# Relative index of abundance from visual order-of-magnitude REEF surveys applied to Hogfish (Lachnolaimus maximus) in the Southeast US 

Wade Cooper<br>Florida Fish and Wildlife Conservation Commission<br>Fish and Wildlife Research Institute<br>100 8th Avenue SE, St. Petersburg, FL 33701

April 11, 2014

## Introduction

Fisheries independent surveys are often resource limited and tend to focus on high-priority fisheries. When surveys exist for data poor species, they tend to be restricted in either spatial or temporal extent. As a result of these data limitations under growing assessment demands, there has been a growing interest in the potential for using citizen-derived data (Muller and Taylor 2013).

The REEF visual surveys represent a large database of citizen-derived visual surveys from across the globe. These surveys are random-walk "roving" surveys that record fish abundances in order-of-magnitude abundance intervals: none $=0$, Single $=1$, Few $=2-10$, Many $=11-100$, and Abundant > 100 (termed SFMA counts; sensu Wolfe and Pattengill-Semmens 2013). Different options exist for analyzing these data, including: cumulative link models (ordered logit regression) with flexible thresholds; multinomial models with estimated abundances scaled to the midpoint of the abundance interval; censored regression models (right-censored for 2+ individuals; Porch and Eklund 2003); and other nominal index aggregation approaches.

Recently Wolfe and Pattengill-Semmens (2013) conducted a comparative study of 292 surveys where both the REEF methodology (SFMA ordinal count data) and exact counts were conducted from a single advanced assessment diver (lead author J. Wolfe). Using the count data from 36 species in the surveys, they compared three alternative models to scale the ordinal REEF count data to an arithmetic mean estimate, and found that one model performed consistently better than the others in terms of model selection criteria and variance estimates. Although the analyses were not presented, they discussed a preliminary analyses that found this model performed better than an ordered logit regression on the same data. In addition, they proposed that the estimated parameters from the best-fit model may be generally applicable for scaling the SFMA data to arithmetic means for many species and geographic zones, given that the nature of the REEF methodology is the same across species and zones.

While the Wolfe and Pattengill-Semmens (2013) method applied directly to the observed SFMA data performs well for providing a nominal index of abundance for a particular data grouping (e.g., years, shore versus boat dives, etc.), such estimates should be standardized to account for additional confounding variables that may have influenced the observed abundances on any given dive (e.g., habitat type, visibility, depth, etc.). In this manuscript, we present a technique to standardize the index of abundance using the Wolfe and Pattengill-Semmens (2013) scaling model. For our analyses, we apply their scaling model to the marginal mean predictions of the response probabilities from a multinomial logit model of the SFMA data in order to derive an estimated arithmetic abundance that controls for these confounding variables. This approach was also compared directly to standardization of a censored Poisson model utilizing intervalcensoring (2-10) and right censoring (10+).

## Methods

## Spatial and Temporal Extent

REEF survey data were provided from North Carolina through Texas from 1993 through 2012, with the majority of surveys occurring in the coral reef habitats of the FLK through Broward county. Only those surveys during or after 1994 were included in the analysis due to a limited number of dives when the program began in 1993. Surveys were broken into five primary regions (Figure 1): (1) western and northern Gulf of Mexico (GOM; west of Apalachicola Bay, FL); (2) eastern GOM representing the West Florida Shelf (WFS; Apalachicola Bay to the Florida Keys); (3) Florida Keys (FLK); (4) southeast FL (SEFL; FLK to Indian River); and (5) northeast FL through North Carolina (north of Indian River). Genetic analysis supports three distinct stocks in the region from where samples are available (Seyoum et al. 2014): the WFS (Apalachicola Bay through Southwest FL), representing region (2) above; FLK and SEFL, representing regions (3) and (4) above; and North Carolina, representing region (5) above. Due to differences in the proportion of dives detecting hogfish between regions (3) and (4) (FLK and SEFL), indices of abundance were run for both regions separately and combined. Although a substantial number of surveys were conducted at the Flower Garden Banks in the western GOM, hogfish were rarely encountered west of the Mississippi delta ( $<1 \%$ of surveys); similarly, less than $5 \%$ of surveys north of Florida sighted hogfish on a dive (Tables 1, 2). Due to the data inadequacy for the tails in the distribution, indices of abundance were not possible for regions (1) and (5). Attempts were made to standardize these regions but were found to be highly variable and suffer from convergence problems.

## Identification of Appropriate Surveys

Despite hogfish being commonly sighted in the core of their distribution in South Florida, there is the potential that particular surveys are conducted in situations where a hogfish would be unlikely to occur (e.g., improper habitat), leading to inflation of the zero observations in the dataset. Given the high diversity of species in the REEF dataset ( 641 species for focal area), one can use the abundance data of co-occurring species to identify those dives where a hogfish would be likely to occur but was not sighted, given the presence of species often found in association with hogfish (Stephens and MacCall 2004). Different approaches exist to identify the associated species, including logistic regression techniques (Stephens and MacCall 2004) and multivariate
clustering (Shertzer and Williams 2008; Muller 2009, O'Hop et al. 2012). Given the high diversity in the REEF dataset and common occurrence of hogfish, we chose to use clustering techniques to identify associated species. First, we divided the dataset into three primary regions (WFS, FLK, SEFL) on which to perform the clustering, given the diversity of species and occurrence of hogfish decreases as one moves further away from the coral reef habitats of the FLK. Attempts to create species clusters for the tails of the distribution separately (W/N GOM and NEFL-NC) failed due to the low occurrence of hogfish in these regions. Second, for each of the three clustering regions, the data were filtered to remove all uncommon species that occurred in less than $5 \%$ of the surveys and less than $5 \%$ of the time on surveys that recorded hogfish. We chose to use affinity propagation clustering (APC), because it has been shown to perform well relative to other cluster techniques and does not require that the number of cluster be prespecified (Frey and Dueck 2007). APC automatically chooses an optimal number of clusters in the dataset, thereby providing an objective criterion for which to group associated species. Other criteria exist for choosing the optimal number of clusters (e.g., gap analysis, average silhouette width, scree plots), but these can either be computationally demanding or were found to perform poorly with the high diversity in the REEF dataset. Instead of relying on an objective criterion to choose the optimal number of clusters, one could alternatively choose a subset of species from a branch of a dendrogram produced by hierarchical clustering. However, deciding on which branch hierarchy to include can be relatively subjective. For the APC procedure, we used the Morisita measure of similarity as input, since this measure is recommended for count data and is insensitive to sample sizes (Krebs 1999). Once the associated species within the hogfish cluster were identified for each of the three regions, all surveys on which these species occurred were used as suitable surveys in the subsequent analyses. All multivariate analyses were done with R version 3.0.1, using the vegan package to compute the similarity matrix and the apcluster package for the APC technique.

## Standardization Models

## Multinomial Scaling Model

In order to standardize an index with respect to the confounding variables, a multinomial logit model was used with the SFMA response set (Abundance $=\{0,1,2,3,4\}$ ) as the dependent variable and a set of potential independent variables recorded from the REEF dives. The final set of independent variables was chosen using a forward selection procedure based on the lowest AIC for the final model. In addition, only those selected variables that reduced the mean deviance relative to the null model by greater than $0.5 \%$ were included in the final model. The full suite of possible independent variables in the stepwise procedure included: year, experience level (novice versus advanced), bottom time, surface temperature, visibility, depth, current,
season (winter versus summer: Oct. through March, April through Sept.), and habitat. Year was automatically included in each possible model configuration to produce a year-specific estimate of abundance. Year, experience level, and habitat were included as class variables. The 12 possible habitats were aggregated into 6 categories: (1) none and open; (2) grass, sand, and rubble; (3) high profile reef, wall, and ledge; (4) low profile reef and sloping dropoff; (5) artificial reef; and (6) mixed habitat.

To compute the mean estimate of abundance for each year, the predicted probabilities for each potential SFMA response were obtained from the final model at each of the class level combinations and at the mean value for all continuous variables (Ballenger et al. 2013). For example, if the final model included year (class levels for 1994-2012), experience level (class levels for experienced vs. novice), and depth (continuous), a total of 38 model predictions would be generated ( 19 years by 2 experience levels) at the mean depth across all observations. For the multinomial model, each model prediction is a set of five probabilities, summing to one, for the five possible SFMA responses ( $\{0-4\}$ ). The average of all model predictions (e.g., mean predicted response for each of the 38 combinations in the example above), represents the equally weighted mean prediction (i.e., population marginal mean or least-squares mean). These predicted probabilities were then scaled into an arithmetic estimate of abundance following the procedure in Wolfe and Pattengill-Semmens (2013), using the formula:

$$
\begin{gathered}
\operatorname{Avg} F_{i, y}=\frac{2 S_{i, y}+4.16 F_{i, y}+10 M_{i, y}}{S_{i, y}+F_{i, y}+M_{i, y}} \\
\operatorname{Avg} M_{i, y}=\frac{11 F_{i, y}+33.8 M_{i, y}+100 A_{i, y}}{F_{i, y}+M_{i, y}+A_{i, y}} \\
\operatorname{Avg} A_{i, y}=\frac{200 M_{i, y}+348 A_{i, y}}{M_{i, y}+A_{i, y}} \\
\text { Mean }_{y}=\frac{\prod_{i=1}^{k} Z_{i, y}\left(\frac{S_{i, y}+A v g F * F_{i, y}+A v g M * M_{i, y}+A v g A * A_{i, y}}{S_{i, y}+F_{i, y}+M_{i, y}+A_{i, y}}\right)}{k}
\end{gathered}
$$

Here, $i$ denotes each of the class level combinations (not including year), $y$ denotes year, and $k$ is the total number of class level combinations (not including year). $Z$ is the sighting frequency (i.e., predicted probability of a zero abundance response), and $S, F, M$, and $A$ represent the predicted probabilities for single (1), few (2-10), many (10-100), and abundant (100+) responses.

This index standardization approach was run for the hogfish population independently for the three regions with sufficient data (WFS, FLK, and SEFL), and for the FLK+SEFL region
combined, which represents a single genetic stock. For each index, error estimates were obtained through 5000 bootstrap iterations (Ballenger et al. 2013). The multinomial analysis was done using in 'nnet' package in R 3.0.1, while the bootrapping analysis used the 'boot' package.

## Censored Poisson

Following Porch and Eklund (2003), a censored Poisson model was additionally used to standardize an index of abundance in order to compare to the multinomial scaling model. For this analysis, a combination of interval and right censoring was applied to the SFMA. Observations in the Few category (2-10) were modeled as interval censored, and observations in the Many and Abundant categories (10+) were modeled together as right-censored. The censoring approach used the same set of potential explanatory variables as the multinomial approach above and the same forward stepwise selection criteria. The censored Poisson standardization was conducted in R 3.0.1 with the VGAM package, using a survival parameterization for the interval and right censoring (type="interval2").

## Results and Discussion

## Hogfish Distribution

The core of the hogfish distribution was the FLK, with $65.8 \%$ of the surveys encountering a hogfish. Hogfish sightings decreased with latitude, with only $46.6 \%$ and $24.2 \%$ of surveys encountering hogfish on the WFS and in SEFL, respectively. For the tails of the distribution, only $1 \%$ and $5.3 \%$ of surveys encountered hogfish in the W/N GOM and NFL through NC, respectively (Table 1; Figure 2). The average of the abundance category per survey reef location is shown in Figure 3, demonstrating the core of the hogfish distribution is centered in the Florida Keys with decreasing abundances at higher latitudes. Tables 2-4 present the distributions of surveys among regions for each year, habitat type, and depth range, respectively. In general the REEF program experienced the highest participation during the early to mid 2000's, and has experienced a general drop in surveys beginning in the late 2000's. The surveys have generally been conducted on similar habitats (artificial and natural reef structures) and at similar depths, except in the NEFL through NC region where reef structure is found at deeper depths.

## Identification of Appropriate Surveys

The APC technique was performed separately for the WFS, FLK, and SEFL. For the WFS, the APC procedure selected 13 total clusters from a total of 71 species. The species group in which hogfish clustered comprised the second largest cluster with a total of 14 species (Table 5). For the FLK, the APC procedure selected 25 total clusters from a total of 139 species. The species group in which hogfish clustered comprised the largest cluster with a total of 45 species (Table x). For SEFL, the APC procedure selected 16 total clusters from a total of 148 species. The species group in which hogfish clustered comprised the largest cluster with a total of 46 species (Table x ). It is not surprising that the APC procedure selected clusters with large numbers of species for the FLK and SEFL regions, given that hogfish are relatively common on reef habitats, and tropical/semi-tropical reefs are some of the most species diverse ecosystems on the planet. As such, the high species clusters often represent the common reef fauna, and the analyses would likely produce similar findings if all surveys were included versus restricting surveys based on the cluster analyses.

## Standardization Models

## Multinomial Scaling Model

The deviance tables are presented in Tables 6-12. The final predictor variables were chosen to be habitat type, bottom time, and visibility for WFS; experience level and bottom time for the FLK; depth and bottom type for SEFL; and current and habitat type for the combined FLK and SEFL region. Because this was fit using a multinomial model, typical residual diagnostics are not available for this model. The indices of abundance for each of the stocks, along with bootstrap estimates of variability, are presented in Figure 4.

The indices of abundance are presented in Tables 13-19 and Figures 4-5. The index for the WFS was highly variable with steep drops in abundance for particular years $(2005,2009)$, and subject to large increases or decreases in abundance on particular years. While the steep drop in 2005 could have been related to the red tide event during that year, a similar low would have been expected in 2006. Alternatively, the drop could be a result of the data type (SFMA categories) and sensitivity of this data to low sample sizes. The FLK, SEFL, and FLK+SEFL indices were much less variable than the WFS, resulting from the substantially higher sample sizes in the regions.

In general the multinomial and censored Poisson results were similar, both tracking the nominal abundance relatively well. The multinomial approach was more stable than the censored Poisson as modeled, being able to converge on a solution for the SEFL region as an individual index. The differences in the fitting ability is likely a function of the different R packages used however (nnet and VGAM, respectively), and not representative of the quality of the model type. Without the fitting constraints, the censored Poisson would be preferred since it models the data explicitly accounting for the SFMA response type.

## References

Frey BJ and D Dueck. 2007. Clustering by passing messages between data points. Science 315:972-976.

Muller RG. 2009. Black grouper standardized catch rates from the Marine Recreational Fisheries Statistics Survey in south Florida, 1991-2008. SEDAR19-DW-01.

Muller RG and RG Taylor. 2013. The 2013 stock assessment update of common snook, Centropomus undecimalis. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, IHR 2013-004.

O’Hop J, M Murphy, D Chagaris. 2012. The 2012 stock assessment report for Yellowtail Snapper in the South Atlantic and Gulf of Mexico. SEDAR 003 Final Assessment Report.

Porch CE and AM Eklund. 2003. Standardized visual counts of Goliath Grouper off South Florida and their possible use as indices of abundance. SEDAR6-RW-1.

Seyoum S, Collins AB, Puchulutegue C, McBride RS, Tringali MD. 2014. Genetic population structure of hogfish (Labridae: Lachnolaimus maximus) in the southeastern United States. SEDAR 37-01.

Shertzer, K. W. and E. H. Williams. 2008. Fish assemblages and indicator species: reef fishes off the southeastern United States. Fishery Bulletin 106:257-269.

Table 1. Proportion of total surveys recording each of the five abundance categories ( $0=$ none; $1=$ single; 2=few, 2-10; 3=many, 10-100; 4=abundant, 100+), for each of the five regions through 2012.

| Region | Total <br> Surveys | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| West/North Gulf of Mexico <br> (W/N GOM) | 3530 | 0.990 | 0.004 | 0.005 | 0.001 | 0.000 |
| West Florida Shelf <br> (WFS) | 1838 | 0.534 | 0.135 | 0.298 | 0.032 | 0.001 |
| Florida Keys <br> (FLK) | 20950 | 0.342 | 0.215 | 0.406 | 0.036 | 0.001 |
| Southeast Florida <br> (SEFL) | 11474 | 0.758 | 0.128 | 0.103 | 0.011 | 0.001 |
| Northeast Florida through North Carolina <br> (NEFL-NC) | 839 | 0.947 | 0.021 | 0.030 | 0.002 | 0.000 |

Table 2. Total number of REEF visual surveys by zone and year.

| Year | W/N <br> GOM | WFS | FLK | SEFL | NEFL- <br> NC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 3}$ | 0 | 4 | 96 | 1 | 0 |
| $\mathbf{1 9 9 4}$ | 32 | 12 | 1296 | 37 | 4 |
| $\mathbf{1 9 9 5}$ | 279 | 6 | 772 | 35 | 2 |
| $\mathbf{1 9 9 6}$ | 410 | 22 | 651 | 16 | 2 |
| 1997 | 513 | 34 | 943 | 81 | 24 |
| $\mathbf{1 9 9 8}$ | 200 | 75 | 767 | 134 | 41 |
| $\mathbf{1 9 9 9}$ | 294 | 127 | 905 | 387 | 53 |
| $\mathbf{2 0 0 0}$ | 307 | 148 | 977 | 422 | 37 |
| $\mathbf{2 0 0 1}$ | 404 | 150 | 2350 | 892 | 50 |
| $\mathbf{2 0 0 2}$ | 277 | 177 | 2708 | 1195 | 107 |
| $\mathbf{2 0 0 3}$ | 275 | 120 | 1825 | 1325 | 133 |
| $\mathbf{2 0 0 4}$ | 324 | 69 | 1179 | 802 | 113 |
| $\mathbf{2 0 0 5}$ | 124 | 50 | 1110 | 724 | 109 |
| $\mathbf{2 0 0 6}$ | 131 | 104 | 1102 | 1139 | 94 |
| $\mathbf{2 0 0 7}$ | 129 | 89 | 1022 | 889 | 94 |
| $\mathbf{2 0 0 8}$ | 10 | 43 | 606 | 568 | 69 |
| $\mathbf{2 0 0 9}$ | 30 | 41 | 948 | 525 | 60 |
| $\mathbf{2 0 1 0}$ | 77 | 48 | 670 | 814 | 62 |
| $\mathbf{2 0 1 1}$ | 89 | 21 | 499 | 603 | 41 |
| $\mathbf{2 0 1 2}$ | 95 | 28 | 524 | 585 | 44 |

Table 3. Number of surveys with hogfish present and the total number of surveys per habitat type in the five regions.

|  | Hogfish Present |  |  |  |  | All Surveys |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W/N GOM | WFS | FLK | SEFL | NEFLNC | $\begin{aligned} & \text { W/N } \\ & \text { GOM } \end{aligned}$ | WFS | FLK | SEFL | $\begin{aligned} & \text { NEFL- } \\ & \text { NC } \end{aligned}$ |
| Artificial | 13 | 279 | 1173 | 464 | 10 | 443 | 740 | 1964 | 2300 | 475 |
| Grass | 0 | 1 | 19 | 13 | 0 | 1 | 1 | 101 | 73 | 0 |
| High Profile | 11 | 2 | 5289 | 453 | 2 | 2399 | 3 | 7758 | 1259 | 7 |
| Ledge | 3 | 180 | 465 | 310 | 27 | 48 | 227 | 630 | 1444 | 293 |
| Low Profile | 4 | 42 | 2422 | 731 | 12 | 185 | 79 | 3734 | 3285 | 214 |
| Mixed | 2 | 18 | 3688 | 522 | 5 | 570 | 49 | 5524 | 2127 | 19 |
| None | 7 | 82 | 274 | 97 | 3 | 175 | 173 | 505 | 285 | 82 |
| Open | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 7 | 7 | 0 |
| Rubble | 0 | 27 | 107 | 33 | 1 | 60 | 66 | 194 | 162 | 16 |
| Sand | 0 | 3 | 51 | 16 | 0 | 18 | 24 | 102 | 120 | 33 |
| Slope | 0 | 1 | 212 | 56 | 0 | 84 | 1 | 277 | 90 | 0 |
| Wall | 1 | 2 | 81 | 10 | 0 | 14 | 3 | 154 | 22 | 0 |
| Total | 41 | 637 | 13782 | 2705 | 60 | 4000 | 1368 | 20950 | 11174 | 1139 |

Table 4. Number of surveys with hogfish present and the total number of surveys per depth bin in the five regions.

|  | Hogfish Present |  |  |  |  | All Surveys |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W/N GOM | WFS | FLK | SEFL | NEFLNC | W/N GOM | WFS | FLK | SEFL | NEFLNC |
| 0-30ft | 8 | 110 | 9375 | 1157 | 0 | 103 | 400 | 14070 | 5651 | 16 |
| 30-60ft | 9 | 432 | 3179 | 948 | 4 | 382 | 705 | 4599 | 2833 | 255 |
| 60-90ft | 22 | 92 | 1009 | 523 | 31 | 3399 | 246 | 1763 | 2442 | 754 |
| 90-120ft | 2 | 3 | 209 | 31 | 25 | 102 | 16 | 479 | 150 | 110 |
| 120+ | 0 | 0 | 10 | 46 | 0 | 14 | 1 | 39 | 98 | 4 |
| Total | 41 | 637 | 13782 | 2705 | 60 | 4000 | 1368 | 20950 | 11174 | 1139 |

Table 5. Species clusters for the three condensed regions (Gulf of Mexico, Florida Keys, and Southeast US) used to select those survey trips where a hogfish was likely to occur.

| WFS |  | FLK | SEFL |  |
| :--- | :--- | :--- | :--- | :--- |
| Bandtail Puffer | Beaugregory | Rainbow Parrotfish | Banded Butterflyfish | Princess Parrotfish |
| Beaugregory | Bicolor Damselfish | Redband Parrotfish | Barred Hamlet | Queen Angelfish |
| Belted Sandfish | Black Grouper | Redlip Blenny | Blackbar Soldierfish | Redtail Parrotfish |
| Cocoa Damselfish | Blue Tang | Redtail Parrotfish | Blue Chromis | Saucereye Porgy |
| Cubbyu | Bluehead | Rock Beauty | Blue Hamlet | Scrawled Cowfish |
| Gray Triggerfish | Bluestriped Grunt | Sailors Choice | Bluehead | Scrawled Filefish |
| Hogfish | Bridled Goby | Saucereye Porgy | Bluestriped Grunt | Sharpnose Puffer |
| Red Grouper | Brown Chromis | Schoolmaster | Bridled Goby | Smallmouth Grunt |
| Sand Diver | Caesar Grunt | Sergeant Major | Brown Chromis | Smooth Trunkfish |
| Sand Perch | Clown Wrasse | Sharpnose Puffer | Caesar Grunt | Smooth Trunkfish |
| Seaweed Blenny | Cocoa Damselfish | Smallmouth Grunt | Coney | Spanish Grunt |
| Slippery Dick | Dusky Damselfish | Spanish Grunt | Creole Wrasse | Spotfin Butterflyfish |
| Spottail Pinfish | French Grunt | Spotfin Butterflyfish | Foureye Butterflyfish | Spotted Drum |
| White Grunt | Goldentail Moray | Goldspot Goby | Spotted Goatfish | French Grunt |

Table 6. Model selection criteria for the WFS index in the multinomial scaling model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Hab | 170.281 | 1026 | 2157.455 | 2289.455 | 5.960266 |
| $\mathbf{2}$ | BTime | 30.32789 | 1023 | 2127.127 | 2265.127 | 1.050041 |
| $\mathbf{3}$ | Visib | 19.15441 | 1020 | 2107.973 | 2251.973 | 0.56632 |
| $\mathbf{4}$ | STemp | 6.488359 | 1017 | 2101.484 | 2251.484 | 0.012684 |

Table 7. Model selection criteria for the FLK index in the multinomial scaling model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Exp | 390.2327 | 12911 | 29636.46 | 29756.46 | 1.276685 |
| $\mathbf{2}$ | BTime | 238.5005 | 12908 | 29397.96 | 29523.96 | 0.771719 |
| $\mathbf{3}$ | Hab | 139.0297 | 12893 | 29258.93 | 29414.93 | 0.349816 |
| $\mathbf{4}$ | Current | 57.21195 | 12890 | 29201.72 | 29363.72 | 0.168176 |
| $\mathbf{5}$ | Depth | 27.04073 | 12887 | 29174.68 | 29342.68 | 0.067562 |
| $\mathbf{6}$ | Season | 24.93522 | 12884 | 29149.74 | 29323.74 | 0.060565 |
| $\mathbf{7}$ | STemp | 17.6281 | 12881 | 29132.12 | 29312.12 | 0.036196 |

Table 8. Model selection criteria for the SEFL index in the multinomial scaling model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Depth | 155.2825 | 7754 | 11182.04 | 11302.04 | 1.331498 |
| $\mathbf{2}$ | BTime | 144.0187 | 7751 | 11038.03 | 11164.03 | 1.2331 |
| $\mathbf{3}$ | Hab | 72.99306 | 7736 | 10965.03 | 11121.03 | 0.456651 |
| $\mathbf{4}$ | Season | 40.47777 | 7733 | 10924.55 | 11086.55 | 0.320516 |
| $\mathbf{5}$ | Current | 31.15404 | 7730 | 10893.4 | 11061.4 | 0.238239 |
| $\mathbf{6}$ | STemp | 28.26304 | 7727 | 10865.14 | 11039.14 | 0.212825 |
| $\mathbf{7}$ | Exp | 18.86817 | 7724 | 10846.27 | 11026.27 | 0.129769 |

Table 9. Model selection criteria for the combined FLK and SEFL index in the multinomial scaling model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Current | 612.6237 | 20725 | 44644.82 | 44764.82 | 1.339363 |
| $\mathbf{2}$ | Hab | 550.1536 | 20710 | 44094.67 | 44244.67 | 1.145207 |
| $\mathbf{3}$ | Exp | 190.2388 | 20707 | 43904.43 | 44060.43 | 0.406647 |
| $\mathbf{4}$ | Visib | 109.7561 | 20704 | 43794.67 | 43956.67 | 0.228725 |
| $\mathbf{5}$ | STemp | 90.75282 | 20701 | 43703.92 | 43871.92 | 0.186747 |
| $\mathbf{6}$ | Season | 105.5377 | 20698 | 43598.38 | 43772.38 | 0.219517 |
| $\mathbf{7}$ | BTime | 65.09628 | 20695 | 43533.28 | 43713.28 | 0.13008 |
| $\mathbf{8}$ | Depth | 67.73111 | 20692 | 43465.55 | 43651.55 | 0.13595 |

Table 10. Model selection criteria for the WFS index in the censored Poisson model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Hab | 176 | 1070 | 1402 | 3671 | 10.70726 |
| $\mathbf{2}$ | BTime | 27 | 1069 | 1375 | 3601 | 1.671641 |
| $\mathbf{3}$ | Visib | 15 | 1068 | 1360 | 3567 | 0.82728 |
| $\mathbf{4}$ | STemp | 4 | 1067 | 1356 | 3553 | 0.23064 |

Table 11. Model selection criteria for the FLK index in the censored Poisson model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Exp | 307 | 12951 | 17941 | 44323 | 1.675147 |
| $\mathbf{2}$ | BTime | 228 | 12950 | 17713 | 43829 | 1.240684 |
| $\mathbf{3}$ | Current | 84 | 12949 | 17629 | 43685 | 0.450697 |

Table 12. Model selection criteria for the combine FLK and SEFL index in the censored Poisson model. Only those variables with greater than a $0.5 \%$ reduction in deviance, relative to the null model with only year as a variable, were included in the final model.

| Step | Variable | Deviance | Resid. Df | Resid. <br> Dev | AIC | \% Reduction |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Current | 598 | 20765 | 26713 | 69863 | 2.18528 |
| $\mathbf{2}$ | Hab | 334 | 20760 | 26379 | 69193 | 1.19947 |
| $\mathbf{3}$ | Exp | 164 | 20759 | 26215 | 68849 | 0.59561 |
| $\mathbf{4}$ | STemp | 103 | 20758 | 26112 | 68588 | 0.37455 |

Table 13. Index of abundance for the WFS multinomial scaling model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 6}$ | 18 | 14 | 1.069073 | 0.411186 | 0.384619 |
| $\mathbf{1 9 9 7}$ | 19 | 13 | 1.567447 | 0.437988 | 0.279428 |
| $\mathbf{1 9 9 8}$ | 70 | 47 | 4.267835 | 2.188715 | 0.51284 |
| $\mathbf{1 9 9 9}$ | 111 | 41 | 2.136562 | 1.150702 | 0.538577 |
| $\mathbf{2 0 0 0}$ | 118 | 49 | 3.338532 | 1.071706 | 0.321011 |
| $\mathbf{2 0 0 1}$ | 99 | 46 | 2.234285 | 0.536497 | 0.24012 |
| $\mathbf{2 0 0 2}$ | 162 | 77 | 2.919133 | 0.830962 | 0.284661 |
| $\mathbf{2 0 0 3}$ | 110 | 61 | 3.892962 | 1.138507 | 0.292453 |
| $\mathbf{2 0 0 4}$ | 62 | 35 | 2.608749 | 1.063964 | 0.407844 |
| $\mathbf{2 0 0 5}$ | 34 | 9 | 0.877655 | 0.312425 | 0.355977 |
| $\mathbf{2 0 0 6}$ | 87 | 53 | 3.259059 | 0.990171 | 0.303821 |
| $\mathbf{2 0 0 7}$ | 63 | 35 | 2.98904 | 0.804513 | 0.269155 |
| $\mathbf{2 0 0 8}$ | 34 | 20 | 2.208799 | 0.360442 | 0.163185 |
| $\mathbf{2 0 0 9}$ | 24 | 12 | 0.986612 | 0.305192 | 0.309333 |
| $\mathbf{2 0 1 0}$ | 34 | 23 | 2.381907 | 1.245926 | 0.523079 |
| $\mathbf{2 0 1 1}$ | 22 | 10 | 1.582299 | 1.289102 | 0.814702 |
| $\mathbf{2 0 1 2}$ | 25 | 11 | 0.757233 | 0.195258 | 0.257858 |

Table 14. Index of abundance for the WFS censored Poisson model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 6}$ | 18 | 14 | 1.237635 | 0.377596 | 0.305095 |
| $\mathbf{1 9 9 7}$ | 19 | 13 | 1.845836 | 0.567005 | 0.307181 |
| $\mathbf{1 9 9 8}$ | 70 | 47 | 2.40488 | 0.476145 | 0.197991 |
| $\mathbf{1 9 9 9}$ | 111 | 41 | 1.463846 | 0.33343 | 0.227777 |
| $\mathbf{2 0 0 0}$ | 118 | 49 | 2.267839 | 0.427306 | 0.18842 |
| $\mathbf{2 0 0 1}$ | 99 | 46 | 2.284234 | 0.425785 | 0.186402 |
| $\mathbf{2 0 0 2}$ | 162 | 77 | 2.051782 | 0.317998 | 0.154986 |
| $\mathbf{2 0 0 3}$ | 110 | 61 | 2.626852 | 0.439468 | 0.167298 |
| $\mathbf{2 0 0 4}$ | 62 | 35 | 2.57911 | 0.572857 | 0.222114 |
| $\mathbf{2 0 0 5}$ | 34 | 9 | 0.870169 | 0.322432 | 0.37054 |
| $\mathbf{2 0 0 6}$ | 87 | 53 | 3.052478 | 0.50394 | 0.165092 |
| $\mathbf{2 0 0 7}$ | 63 | 35 | 2.995624 | 0.591306 | 0.19739 |
| $\mathbf{2 0 0 8}$ | 34 | 20 | 2.599109 | 0.582749 | 0.224211 |
| $\mathbf{2 0 0 9}$ | 24 | 12 | 1.180342 | 0.374083 | 0.316928 |
| $\mathbf{2 0 1 0}$ | 34 | 23 | 2.184495 | 0.583976 | 0.267327 |
| $\mathbf{2 0 1 1}$ | 22 | 10 | 1.356832 | 0.528122 | 0.389232 |
| $\mathbf{2 0 1 2}$ | 25 | 11 | 0.957944 | 0.264624 | 0.276242 |

Table 15. Index of abundance for the FLK multinomial scaling model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 4}$ | 1201 | 609 | 1.238812 | 0.062365 | 0.050343 |
| $\mathbf{1 9 9 5}$ | 715 | 416 | 1.544508 | 0.095474 | 0.061815 |
| $\mathbf{1 9 9 6}$ | 584 | 282 | 1.240506 | 0.109314 | 0.088121 |
| $\mathbf{1 9 9 7}$ | 680 | 421 | 1.83552 | 0.119404 | 0.065052 |
| $\mathbf{1 9 9 8}$ | 452 | 302 | 2.658775 | 0.231813 | 0.087188 |
| $\mathbf{1 9 9 9}$ | 538 | 362 | 2.064409 | 0.140372 | 0.067996 |
| $\mathbf{2 0 0 0}$ | 746 | 486 | 2.630238 | 0.163323 | 0.062094 |
| $\mathbf{2 0 0 1}$ | 1588 | 1081 | 2.882901 | 0.117932 | 0.040907 |
| $\mathbf{2 0 0 2}$ | 1643 | 1211 | 2.969873 | 0.111954 | 0.037697 |
| $\mathbf{2 0 0 3}$ | 876 | 627 | 2.131483 | 0.101497 | 0.047618 |
| $\mathbf{2 0 0 4}$ | 534 | 342 | 2.092777 | 0.148625 | 0.071018 |
| $\mathbf{2 0 0 5}$ | 663 | 404 | 1.828669 | 0.119374 | 0.065279 |
| $\mathbf{2 0 0 6}$ | 619 | 396 | 1.863916 | 0.121601 | 0.065239 |
| $\mathbf{2 0 0 7}$ | 493 | 314 | 1.792065 | 0.12248 | 0.068346 |
| $\mathbf{2 0 0 8}$ | 353 | 231 | 2.323282 | 0.193901 | 0.08346 |
| $\mathbf{2 0 0 9}$ | 460 | 305 | 2.614551 | 0.224749 | 0.085961 |
| $\mathbf{2 0 1 0}$ | 315 | 209 | 2.791731 | 0.25878 | 0.092695 |
| $\mathbf{2 0 1 1}$ | 222 | 170 | 2.490712 | 0.19164 | 0.076942 |
| $\mathbf{2 0 1 2}$ | 289 | 209 | 2.350956 | 0.164963 | 0.070168 |

Table 16. Index of abundance for the FLK censored Poisson model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 4}$ | 1201 | 609 | 1.257171 | 0.055342 | 0.044021 |
| $\mathbf{1 9 9 5}$ | 715 | 416 | 1.56178 | 0.081476 | 0.052169 |
| $\mathbf{1 9 9 6}$ | 584 | 282 | 1.220529 | 0.082677 | 0.067739 |
| $\mathbf{1 9 9 7}$ | 680 | 421 | 1.78138 | 0.095208 | 0.053446 |
| $\mathbf{1 9 9 8}$ | 452 | 302 | 2.311278 | 0.150758 | 0.065227 |
| $\mathbf{1 9 9 9}$ | 538 | 362 | 2.047692 | 0.11243 | 0.054906 |
| $\mathbf{2 0 0 0}$ | 746 | 486 | 2.40363 | 0.11823 | 0.049188 |
| $\mathbf{2 0 0 1}$ | 1588 | 1081 | 2.684521 | 0.089996 | 0.033524 |
| $\mathbf{2 0 0 2}$ | 1643 | 1211 | 2.804579 | 0.088877 | 0.03169 |
| $\mathbf{2 0 0 3}$ | 876 | 627 | 2.11681 | 0.087596 | 0.041381 |
| $\mathbf{2 0 0 4}$ | 534 | 342 | 2.016297 | 0.119556 | 0.059295 |
| $\mathbf{2 0 0 5}$ | 663 | 404 | 1.793946 | 0.095463 | 0.053214 |
| $\mathbf{2 0 0 6}$ | 619 | 396 | 1.814775 | 0.099768 | 0.054976 |
| $\mathbf{2 0 0 7}$ | 493 | 314 | 1.748284 | 0.10609 | 0.060682 |
| $\mathbf{2 0 0 8}$ | 353 | 231 | 2.233579 | 0.157039 | 0.070308 |
| $\mathbf{2 0 0 9}$ | 460 | 305 | 2.351622 | 0.156063 | 0.066364 |
| $\mathbf{2 0 1 0}$ | 315 | 209 | 2.604755 | 0.200549 | 0.076994 |
| $\mathbf{2 0 1 1}$ | 222 | 170 | 2.623483 | 0.197624 | 0.075329 |
| $\mathbf{2 0 1 2}$ | 289 | 209 | 2.443446 | 0.160246 | 0.065582 |

Table 17. Index of abundance for the SEFL multinomial scaling model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 4}$ | 21 | 3 | 0.194916 | 0.137864 | 0.707298 |
| $\mathbf{1 9 9 5}$ | 26 | 7 | 0.384166 | 0.180423 | 0.46965 |
| $\mathbf{1 9 9 6}$ | 11 | 1 | 0.23698 | 0.305291 | 1.288254 |
| $\mathbf{1 9 9 7}$ | 59 | 20 | 1.703367 | 0.670571 | 0.393674 |
| $\mathbf{1 9 9 8}$ | 104 | 33 | 0.624909 | 0.180401 | 0.288683 |
| $\mathbf{1 9 9 9}$ | 317 | 97 | 0.811387 | 0.188146 | 0.231882 |
| $\mathbf{2 0 0 0}$ | 336 | 122 | 0.819506 | 0.124579 | 0.152018 |
| $\mathbf{2 0 0 1}$ | 696 | 247 | 0.713786 | 0.085831 | 0.120247 |
| $\mathbf{2 0 0 2}$ | 948 | 198 | 0.405756 | 0.052283 | 0.128854 |
| $\mathbf{2 0 0 3}$ | 1067 | 236 | 0.421486 | 0.048999 | 0.116253 |
| $\mathbf{2 0 0 4}$ | 646 | 119 | 0.520101 | 0.098199 | 0.188808 |
| $\mathbf{2 0 0 5}$ | 530 | 137 | 0.723469 | 0.111952 | 0.154744 |
| $\mathbf{2 0 0 6}$ | 834 | 239 | 0.817155 | 0.097752 | 0.119624 |
| $\mathbf{2 0 0 7}$ | 574 | 161 | 0.674286 | 0.080864 | 0.119926 |
| $\mathbf{2 0 0 8}$ | 319 | 41 | 0.400028 | 0.089706 | 0.224248 |
| $\mathbf{2 0 0 9}$ | 233 | 35 | 0.226398 | 0.044362 | 0.195947 |
| $\mathbf{2 0 1 0}$ | 457 | 57 | 0.301003 | 0.048052 | 0.159638 |
| $\mathbf{2 0 1 1}$ | 297 | 28 | 0.157036 | 0.037398 | 0.23815 |
| $\mathbf{2 0 1 2}$ | 339 | 62 | 0.279318 | 0.043467 | 0.155618 |

Table 18. Index of abundance for the FLK+SEFL multinomial scaling model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 4}$ | 1222 | 612 | 1.173837 | 0.064063 | 0.054576 |
| $\mathbf{1 9 9 5}$ | 741 | 423 | 1.156219 | 0.092241 | 0.079778 |
| $\mathbf{1 9 9 6}$ | 595 | 283 | 0.920688 | 0.087175 | 0.094685 |
| $\mathbf{1 9 9 7}$ | 739 | 441 | 1.472047 | 0.107548 | 0.07306 |
| $\mathbf{1 9 9 8}$ | 556 | 335 | 2.138416 | 0.211448 | 0.098881 |
| $\mathbf{1 9 9 9}$ | 855 | 459 | 1.473165 | 0.116879 | 0.079339 |
| $\mathbf{2 0 0 0}$ | 1082 | 608 | 1.926278 | 0.135878 | 0.070539 |
| $\mathbf{2 0 0 1}$ | 2284 | 1328 | 1.901209 | 0.099433 | 0.0523 |
| $\mathbf{2 0 0 2}$ | 2591 | 1409 | 1.775033 | 0.088028 | 0.049592 |
| $\mathbf{2 0 0 3}$ | 1943 | 863 | 1.119545 | 0.060436 | 0.053983 |
| $\mathbf{2 0 0 4}$ | 1180 | 461 | 1.116703 | 0.088337 | 0.079105 |
| $\mathbf{2 0 0 5}$ | 1193 | 541 | 1.162988 | 0.081675 | 0.070229 |
| $\mathbf{2 0 0 6}$ | 1453 | 635 | 1.116863 | 0.077114 | 0.069045 |
| $\mathbf{2 0 0 7}$ | 1067 | 475 | 1.044286 | 0.069668 | 0.066714 |
| $\mathbf{2 0 0 8}$ | 672 | 272 | 1.111771 | 0.099529 | 0.089523 |
| $\mathbf{2 0 0 9}$ | 693 | 340 | 1.466129 | 0.136187 | 0.092889 |
| $\mathbf{2 0 1 0}$ | 772 | 266 | 1.09451 | 0.106965 | 0.097729 |
| $\mathbf{2 0 1 1}$ | 519 | 198 | 0.990004 | 0.086124 | 0.086993 |
| $\mathbf{2 0 1 2}$ | 628 | 271 | 1.076397 | 0.082686 | 0.076818 |

Table 19. Index of abundance for the FLK+SEFL censored Poisson model.

| year | Total.num.trips | Num.pos | Mean | std.dev | CV |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 9 4}$ | 1222 | 612 | 1.258809 | 0.062089 | 0.049324 |
| $\mathbf{1 9 9 5}$ | 741 | 423 | 1.216724 | 0.069124 | 0.056812 |
| $\mathbf{1 9 9 6}$ | 595 | 283 | 0.991147 | 0.06784 | 0.068446 |
| $\mathbf{1 9 9 7}$ | 739 | 441 | 1.37839 | 0.074571 | 0.0541 |
| $\mathbf{1 9 9 8}$ | 556 | 335 | 1.70129 | 0.109084 | 0.064118 |
| $\mathbf{1 9 9 9}$ | 855 | 459 | 1.399072 | 0.076585 | 0.05474 |
| $\mathbf{2 0 0 0}$ | 1082 | 608 | 1.676359 | 0.079455 | 0.047397 |
| $\mathbf{2 0 0 1}$ | 2284 | 1328 | 1.729199 | 0.062091 | 0.035908 |
| $\mathbf{2 0 0 2}$ | 2591 | 1409 | 1.58059 | 0.055139 | 0.034885 |
| $\mathbf{2 0 0 3}$ | 1943 | 863 | 1.030997 | 0.042152 | 0.040884 |
| $\mathbf{2 0 0 4}$ | 1180 | 461 | 0.995913 | 0.057577 | 0.057813 |
| $\mathbf{2 0 0 5}$ | 1193 | 541 | 1.095921 | 0.056128 | 0.051215 |
| $\mathbf{2 0 0 6}$ | 1453 | 635 | 0.992834 | 0.050471 | 0.050835 |
| $\mathbf{2 0 0 7}$ | 1067 | 475 | 0.974473 | 0.052766 | 0.054148 |
| $\mathbf{2 0 0 8}$ | 672 | 272 | 1.026032 | 0.071323 | 0.069513 |
| $\mathbf{2 0 0 9}$ | 693 | 340 | 1.297652 | 0.083893 | 0.06465 |
| $\mathbf{2 0 1 0}$ | 772 | 266 | 0.938027 | 0.068652 | 0.073188 |
| $\mathbf{2 0 1 1}$ | 519 | 198 | 0.918153 | 0.06608 | 0.071971 |
| $\mathbf{2 0 1 2}$ | 628 | 271 | 1.067434 | 0.069194 | 0.064823 |

## Figures



Figure 1. REEF sampling locations, broken down into five primary areas: (1) western and northern Gulf of Mexico (green); (2) west Florida shelf (purple); (3) Florida Keys (red); (4) southest Florida (blue); and (5) northeast Florida through North Carolina (magenta).


Figure 3. Proportion of surveys with the presence of hogfish for each of the five regions.


Figure 2. The average abundance category per sampling location, demonstrating the primary range of hogfish is Southeast Florida through the West Florida Shelf.


Figure 4. Indices of abundance from the multinomial scaling model for the three survey regions (a-c) and for the FLK+SEFL combined stock (d).


Figure 5. Indices of abundance from the censored Poisson model for the three survey regions (ac) and for the FLK+SEFL combined stock (d). Note: the null model for SEFL (with Year as the single predictor) did not converge; therefore, no results are shown.

