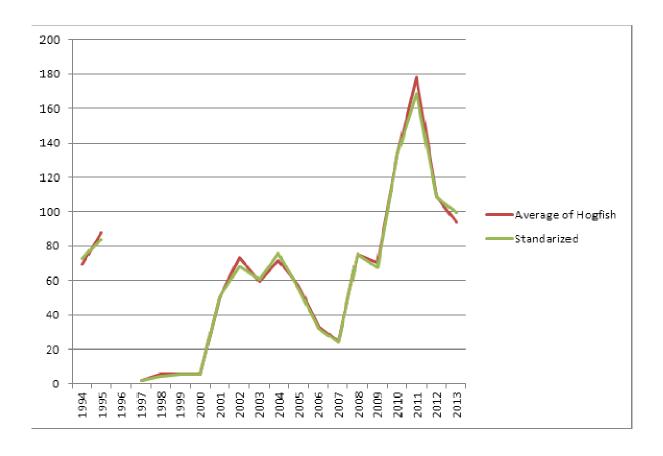
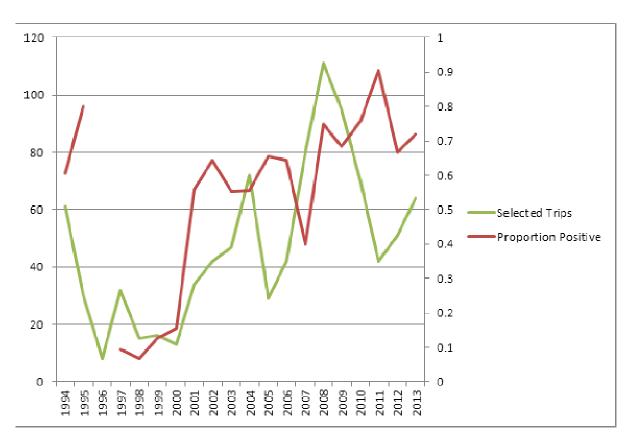
Standardization of commercial catch per unit effort of hogfish (*Lachnolaimus maximus*) from North Carolina Trip Ticket landings


Analyzed and Provided by:
Chip Collier
NC Division of Marine Fisheries
Southern District Manager
127 Cardinal Dr Ext
Wilmington, NC 28405
910 796 7291


[Below are excerpts from an email provided by Chip Collier to Wade Cooper on 6/12/2014]

I know you are curious how hogfish landings appear and if there are any trends. Below I have two graphs based on <u>some non-reviewed analysis</u>. The first plot is the average weight per trip for commercial divers which is a non-standardized index and then a standardized cpue which was developed with year and month as factor and distribution with a negative binomial (dispersion is significant in the sas model). The trips that were included in the commercial dive model included all trips that had landings of gag, red, and scamp grouper as well as trips with hogfish. This was based on cluster analysis of commercial diving trip tickets. Overall there were only 954 trips included from 1994 to 2013. In this model, 1996 was removed due to low number of trips and having 0 hogfish landings. The proportion positive and the index are highly correlated. Either fishermen have been increasing the targeting of hogfish or there has been an increase in hogfish over the past 10 years. I know the price and desirability has increased in North Carolina over that time period so it could be a combination.

Please also consider that this information is too late to add into Florida's assessment and is highly uncertain with a strong potential for bias. We need to start to think about a method to track hogfish abundance. The best choice would be SEFIS/SERFS which could potentially be supplemented with other information.

If you have any questions, please let me know.

proport n positi	Positive Trips	Count of Trips	Avg	z Value	Pr > z	Upper Mean	Lower Mean	Standar d Error of Mean	Mean	Year
0.606	37	61	69.40574	15.54	<.0001	125.6	42.5452	20.1882	73.1014	1994
	24	30	87.79167	11.33	<.0001	180.74	39.016	32.8425	83.9746	1995
	0	8								1996
0.093	3	32	1.914063	1.38	0.1664	3.8392	0.7932	0.702	1.7451	1997
0.066	1	15	5.333333	2.5	0.0126	13.1814	1.3636	2.4537	4.2396	1998
0.3	2	16	5.195625	3.13	0.0017	16.1672	1.8979	3.0272	5.5392	1999
0.1538	2	13	5.192308	2.8	0.0052	17.796	1.6587	3.2889	5.433	2000
0.5588	19	34	49.54647	10.67	<.0001	103.3	24.4769	18.4704	50.2834	2001
0.642	27	42	73.6531	12.68	<.0001	131.1	35.5455	22.7279	68.2634	2002
0.5531	26	47	59.65447	13.14	<.0001	112.12	32.9332	18.9915	60.7664	2003
0.5555	40	72	71.69611	17.01	<.0001	124.52	45.9398	19.2386	75.6326	2004
0.6552	19	29	57.06931	10.11	<.0001	121.18	25.5052	22.102	55.5944	2005
0.6428	27	42	33.12548	10.51	<.0001	61.8935	16.9238	10.7061	32.3648	2006
	32	80	24.83488	13.29	<.0001	38.8679	15.1689	5.8284	24.2813	2007
0.7477	83	111	75.05369	21.28	<.0001	112.26	50.6241	15.3162	75.3867	2008
0.6842	65	95	70.36	19.16	<.0001	104.4	44.0599	14.9258	67.8219	2009
0.7571	53	70	133.2663	19.15	<.0001	219.71	80.7027	34.0215	133.16	2010
0.9047	38	42	178.2462	15.49	<.0001	322.78	88.1535	55.8505	168.68	2011
0.6666	34	51	109.0792	15.65	<.0001	195.03	60.3171	32.4696	108.46	2012
0.718	46	64	93.905	16.99	<.0001	169.09	58.5068	26.9282	99.4623	2013