 1.73 2.42 1,443.68 

ML 1.08 1.81 2.58 1,510.44 

SA 1.40 2.53 3.96 2,111.28 

MG 1.08 1.77 2.44 1,477.06 

PC 0.40 0.99 1.54 826.15 

GULF 3.84 4.93 5.90 4,114.07 

ATLANTIC 3.72 4.71 6.02 3,930.48 

ALL 6.56 7.51 8.48   6,267.08 

 452 

  453 
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VII.  FIGURES 454 

 455 

Figure 1.  Approximate sampling localities for red snapper in the U.S. Atlantic and eastern Gulf 456 

of Mexico. 457 

 458 

 459 

 460 

 461 

  462 
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Figure 2.  Minimum-spanning network of ND4 mtDNA haplotypes: gray, haplotypes found in 463 

the Atlantic; black, haplotypes found in the Gulf.  Each node (small circle) represents a unique 464 

haplotype; sizes of nodes are scaled to reflect the relative frequency of each haplotype.  Lengths 465 

of lines connecting haplotypes reflect number of single-base substitutions between haplotypes; 466 

the shortest line is one base-pair substitution.  Small nodes indicated by very small circles are 467 

inferred mtDNA haplotypes.  Dotted lines surround putative clades found in the Atlantic. 468 

 469 

 470 

 471 

  472 
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Appendix 1:  Summary statistics for microsatellite and mtDNA loci at each locality.  For microsatellites: n 
= number of individuals sampled, #A = number of alleles, AR = allelic richness, HE = expected 
heterozygosity, PHW = probability of conformance to Hardy-Weinberg expectations, and FIS = inbreeding 
coefficient.  For mtDNA: n = number of individuals sampled, #H = number of unique haplotypes 
observed, h = haplotype diversity, π = nucleotide diversity, D* and F* from Fu and Li (1993), and FS 
from Fu (1997).  ‡ indicates a significant value (P < 0.05). 

 705 

Sample NC SC GA DA ML SA MG PC 

Microsatellite 
Lca20 n 93 84 101 98 101 48 97 46 

#A 4 5 5 4 5 5 5 3 
AR 3.80 4.05 3.72 3.30 4.25 4.93 4.03 2.98 

HE 0.190 0.179 0.208 0.162 0.177 0.196 0.174 0.198 

PHW 0.009 1.000 0.063 0.115 0.116 0.410 0.101 0.852 

FIS 0.152 -0.067 0.094 0.182 0.049 0.150 -0.009 -0.099 

Lca22 n 93 84 101 96 100 47 97 46 
#A 14 12 12 12 13 9 11 8 
AR 12.06 10.35 11.03 11.10 10.90 8.95 9.45 7.98 

HE 0.751 0.726 0.727 0.783 0.725 0.693 0.752 0.761 

PHW 0.265 0.629 0.210 0.077 0.304 0.032 0.230 0.661 

FIS 0.055 -0.034 0.087 0.082 0.062 -0.043 0.040 -0.028 

Lca43 n 93 85 101 98 101 48 97 46 
#A 7 8 9 9 9 7 8 7 
AR 6.40 7.00 7.61 7.58 7.80 6.99 7.34 6.94 

HE 0.491 0.581 0.539 0.526 0.583 0.560 0.560 0.589 

PHW 0.597 0.127 0.123 0.486 0.366 0.745 0.011 0.196 

FIS 0.080 -0.013 0.026 -0.029 -0.018 0.033 0.190 -0.107 

Lca64 n 93 84 101 98 101 48 97 46 
#A 11 12 11 12 9 8 9 6 
AR 9.17 10.23 8.67 9.48 7.80 7.81 7.62 5.98 

HE 0.789 0.791 0.782 0.801 0.774 0.713 0.770 0.736 

PHW 0.075 0.792 0.880 0.953 0.808 0.468 0.177 0.384 

FIS -0.077 0.007 0.013 -0.032 -0.036 0.065 0.023 -0.094 

Lca91 n 93 85 101 98 101 47 97 46 
#A 6 7 6 7 6 6 7 4 
AR 5.19 5.89 5.65 5.91 5.17 5.96 5.60 3.98 

HE 0.577 0.565 0.613 0.579 0.573 0.627 0.562 0.557 

PHW 0.310 0.966 0.252 0.982 0.049 0.012 0.514 0.824 

FIS -0.025 0.042 0.046 -0.041 0.118 0.049 0.028 0.103 
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Lca107 n 93 84 98 98 101 48 97 46 
#A 9 8 9 10 10 9 10 10 
AR 8.46 7.98 8.41 9.15 9.22 8.93 9.36 9.96 

HE 0.776 0.801 0.781 0.814 0.781 0.775 0.800 0.767 

PHW 0.145 0.714 0.034 0.912 0.272 0.119 0.495 0.027 

FIS 0.099 0.019 0.059 0.035 0.023 -0.021 0.021 0.065 

Prs55 n 93 84 101 98 101 48 97 46 
#A 7 5 6 4 7 4 6 4 
AR 5.50 4.06 5.27 3.45 5.19 3.93 4.60 3.98 

HE 0.271 0.265 0.253 0.256 0.297 0.193 0.251 0.255 

PHW 0.100 0.272 0.753 0.426 0.942 1.000 0.867 0.611 

FIS 0.166 -0.032 -0.057 0.082 -0.034 -0.077 -0.110 0.062 

Prs137 n 93 85 101 98 99 47 97 46 
#A 13 12 11 11 12 12 11 8 
AR 10.24 9.78 9.09 9.34 9.63 11.74 8.83 7.96 

HE 0.732 0.680 0.721 0.676 0.720 0.694 0.682 0.676 

PHW 0.013 0.613 0.130 0.513 0.032 0.714 0.054 0.102 

FIS 0.105 0.049 0.066 0.019 0.031 0.049 0.063 0.131 

Prs221 n 93 84 101 98 101 48 97 46 
#A 12 12 12 13 15 13 16 11 
AR 10.67 10.23 10.78 10.93 11.93 12.68 12.54 10.91 

HE 0.766 0.772 0.800 0.767 0.803 0.807 0.797 0.771 

PHW 0.366 0.360 0.522 0.185 0.532 0.625 0.440 0.388 

FIS 0.032 0.060 0.022 0.082 0.075 -0.007 0.056 0.069 

Prs240 n 92 81 101 98 100 47 97 46 
#A 18 18 18 19 18 18 20 18 
AR 17.03 16.79 15.90 16.61 16.88 17.83 17.13 17.87 

HE 0.902 0.901 0.889 0.899 0.892 0.902 0.907 0.875 

PHW 0.269 0.298 0.983 0.681 0.850 0.926 0.022 0.042 

FIS -0.037 0.054 -0.002 -0.022 -0.009 -0.038 0.034 0.056 

Prs248 n 93 84 101 98 101 48 97 46 
#A 18 17 20 23 18 14 19 16 
AR 15.30 14.29 15.50 16.60 14.64 13.80 16.05 15.89 

HE 0.872 0.868 0.888 0.865 0.877 0.880 0.869 0.879 

PHW 0.644 0.337 0.319 0.952 0.407 0.403 0.906 0.551 

FIS 0.001 -0.056 0.052 -0.050 -0.005 0.029 0.015 0.035 

Prs260 n 93 85 101 98 101 48 97 46 
#A 5 3 5 5 3 4 3 3 
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AR 3.93 3.00 4.52 4.17 3.00 3.94 3.00 3.00 

HE 0.305 0.397 0.398 0.439 0.394 0.379 0.357 0.393 

PHW 0.064 0.218 0.309 0.017 0.814 1.000 1.000 0.400 

FIS 0.118 -0.187 -0.019 -0.047 -0.029 -0.044 -0.011 -0.050 

Prs275 n 93 85 101 98 101 48 97 45 
#A 6 8 6 7 10 5 7 5 
AR 5.34 6.64 5.05 5.75 7.33 4.94 5.36 5.00 

HE 0.609 0.579 0.564 0.610 0.632 0.603 0.595 0.608 

PHW 0.837 0.511 0.392 0.272 0.930 0.849 0.539 0.446 

FIS -0.095 -0.057 0.016 -0.121 -0.050 -0.002 0.099 0.050 

Prs282 n 93 85 101 98 101 48 97 46 
#A 12 12 11 11 11 11 11 13 
AR 9.561 10.688 9.188 9.787 9.677 10.681 10.176 12.912 

HE 0.599 0.66 0.636 0.64 0.684 0.565 0.655 0.693 

PHW 0.270 0.443 0.399 0.895 0.261 0.630 0.594 0.006 

FIS 0.049 0.091 0.082 -0.004 0.073 0.079 -0.022 0.027 

Prs328 n 92 84 101 98 101 48 97 46 
#A 3 4 4 4 6 3 4 3 
AR 3.00 3.98 3.45 3.63 4.58 3.00 3.83 3.00 

HE 0.547 0.567 0.568 0.531 0.559 0.516 0.546 0.563 

PHW 0.243 0.487 0.106 0.856 0.930 0.592 0.702 0.842 

FIS -0.173 -0.008 0.128 0.039 -0.010 0.153 -0.075 -0.042 

Prs333 n 93 85 101 98 101 46 97 46 
#A 5 5 7 5 7 5 6 6 
AR 4.85 4.09 5.08 3.76 5.53 4.98 5.01 5.96 

HE 0.382 0.277 0.336 0.361 0.395 0.401 0.330 0.414 

PHW 0.104 0.700 0.925 1.000 0.361 0.424 0.604 0.305 

FIS -0.040 -0.148 -0.032 -0.019 0.073 0.078 0.000 0.212 

Ra6 n 92 85 101 98 101 48 97 46 
#A 7 7 7 6 7 7 7 7 
AR 6.44 5.95 5.72 5.41 6.02 6.88 6.03 6.96 

HE 0.392 0.401 0.384 0.461 0.355 0.506 0.384 0.409 

PHW 0.202 0.134 0.325 0.994 0.467 0.049 0.126 0.958 

FIS 0.085 0.120 -0.032 -0.018 -0.003 0.218 0.140 -0.169 

mtDNA 
ND4 n 20 20 20 20 20 20 20 20 

#H 8 11 7 8 11 10 7 6 
h 0.758 0.884 0.784 0.805 0.905 0.842 0.711 0.658 
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π 0.091 0.128 0.106 0.066 0.185 0.095 0.050 0.051 

D* -2.392 -2.666‡ -1.441 -1.719 -1.211 -2.232 -2.616‡ -2.258 

F* -2.534 -2.889‡ -1.582 -1.887 -1.472 -2.390 -2.713‡ -2.333 

FS -3.376‡ -6.037‡ -1.413 -3.277‡ -4.584‡ -5.039‡ -3.054‡ -2.446‡ 
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Appendix 2:  Spatial distribution of mitochondrial (ND4) haplotypes. 
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Haplotype NC SC GA DA ML SA MG PC 

#1 1    2    

#2 9 6 8 7 4 6 10 11 

#3 1        
#4 5 4 5 6 5 6 5 5 

#5 1        

#6 1 1  1  1   

#7 1   1 1   1 
#8 1    1    

#9  1       

#10  1       

#11  2       
#12  1       

#13  1 1   1   

#14  1  1     

#15  1       
#16  1      1 

#17   3  2    

#18   1      

#19   1      
#20   1  1    

#21    2     

#22    1     

#23    1     
#24     1    

#25     1    

#26     1    

#27     1    
#28      1   

#29      1   

#30      1   

#31      1   
#32      1   

#33      1 1  

#34       1  

#35       1  
#36       1  

#37       1  

#38        1 

#39        1 
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