
 
 
 
 

An evaluation and power analysis of fishery independent reef fish sampling in the  
Gulf of Mexico and U.S. South Atlantic 

 
Paul B. Conn 

 

SEDAR41-RD20 
 

23 May 2014 
 
 

 

 

 

 

 

 



 

NOAA Technical Memorandum NMFS-SEFSC-610 
 
 
 
 
 
 
 
 

 
 
 
 

AN EVALUATION AND POWER ANALYSIS OF FISHERY 
INDEPENDENT REEF FISH SAMPLING IN THE GULF OF 

MEXICO AND U.S. SOUTH ATLANTIC 
 
 

 
 
 
 

by Paul B. Conn 
 

U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 

National Marine Fisheries Service 
Southeast Fisheries Science Center 

101 Pivers Island Road 
Beaufort, NC 28516 USA  

 
February 2011 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
NOAA Technical Memorandum NMFS-SEFSC-610 

 
 
 
 
 
 
 
 

 
AN EVALUATION AND POWER ANALYSIS OF FISHERY INDEPENDENT REEF 

FISH SAMPLING IN THE GULF OF MEXICO AND U.S. SOUTH ATLANTIC 
 

BY 
 

PAUL B. CONN 
National Marine Fisheries Service 
Southeast Fisheries Science Center 

101 Pivers Island Road 
Beaufort, NC 28516 USA  

 
 
 
 
 
 

U.S. DEPARTMENT OF COMMERCE 
Gary F. Locke, Secretary 

 
National Oceanic and Atmospheric Administration 

Dr. Jane Lubchenco, Under Secretary of Oceans and Atmosphere 
 

National Marine Fisheries Service 
Eric Schwaab, Assistant Administrator for Fisheries 

 
 

February, 2011 
 

This Technical Memorandum series is used for documentation and timely communication 
of preliminary results, interim reports, or similar special-purpose information.  Although 
the memoranda are not subject to complete formal review, editorial control, or detailed 
editing, they are expected to reflect sound professional work. 



 

NOTICE 
 
The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse 
any proprietary product or material mentioned in this publication. No reference shall be 
made to NMFS or to this publication furnished by NMFS, in any advertising or sales 
promotion which would imply that NMFS approves, recommends, or endorses any 
proprietary product or proprietary material mentioned herein which has as its purpose any 
intent to cause directly or indirectly the advertised product to be used or purchased 
because of this NMFS publication. 
 
 

This report should be cited as follows: 
Conn, Paul B. 2011. An evaluation and power analysis of fishery independent reef fish 
sampling in the Gulf of Mexico and U.S. south Atlantic. NOAA Technical Memorandum 
NMFS-SEFSC-610, 38 p. 
 
 
 

This report will be posted on the SEFSC website later in 2011 at 
URL: http:// www.sefsc.noaa.gov/ 

 
 

Copies may be obtained from: 
 

Paul Conn 
National Marine Fisheries Service 

NOAA Alaska Fisheries Science Center 
National Marine Mammal Laboratory 
7600 Sand Point Way NE, Building 4 

Seattle, WA 98115-6349 
Voice: 206-526-4235 
FAX: 206-526-6615 

Paul.Conn@noaa.gov 
 
 

Also available for purchase in paper copy and microfiche form 
National Technical Information Service (NTIS) 

5285 Port Royal Road 
Springfield, VA 22161 

1-800-553-NTIS 
http://www.ntis.gov 

 
 
 
 

ii 



Executive summary

I investigated the power of reef fish surveys in the Gulf of Mexico (GOM) and U.S.
south Atlantic (SA) to detect population changes for several species of commercial
interest. Related to this goal, I also investigated the performance of different under-
water camera metrics in indexing abundance, and examined how the annual coefficient
of variation (CV) of model-based relative abundance indices changed as a function of
sample size in the SA. Major findings included the following:

• The commonly used “MinCount” statistic for underwater video data (the max-
imum number of individuals of the target species observed on any one frame of
video) may provide biased estimates of population trend, as this summary does
not scale linearly with true abundance. In contrast, the mean count of focal
taxa across all video frames was found to be unbiased and resulted in similar CV
to the “MinCount” statistic. Researchers should seriously consider using this
statistic in the Gulf and elsewhere for indexing abundance. However, care may
be needed to avoid sampling during ‘transient’ periods where fish are moving
into and out of the immediate proximity of the trap.

• In GOM, the power to detect population trends for gag, red snapper, and red
grouper were poor for three year time series, low for five-year time series and
moderate-high for ten-year time series. In general, the ability to detect popula-
tion changes was more dependent on the length of the time series than on the
range of sample sizes considered. Lack of complete spatial coverage did not ap-
preciably affect power or lead to biased inferences, but I caution that this is likely
due to the way in which simulations were structured. In particular, simulations
did not permit the types of complex space-time interactions often observed in
real world data sets.

• In SA, the power to detect population trends for black sea bass and red porgy
was quite high, where coefficient of variation (CV) of annual model based indices
were predicted to be under 0.2 with current MARMAP sample sizes.
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• In SA, the power to detect population trends for red snapper from fishery inde-
pendent (MARMAP) data is extremely low, due to the relative infrequency with
which they are observed, and the ‘messiness’ of the data (e.g., there is substan-
tial zero inflation and overdispersion present in the MARMAP data). Replicating
these factors in simulations, median annual model-based CVs were predicted to
be above 2.0 for 5-year time series, even if some effort was shifted to north Florida
and current MARMAP sample sizes were multiplied by 10. Although the situ-
ation may improve if the proportion of positive MARMAP sets increases as the
red snapper stock recovers, managers should prepare for the situation where fish-
ery independent data are quite noisy, with annual data points that are relatively
meaningless if taken individually. Only by examining a relatively long time series
will it be possible to discern increases or decreases in the red snapper stock.

• Future efforts should focus on appropriate levels of subsampling in fishery inde-
pendent surveys. For SA red snapper, there was evidence of considerable overdis-
persion, which indicates structural deficiencies in the models fit to MARMAP
data. Part of this deficiency likely lies with the way in which MARMAP data are
collected - for instance, by collecting a large number of samples within a relatively
small spatial range (i.e., subsampling). The tradeoff between collecting subsam-
ples (which increases the number of samples that can feasibly be collected) and
collecting samples that have a greater degree of spatial independence deserves
further investigation. Ideally, this investigation would occur using spatially ex-
plicit statistical modeling to indicate likely levels of spatial autocorrelation.
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1 Introduction

Marine fishery managers have been incorporating time and spatial closures into their
repertoire of regulation alternatives in the south Atlantic and Gulf of Mexico. Although
such management can prove effective, it poses some serious challenges for the assess-
ment of marine resources, as it decreases the utility and breadth of fishery dependent
sampling. Since stock assessments crucially depend on estimates of relative abundance
and age-structure from the entire range of a stock, this suggests that stock assessments
will need to rely much more heavily on data gathered from fishery independent surveys.

One issue with current fishery independent sampling programs is that standardized
catch per unit effort (CPUE) time series are often noisy, hampering their utility. For
example, a 2008 internal review of National Marine Fisheries Service (NMFS) South-
east Fisheries Science Center (SEFSC) fishery independent surveys conducted in the
Gulf of Mexico concluded that sampling effort would need to be quadrupled in order
to achieve CVs on the order of 20% (the current level varies by species and survey but
CVs are typically in the 30-50+% range). The reviewers also recommended increasing
the spatial extent of their current sampling frame for a number of surveys (including
the SEAMAP reef fish video/trap survey). The situation is worse in the south At-
lantic, with current MARMAP surveys resulting in CVs that are often too high to be
practically useful. For instance, MARMAP survey data were not recommended for
use in either the SouthEast Data, Assessment, and Review (SEDAR) 15 assessment
or SEDAR 24 assessments of red snapper because the number of samples was deemed
inadequate for indexing relative abundance.

For these reasons, the SEFSC is working to increase the scope of fishery indepen-
dent sampling in the south Atlantic, and possibly the Gulf as well. Since resources are
limited, a crucial question is where and how to increase sampling efforts. Although the
recent internal review of fishery independent sampling in the Gulf of Mexico provides
some intuition about desired levels of precision in relation to sampling effort, more
guidance would be provided by a formal power analysis that explores the probability
of detecting a ‘significant’ trend in abundance over set time frames given different
levels of sampling effort. This exercise could also inform survey designers on possible
tradeoffs between expanded spatial coverage and sample sizes at existing locations.

As reef fish are the primary target for spatial closures, I focus my analysis on reef fish
surveys as they are currently conducted in the Gulf of Mexico and U.S. south Atlantic.
In particular, I focus on the Gulf SEAMAP video survey and south Atlantic MARMAP
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Chevron trap survey. However, since current proposals for expanding surveys in the
south Atlantic include incorporation of video sampling methods, it may be useful to
first review existing methods for analyzing video data. I thus start my analysis by
examining the performance of different camera monitoring metrics. I then conduct a
power analysis which looks at the power to detect population change as a function of
sampling effort, spatial coverage, and underlying heterogeneity in fishery dynamics. I
conduct analyses for three recreationally and commercially important species for which
data are available from the Gulf of Mexico - gag grouper (Mycteroperca microlepis), red
grouper (Epinephelus morio), and red snapper (Lutjanus campechanus). In the south
Atlantic, I examine data from black sea bass (Centropristis striata), red porgy (Pagrus
pagrus), and red snapper. In addition to a formal power analysis, I also compute
median CVs associated with model-based estimates of annual relative abundance for
the south Atlantic for the three stocks of interest.

2 Analyzing camera data

Current SEAMAP reef fish video surveys in the Gulf of Mexico utilize two stage sam-
pling, in which large grid cells (Fig. 1) containing reef fish habitat (10 minute by 10
minute blocks) are sampled using a stratified random design (stratification is based
on region and by reef habitat area). Secondary sites within blocks are then selected
randomly. For each sampled site, a baited array of four, orthogonally arranged video
cameras is dropped to the ocean floor (current plans are to switch to stereo cam-
eras which also allow fish to be measured). After the camera settles, the sampling
duration is 20 minutes. Once researchers return to the lab, data are analyzed by
randomly selecting a single camera from each sample that has focused, unobstructed
views. Three quantities are then computed for each site sampled: 1) presence/absence
of focal species, 2) Maximum Count (MaxCount; each fish is counted every time it
enters the video frame), and 3) Minimum Count (MinCount; the greatest number of
individuals of the species seen in a single frame). Since each individual can be counted
more than once using the MaxCount approach (for instance, when it leaves and then
reenters the field of view), MaxCount may actually exceed the number of individuals
present at a given sample site. However, MinCount almost assuredly misses a large
number of individuals that are out of view of the camera. Recent stock assessments
in the Gulf of Mexico (e.g., SEDAR 7, red snapper) have utilized MinCount when
constructing indices of abundance (for instance, using GLMs).

Further inspection of video summary statistics suggests that the true relationship
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between abundance and presence/absence is nonlinear. For instance, Royle and Nichols
(2003) noted that the relationship between the probability of detecting a species at
a site i (pi) was related explicitly to both abundance at the site (Ni) and individual
detection probability r through the equation

pi = 1− (1− r)Ni (1)

Assuming a constant probability of detection for individuals (r), the relationship be-
tween observed occupancy and abundance is thus a nonlinear function of abundance
(Fig. 2). Given that relative abundance is often modeled as a linear function of true
abundance within stock assessment models (e.g., CPUEt = qNt), use of proportion of
sites where the focal species is detected is clearly a poor choice. Alternatively, hier-
archical modeling using the above relationship in Eq. 1 might be used to construct
an index using presence/absence data. An advantage of this approach is that one can
directly assess the possibility that catchability changes over time. However, a subset
of sites would need to be visited more than once each year in order for parameters to
be identifiable.

The MinCount statistic was first proposed by Ellis and DeMartini (1995) for in-
dexing reef fish, and shown to outperform several other possible metrics. Willis et al.
(2000) compared MinCount video statistics to numbers counted in visual surveys and
in angling surveys, and found that the three were correlated. However, there is lit-
tle published information comparing coefficient of variation (CV) for alternative video
metrics.

I conducted a small simulation study to compare bias and CV for several moni-
toring metrics, including MinCount, MaxCount, “Snapshot” which utilized one frame
from the end of each video time series, and “MeanCount” which was calculated by
computing the average number of fish present in the video frame over the course of a
simulated time series. To my knowledge the latter two metrics have never been evalu-
ated before. I simulated data for a hypothetical sampling site as a function of Ni and
some assumed parameters describing the underwater observation process. Specifically,
I assumed that the proportion of fish present at site i that are initially in the field
of view was binomially distributed with index Ni and success probability πi and that
the movement of fish in and out of the field of view could be described by a Poisson
process with exponentially distributed waiting times. The per minute rate at which
fish that are “off camera” come into the field of vision is given by α1, while the per
minute rate at which fish that are in the field of vision leave the field of vision is given
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by α2. Two scenarios were considered in simulations: an α1 = 0.05, α2 = 0.2, simu-
lation, which corresponded to a fish with relatively slow movements (e.g., a grouper)
and a camera with a relatively small field of vision (hence the movement rate onto the
camera’s field of vision is smaller than the movement rate out of the field of vision),
and an α1 = 0.5, α2 = 0.5 simulation which tried to mimic a fish with faster movement
rates and a camera with a wider field of vision. Stochastic simulations of this assumed
process (cf., Renshaw, 1991) suggested that all metrics except for MinCount were un-
biased (Fig. 3). The MinCount statistic underestimated the the population trend; for
a twenty-fold increase in abundance, MinCount underestimated the true population
change by 49% for the α1 = 0.05, α2 = 0.2 simulation and by 25% for the α1 = 0.5,
α2 = 0.5 simulation.

On the other hand, the MinCount metric typically had the smallest CV (as calcu-
lated separately for each design point) (Fig. 4). The MeanCount metric also performed
well with respect to CV in both simulations, while precision of the MaxCount statistic
could be good if the rates of fish moving in and off camera are reasonably low (as in
Fig. 4A) or poor for cases where fish movement rates are high (e.g., Fig. 4B).

If one assumes that all fish behave independently and move in and off the cam-
era’s field of vision at constant rates (as was assumed in simulations), it is easy to
show that relative abundance trends from the MeanCount and Snapshot approaches
are unbiased. However, simulation results have suggested that MinCount tends to un-
derestimate the degree of change in abundance values. Although difficult to examine
analytically, this is not surprising as MinCount is the maximum order statistic for the
stochastic process, and it is not intuitive that this quantity would scale linearly with
true underlying abundance. As a motivating example, consider two frames from a
single video that are separated by enough time that observations can be assumed to
be independent. In this case, the observed counts are given by two binomial draws.
Now consider two different sites, one of which has N = 1 fish present, and another
that has N = 2 fish present. The expected MinCount statistic for the N = 1 site is
0.75, which represents 75% of true abundance. In the N = 2 site, the expected Min-
Count is 1.3125, which is 65.6% of true abundance. Had we used MinCount to infer
the differences in relative abundance between the two sites, we would expect to come
to the erroneous conclusion that the N = 2 site had 75% more fish than the N = 1 site.

Although we have found reason to prefer the MeanCount procedure on both theo-
retical and applied grounds, we do note that the biases reported here are likely larger
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then would be obtained if delta-generalized linear model (delta-GLM) standardization
procedures (cf., Lo et al., 1992) were used to standardize MinCount summaries for real
fish populations. This is because delta-GLMs (cf., Lo et al., 1992) analyze both the
delta (presence/absence) component, as well as abundance at a site given presence. In
this exercise, we have only attempted to examine bias in the latter component. Still,
the simulation exercise does demonstrate potential for bias when estimating trends
from MinCount statistics; the degree of bias will probably be most pronounced in
species that are highly prevalent (that is, have a lower proportion of zero counts).

3 Simulation study

3.1 Gulf of Mexico

To assess the relationship between sample size and power to detect population trends,
I first gathered data from the SEAMAP reef fish survey for the Gulf of Mexico, and
MARMAP Chevron trap data for the U.S. south Atlantic. The SEAMAP data were
summarized by year, strata, and soak time, and reported the video metric “Min-
Count.” Original video tape viewing procedures used a time in - time out (TITO)
protocol which would have been sufficient to compute other metrics (e.g., MaxCount,
MeanCount); however, this protocol was switched in 2008 to one in which only Min-
Count could be computed. The SEAMAP data gave the number of the focal species
that were observed in individual videos by year. I focused effort on three species of
prominence in the Gulf: gag grouper, red grouper, and red snapper.

Simulations were designed to answer a number of questions pertinent to past and
future fishery independent sampling efforts. First, is there a trade off between expand-
ing sampling coverage versus intensity of samples in currently sampled locations? The
answer to this question likely depends on whether or not there is spatial heterogeneity
in population trend. Second, what levels of sampling effort would need to be exerted
to detect population changes? For instance, what levels of sampling effort would be
needed to have 80% power to detect a population increase of 10% over five years?

In conducting a power analysis, it was desirable to retain the “messiness” of typical
survey data, while still being able to impose desired population trends. Two common
problems with survey count data are (i) overdispersion (higher than expected vari-
ance relative to standard parametric statistical distributions), and (ii) zero-inflation
(an over-abundance of zeros relative to standard parametric distributions). To ad-
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dress these two factors, a common approach in fisheries index standardization is to
use delta-GLMs (cf., Lo et al., 1992). Here, I used a similar approach based on zero-
inflated, generalized Poisson (ZIGP) count models (Czado et al., 2007) to capture the
“messiness” of typical data sets. These models are parameterized as a finite mixture
distribution, where the counts at an unknown proportion (1− ω) of the sampled sites
are assumed to follow an overdispersed Poisson process, while counts at the remaining
proportion (ω) of sites are assumed to be zero. I started by fitting this model to gag,
red grouper, and red snapper datasets using the package ZIGP in the R Programming
Environment (R Development Core Team, 2007). In particular, I used MinCount as
the response variable and assumed that the log-transformed Poisson mean parame-
ter (log(µ)) was dependent on strata, while the zero inflation parameter (logit(ω)) and
overdispersion (log(ϕ)) parameter were constant over space and time. Standard regres-
sion diagnostics suggested the model fit the data reasonably well. Resulting parameter
estimates are given in Table 1.

Using this approach, the expected count at a given site is given by (1 − ωt)µst,
where the subscript t indexes time (e.g., year), and the subscript s indexes strata.
This expectation provides some intuition on the considerations needed to model pop-
ulation increases. First, it is apparent that increases can result from either a decrease
in ω (the proportion of extra zeroes), or increases in µ. Implementing either of these
scenarios is relatively straightforward in the case that the population in each strata is
increasing at the same rate. However, if there is spatial heterogeneity in abundance
trends, additional elaborations are needed.

Simulations were conducted using a factorial design, with the following factors
varied:

• spatial coverage (50% or 100%)

• spatial heterogeneity in abundance trends (yes/no)

• sample sizes (half, current, or double of “average” levels [assumed to be 420
sets/year])

To investigate the effect of incomplete spatial coverage, I fit a normal distribution to
strata-specific estimates of process intensity (µs) from fits to the SEAMAP data, and
used the resulting distributions (Fig. 5) to sample strata effects for additional strata.
All seven currently defined spatial strata were assumed to be sampled in all simula-
tion scenarios; an additional seven were assumed to exist (but were not sampled) in
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simulations where spatial coverage was assumed to be 50%.

Changes in abundance were implemented by manipulating µst while keeping the
zero-inflation parameter constant at its estimated value for each species. All simula-
tions used the same general structure:

1. Starting with the initial Poisson intensity µs1 = µs estimated from SEAMAP
data, simulate time series of strata-specific Poisson intensities as µs,t+1 = µstλs exp(Zt),
where λs gives a deterministic rate of population increase, and exp(Zt) gives log-
normal process error. I assumed that Zt ∼ Normal(0, 0.01) for all simulations.

2. Simulate data for sampled site i in strata s and time t as Xist ∼ ZIGP (µst, ϕ, ω),
where ϕ and ω are estimated from the SEAMAP data.

3. Fit a ZIGP model with constant overdispersion and zero-inflation to the simu-
lated data, assuming the model log(µst) = βs+γt. A Bernoulli response variable
was recorded for whether or not a 90% asymptotic confidence interval for γ
included zero; proportional population change was also recorded, and was calcu-
lated as ∆ =

∑
s µsT/

∑
s µs1.

Variation in abundance trends between simulation replicates was obtained by drawing
λ from a Normal(1.0, 0.01) distribution for each simulation. Simulations without spa-
tial heterogeneity in abundance used the relation λs = λ, while those including spatial
heterogeneity included spatial variation in the form λs ∼ Normal(λ, 0.01). For each
design point, I simulated 1000 ten year time series.

Results for all three species (Figs. 6-8) indicated that the power to detect pop-
ulation trends was virtually nonexistent for three year time series, low for five year
time series, and moderate-high for ten year time series. The length of the time se-
ries generally had a much larger influence on power than did sample sizes; the power
to detect trends was highest for red snapper, followed by red grouper and then gag.
Interestingly, results were largely consistent between simulation scenarios - i.e., it did
not seem to matter whether sample coverage was 50% or 100% or whether there were
different relative abundance trends in different spatial strata. In all cases, type I error
rates (α) were close to nominal. However, since the deviation of each strata from the
mean trend was drawn from a normal distribution, it is worth noting that the strata
that were sampled were largely “representative” of strata that were not sampled. I ex-
pect that results would have been substantially different had sampled strata exhibited
a different mean trend than unsampled strata. In particular, I would expect realized α
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levels to be higher than nominal. Thus I caution against using these results to justify
limiting the spatial scope of the survey.

3.2 South Atlantic (U.S.)

For the U.S. south Atlantic, I conducted a similar analysis to the Gulf, but used
MARMAP Chevron trap data for black sea bass, red porgy and red snapper. The first
two species are generally recognized as being amenable to trapping; in contrast, red
snapper are caught much less frequently in traps (this is likely due to low relative abun-
dance in sampled sites; there is ancillary evidence from the Gulf of Mexico that they
do trap well). The MARMAP data is currently the largest and longest running fishery
independent collection program for reef fish in the U.S. south Atlantic. However, data
are often too sparse to provide adequate indications of relative abundance trends. As
such, scientists and managers are interested in expanding the survey. Possible expan-
sions include (i) increasing the geographic range (particularly to north and south),
(ii) increasing sample sizes and the overall sampling universe in currently sampled ar-
eas (particularly in north Florida hard bottom habitats where red snapper landings
are the highest), and (iii) expanding the gears used to include camera/video traps to
increase catchability for ‘hard to trap’ species such as gag grouper. However, traps
will likely remain a feature of most surveys to facilitate collection of biological samples.

To investigate possible effects of range and sample size expansions on the ability
to detect population trends from MARMAP Chevron trap data, I gathered existing
Chevron trap data from 1988-2009 for the three focal species. Initial fits to the data
using a GAM with quasipoisson error structure (Fig. 9-11) indicated that catch rates
varied by a number of factors, including year, latitude, depth, month, and soak du-
ration. Sample sizes varied substantially between species; out of a total of 7,327 sets,
155 caught red snapper (a total of 388 fish were caught), while 2,793 (total 15,229)
caught red porgy, and 2,908 (total 78,412) caught black sea bass. Although it is dif-
ficult to read too much into trends in the red snapper data because of low sample
sizes, it is apparent that there are commonalities and differences between the three
species. For instance, the predicted catch for each species was highest between April
and August/September than other months. Hence, expansion of sampling effort into
other times of the year (e.g., by using existing sampling platforms for an extended
period of time) is unlikely to result in substantial increases in sample size. Also, it
is apparent from red porgy and black sea bass plots that catch rates decrease with
trapping duration past some threshold value; however, this may be due to a correla-
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tion between trapping duration and weather events. Expanding sample coverage into
deeper waters than usually covered (e.g., 50 or 75 meters) could also be expected to
result in fewer proportional sets with black sea bass, although it may result in greater
catch of red porgy (and might allow one to test hypotheses about differences in age
structure by depth). Finally, increased latitudinal spatial coverage would likely affect
each species differently. For instance, a southern expansion may result in high catch
rates for red snapper and red porgy but low catch rates for black sea bass, while a
northern expansion would likely favor black sea bass over the other two species.

Although investigation of differential age structure by depth may be an interesting
hypothesis to test in it’s own right, I focus here exclusively on the power to detect pop-
ulation trends using different assumptions about expansion of sampling effort. Because
there are no data with which to gauge the impact of using camera/video traps (which
potentially could increase sample sizes for species that do not trap well), I focus on
expansion of effort using MARMAP traps only. Current proposals for increasing sam-
pling effort and coverage (T. Kellison, Southeast Fisheries Science Center, 101 Pivers
Island Rd, Beaufort, NC 28557, personal communication) call for increasing the survey
range to the north and south, and also to increase the number of samples and sample
universe in hard bottom habitats in northern Florida. I thus considered the following
simulation scenarios, which were implemented separately for each species:

• 1. “Status quo,” which used contemporary levels of sampling effort (the number
of sets per year was set to 344, which was the three year running average for 2007-
2009), drawing sample locations each year without replacement from previously
sampled MARMAP sets

• 2. “Expansion 1” which simulated a range expansion of the survey so that it
sampled from 25◦ N latitude to 37◦ N latitude (approximately south Florida to
Maryland). This scenario assumed status quo sample sizes but drew the latitude
of hypothetical sampling locations from a Uniform(25,37) distribution

• 3. “Expansion 1+” was the same as Expansion 1, but had sample sizes increased
to twice the status quo level

• 4. “Expansion 2” was the same as Expansion 1+, but had 25% of it’s samples
diverted to increase sampling in north Florida. In this scenario, 75% of sam-
ples had their latitude drawn from a Uniform(25,37) distribution, while 25% of
samples had their latitude drawn from a Uniform(27,30) distribution.

For scenarios 2-4, depth, month, and sampling duration were sampled randomly with
replacement from the MARMAP database. As in Gulf simulations, a ZIGP model was

9



fit to existing MARMAP data, and data at proposed sample locations were generated
from the fitted model by conditioning on a particular level of latitude, depth, sampling
duration, and month.

For each species, I fitted a ZIGP model to the MARMAP data in which

log(µ) = Month +Month2 +Duration + Duration2 + Latitude+

+Depth + Depth2 +Year

and where ω and ϕ were assumed constant. The original GAM fits (i.e., Figs 9-11) were
used to suggest an appropriate level of complexity for each term, with the exception
of year and latitude. For year, I used a linear trend since it’s only real purpose was to
generate a reasonable starting value for 2009, the year chosen for a baseline value to
start simulations. As there were relatively few MARMAP samples in the latitudinal
extremes (Fig. 12), I modeled latitude as a categorical variable, with the following cat-
egories: 27-30 (North Florida; NFL), 31 (Georgia; GA), 32-33 (South Carolina; SC),
and 34 (North Carolina; NC). The same process of simulating and analyzing data was
used as in the Gulf analysis (i.e., using steps 1-3 in the previous section). However,
I did not consider any scenarios with spatial heterogeneity in underlying population
trend; results from this experiment should thus be viewed as a ‘best case scenario.’
For scenarios that expanded sample coverage to previously unsampled latitudes, I as-
sumed that the closest latitudinal stratum best represented abundance (i.e., relative
abundance in latitudes > 34 was equal to that in NC, and abundance in latitudes < 27
was equal to that of NF).

Simulations revealed that power to detect population trends was reasonable for
black sea bass and red porgy (Figs. 13-14), but poor for red snapper (Fig. 15). In-
creasing sample coverage alone did not greatly increase power; however, increases in
sample size and disproportionately high sampling in northern Florida did help. Re-
gardless, power to detect population changes for red snapper remained low. Under the
most optimistic scenario (increasing coverage and doubling sample sizes), the power
to detect an increase or decrease of 50% was around 40% for 3- and 5-year time series
and around 60% for a 10-year time series.

In addition to power, I also calculated average annual sample sizes for red snapper
caught in MARMAP traps during the first three years of simulations. For the ‘Status
quo’ scenario, an average of 12.5 red snapper were caught per year in an average of
4.9 independent sample events (the number of distinct sample events are often used
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as the ’effective’ sample size when modeling age compositions because ages from those
caught simultaneously are usually not statistically independent). For the ‘Expansion
1’ scenario, these numbers increased to 16.7 and 6.4, respectively; for the ‘Expansion
1+’ scenario, they were 32.3 and 12.7; for the ‘Expansion II’ scenario, they were 36.6
and 14.3. Thus, in the best case scenario, the effective sample size for age composi-
tions would be around 14.3/year. This level is less than the minimum threshold of
20-40 that has been used in several SEDAR assessments for determining whether age
samples are actually used in the modeling process.

Another quantity of interest for the U.S. south Atlantic is the annual CV associated
with a relative abundance index value. In order to calculate this value, I simulated five
year time series for the ‘Expansion 2’ scenario, assuming that there was no trend in
relative abundance save for that caused by random annual fluctuations (i.e., I assumed
λs = 1). For black sea bass and red porgy, I calculated CV assuming annual sample
sizes (number of MARMAP sets) of 100, 200, . . ., or 1000. For red snapper, I calculated
CV assuming annual sample sizes of 500, 1000, . . ., or 5000. For each simulation, the
relative abundance index was extracted by substituting population marginal means
(Searle et al., 1980) for independent variables and computing the index in year t as
(1− ω)µt (where ω is the zero-inflation term in the ZIGP model). Coefficient of vari-
ation associated with the index was then calculated using the delta method (Seber,
1982).

Simulations suggested that annual CVs for black sea bass and red porgy would
be below 0.2 for current levels of MARMAP sampling effort in the south Atlantic, a
threshold often targeted for relative abundance indices (Fig. 16). In contrast, simula-
tions suggested that MARMAP sampling for red snapper could be expected to yield
model based CVs above 2.0, even if sampling effort were multiplied by ten (Fig. 17).
This was largely a result of the extreme levels of overdispersion exhibited in MARMAP
catch data for red snapper (the overdispersion term in the ZIGP model was estimated
at 2.5). For instance, few sets actually caught red snapper, but those that did occa-
sionally caught large numbers. If such trends continue, it will be extremely difficult
to index relative abundance of red snapper, no matter what sample sizes are employed.
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4 Discussion

Simulation results have suggested that the power to detect population trends is typ-
ically low for short time series (e.g., 3 years) but is markedly higher for longer time
series (e.g., 10 years). Sample sizes seemed less important than increasing the length
of the time series in the Gulf; in contrast, increasing sample sizes for the MARMAP
survey appeared to be quite important in the south Atlantic. However, using current
sampling gears, detecting population trends for red snapper in the south Atlantic from
MARMAP data (even with a doubling of sample sizes and a redistribution of effort)
still seems elusive, with annual index CVs much higher (e.g., >2.0) than those ac-
tually used in stock assessments. Further, an expansion of MARMAP sampling will
likely result in age composition samples that are still too low to be practically useful
for assessment modeling, at least until the red snapper population starts to recover.
Power analyses using MARMAP samples should be taken with a degree of skepticism,
however. Future MARMAP sampling will likely employ a combination of video and
physical traps, with increased sampling effort in northern Florida and a more compre-
hensive sampling frame. Thus, this analysis should be revisited after pilot data from
a revised survey are collected.

It is worth noting that the power to detect population changes from fishery inde-
pendent sampling programs is not the same thing as the power to detect population
changes from an assessment model. Relative abundance indices are but one piece of a
larger jigsaw puzzle that includes age and length compositions, landings, life history
data, and other fishery dependent data streams. As such, the power of assessment
models to detect population changes may be much higher than power from a fishery
independent index alone.

Investigation of abundance metrics from camera trapping data revealed that the
MinCount statistic led to biased estimates of population trend, but that it also yielded
higher precision than other metrics. Decisions on what metric to use should ultimately
be based on whether or not investigators perceive the simulated levels of bias to be
biologically meaningful, as well as the increased effort needed to employ other metrics.
For instance, the MeanCount metric is unbiased and has a similar CV to MinCount,
but the version implemented in simulations requires knowledge of the number of species
present on each video frame. In practice, it may be more practical to sample video
frames to calculate MeanCount (e.g., by reading every nth frame).

The presence/absence metric is nonlinearly related to abundance if taken at face
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value, but may prove useful if the relationship between occupancy and abundance is
explicitly modeled. For instance, recent advancements in occupancy modeling have
received widespread attention (e.g., MacKenzie et al., 2002; Royle and Nichols, 2003),
particularly in research on terrestrial species. These methods assume that a species is
present in an area if it is detected, but that an observed absence cannot be equated
to true absence because of the possibility that it is present but not detected. In order
to make robust inferences about true occupancy, one must collect data that can be
used to estimate detection probabilities, as with repeat site visits. By exploiting the
relationship between detection probability and abundance noted by Royle and Nichols
(2003; Eq. 1), one can specify a hierarchical model for abundance that is conditional
only on presence/absence data (where some of the sites are visited for than once). For
example, consider the following model:

Nit ∼ Poisson(λit),

pit = 1− (1− rit)
Nit ,

Xit ∼ Bernoulli(pit).

Here, Xit = 1 if the focal species is observed during visit t to site i, and is zero oth-
erwise. The intensity of the Poisson process (λ) could be written as a function of site
specific covariates and as a function of time (denoted by the subscript t); if needed,
detection probabilities ri could also be parameterized in terms of site specific covari-
ates. One could also contemplate an alternative to the Poisson distribution (e.g., zero
inflated Poisson, negative binomial) in order to address the inevitable overdispersion
observed in fisheries data.

Royle (2004) suggested another approach that might be used to account for de-
tection probabilities when estimating relative abundance from count data. Originally
developed for avian point counts, Royle’s approach involves modeling spatially repli-
cated counts using an N -mixture model. For instance, one can conceptualize the true
abundance at a specific sampling location as arising from some underlying mixture
distribution (e.g., Poisson). The spatial replication is sufficient to permit estimation
of a detection parameter, and standard frequentist inference can be performed by
integrating out the unobserved abundance parameters from the likelihood.
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Figure 1: A map giving locations of first stage sampling cells for Gulf of Mexico
SEAMAP reef fish video survey. Reproduced from ”An Internal Review of the SEFSC
Resource Surveys Program” (Annex Figure B).



Figure 2: Relationship between true abundance at a given site (N) and the probability
of observing the focal species at a given site as a function of individual detection
probabilities (r). The relationship is nonlinear, suggesting the use of raw % presence
will perform poorly as a a relative abundance index.
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Figure 3: Relative abundance trends as calculated by several underwater camera met-
rics on simulated data. Each point represents the average relative abundance value
for 1000 simulations with an assumed true abundance given by the x-axis. Each sim-
ulation depended on α1, the rate at which individual fish enter the camera’s field of
vision, and α2, the rate at which individual fish leave the camera’s field of vision.
The number of fish in the camera’s field of vision at the start of sampling sampled
from a Binomial(Ni,0.1) distribution in all simulations. Panels on the left give re-
sults for α1 = 0.05/minute,α2 = 0.2/minute, while panels on the right give results for
α1 = 0.5,α2 = 0.5. Each simulation replicated a 20 minute time series. True abun-
dance is provided by the dashed line; the relative abundance series was standardized
to the first data point to facilitate comparison.
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Figure 4: Coefficient of variation for different underwater camera metrics as computed
from simulated data. Each point represents the CV for 1000 simulations at a given
value of true abundance. Each simulation depended on α1, the rate at which individual
fish enter the camera’s field of vision, and α2, the rate at which individual fish leave the
camera’s field of vision. The number of fish in the camera’s field of vision at the start
of sampling sampled from a Binomial(Ni,0.1) distribution in all simulations. Each
simulation replicated a 20 minute time series.
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Figure 5: Normal distributions (solid line) fit to estimated strata-specific Poisson in-
tensity parameters (points) for SEAMAP reef fish surveys in the Gulf of Mexico.
Estimated distributions were used to sample strata means for unsampled strata in the
simulation study, with the constraint that µs > 0.
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Figure 6: Power to detect population trends for gag grouper from SEAMAP reef fish
survey in the Gulf of Mexico. The heavy solid line gives power when annual sample
sizes at current levels, while while heavy dashed and heavy dotted lines give power for
half and twice the current levels of sampling, respectively. Each column of plots gives
results for different lengths of time series (3 years, 5 years, 10 years). Each row of plots
is associated with a different simulation scenario (e.g., top plots give results for the
case where sample coverage is 50% and there is no heterogeneity in population trend
among spatial strata; the final row gives results for the case where sample coverage
is 100% and where spatial strata have different relative abundance trends). The thin
dashed lines give 95% confidence limits for the nominal α level (nominal α is 0.1); thin
solid lines give realized α levels from simulations set so as to have no overall trend.
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Figure 7: Power to detect population trends for red grouper from SEAMAP reef fish
survey in the Gulf of Mexico. The heavy solid line gives power when annual sample
sizes at current levels, while while heavy dashed and heavy dotted lines give power for
half and twice the current levels of sampling, respectively. Each column of plots gives
results for different lengths of time series (3 years, 5 years, 10 years). Each row of plots
is associated with a different simulation scenario (e.g., top plots give results for the
case where sample coverage is 50% and there is no heterogeneity in population trend
among spatial strata; the final row gives results for the case where sample coverage
is 100% and where spatial strata have different relative abundance trends). The thin
dashed lines give 95% confidence limits for the nominal α level (nominal α is 0.1); thin
solid lines give realized α levels from simulations set so as to have no overall trend.
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Figure 8: Power to detect population trends for red snapper from SEAMAP reef fish
survey in the Gulf of Mexico. The heavy solid line gives power when annual sample
sizes at current levels, while while heavy dashed and heavy dotted lines give power for
half and twice the current levels of sampling, respectively. Each column of plots gives
results for different lengths of time series (3 years, 5 years, 10 years). Each row of plots
is associated with a different simulation scenario (e.g., top plots give results for the
case where sample coverage is 50% and there is no heterogeneity in population trend
among spatial strata; the final row gives results for the case where sample coverage
is 100% and where spatial strata have different relative abundance trends). The thin
dashed lines give 95% confidence limits for the nominal α level (nominal α is 0.1); thin
solid lines give realized α levels from simulations set so as to have no overall trend.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.0 0.0 0.5 1.0 1.5 2.0 −1.0 0.0 0.5 1.0 1.5 2.0

3 Years 5 Years 10 Years

P
ow

er

C
ov

=
0.

5,
 H

et
=

0
C

ov
=

1.
0,

 H
et

=
0

C
ov

=
0.

5,
 H

et
=

1
C

ov
=

1.
0,

 H
et

=
1

Proportional change over time



Figure 9: Effects of several explanatory variables on the Poisson intensity parameter
for black sea bass catch per set from MARMAP chevron traps in the south Atlantic.
All variables were modeled simultaneously within a GAM that used smoothing splines
with four degrees of freedom for each variable (with the exception of the Year effect,
which had six). The relative sample size at each value of the explanatory variables is
shown along the x-axis.
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Figure 10: Effects of several explanatory variables on the Poisson intensity parameter
for red porgy catch per set from MARMAP chevron traps in the south Atlantic. All
variables were modeled simultaneously within a GAM that used smoothing splines
with four degrees of freedom for each variable (with the exception of the Year effect,
which had six). The relative sample size at each value of the explanatory variables is
shown along the x-axis.
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Figure 11: Effects of several explanatory variables on the Poisson intensity parameter
for red snapper catch per set from MARMAP chevron traps in the south Atlantic.
All variables were modeled simultaneously within a GAM that used smoothing splines
with four degrees of freedom for each variable (with the exception of the Year effect,
which had six). The relative sample size at each value of the explanatory variables is
shown along the x-axis.

28 30 32 34

−
3

−
2

−
1

0
1

2

Latitude

E
ffe

ct
 o

n 
lo

g 
sc

al
e

50 100 150 200

−
15

−
10

−
5

0

Samp_Depth

E
ffe

ct
 o

n 
lo

g 
sc

al
e

1990 1995 2000 2005 2010

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

Year

E
ffe

ct
 o

n 
lo

g 
sc

al
e

4 6 8 10

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Month

E
ffe

ct
 o

n 
lo

g 
sc

al
e

0 50 100 150 200 250 300

−
3

−
2

−
1

0
1

Duration

E
ffe

ct
 o

n 
lo

g 
sc

al
e



Figure 12: A histogram showing the freqency of MARMAP Chevron trap sets by
latitude (degrees north), 1988-2009.
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Figure 13: Power to detect population trends for black sea bass in the south Atlantic
based on four simulated scenarios. The top left panel corresponds to current levels of
MARMAP sampling (‘Status quo’); the top right panel corresponds to a range expan-
sion (‘Expansion 1’); bottom left corresponds to a range expansion with a doubling of
sampling effort (‘Expansion 1+’); bottom right shows results for a range expansion,
doubling of sampling effort, and disproportionately high sampling in north Florida
(‘Expansion 2’). The solid line gives power as a function of proportional population
change for a three year time series, while the dashed line represents a five year time
series and the dotted line represents a ten year time series.
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Figure 14: Power to detect population trends for red porgy in the south Atlantic
based on four simulated scenarios. The top left panel corresponds to current levels of
MARMAP sampling (‘Status quo’); the top right panel corresponds to a range expan-
sion (‘Expansion 1’); bottom left corresponds to a range expansion with a doubling of
sampling effort (‘Expansion 1+’); bottom right shows results for a range expansion,
doubling of sampling effort, and disproportionately high sampling in north Florida
(‘Expansion 2’). The solid line gives power as a function of proportional population
change for a three year time series, while the dashed line represents a five year time
series and the dotted line represents a ten year time series.
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Figure 15: Power to detect population trends for red snapper in the south Atlantic
based on four simulated scenarios. The top left panel corresponds to current levels of
MARMAP sampling (‘Status quo’); the top right panel corresponds to a range expan-
sion (‘Expansion 1’); bottom left corresponds to a range expansion with a doubling of
sampling effort (‘Expansion 1+’); bottom right shows results for a range expansion,
doubling of sampling effort, and disproportionately high sampling in north Florida
(‘Expansion 2’). The solid line gives power as a function of proportional population
change for a three year time series, while the dashed line represents a five year time
series and the dotted line represents a ten year time series. Predicted power for three
year time series is poorly estimated in the tails (most simulated three year time series
did not exhibit large changes in abundance).
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Figure 16: Coefficient of variation for black sea bass and red porgy in the south Atlantic
as a function of sample size (number of MARMAP sets) for the ‘Expansion 2’ scenario
(range expansion with disproportionately high sampling in north Florida). The vertical
line represents the approximate annual sample sizes currently being collected by the
MARMAP survey.
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Figure 17: Coefficient of variation for red snapper in the south Atlantic as a function of
sample size (number of MARMAP sets) for the ‘Expansion 2’ scenario (range expansion
with disproportionately high sampling in north Florida) (top panel). The vertical
line represents the approximate annual sample sizes currently being collected by the
MARMAP survey. Also presented are the proportion of simulations that did not
converge (bottom panel)
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Table 1: Parameter estimates (on the real scale) from fitting ZIGP models to SEAMAP
reef fish survey data. Estimates of strata-specific µ parameters were used as starting
values for the first year of simulations; estimated variance inflation values (ϕ) and
zero-inflation factors (ω) were treated as constants throughout simulations.

Species
Parameter Gag Red grouper Red snapper
µ1 0.03 0.12 0.05
µ2 0.03 0.33 0.02
µ3 0.65 0.42 0.67
µ4 0.27 0.34 0.39
µ5 0.07 0.04 0.84
µ6 0.07 0.05 1.09
µ7 0.02 0.04 2.57
ω 0.38 0.00 0.19
ϕ 1.24 1.09 2.32
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