
Standardized Catch Rates of Bonnethead and Atlantic Sharpnose Shark from the Southeast Sink Gillnet Fishery: 2005-2011

John Carlson, Alyssa Mathers, and Michelle Passerotti

SEDAR34-WP-28

8 May 2013 Updated: 8 July 2013

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Carlson, J., A. Mathers, and M. Passerotti. 2013. Standardized Catch Rates of Bonnethead and Atlantic Sharpnose Shark from the Southeast Sink Gillnet Fishery: 2005-2011. SEDAR34-WP-28. SEDAR, North Charleston, SC. 14 pp.

Standardized Catch Rates of Bonnethead and Atlantic Sharpnose Shark from the Southeast Sink Gillnet Fishery: 2005-2011

John Carlson, Alyssa Mathers and Michelle Passerotti NOAA/National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408

SEDAR34-WP-28

Abstract

A standardized catch rate series was developed for Atlantic sharpnose and bonnethead shark using the Delta lognormal approach based on observer data collected in the southeast sink gillnet fishery. Depending on the species, differing factors were found to be significant as main effects in the final model. For Atlantic sharpnose shark, year, season, area, and meshsize were significant in the binomial model and year, target, season and area in the lognormal model. For the bonnethead sharks, year, area, target and season were significant in the binomial model whereas year and meshsize were significant in the lognormal model. The relative abundance index was relatively stable for both species from 2005-2011.

Introduction

Observer coverage of the Florida-Georgia shark gillnet fishery began in 1992, and has since documented the many changes to effort, gear characteristics, and target species the fishery has undergone following the implementation of multiple fisheries regulations (e.g., Passerotti et al. 2010 and references therein). In 2005, the shark gillnet observer program was expanded to include all vessels that have an active directed shark permit and fish with sink gillnet gear. These vessels were not previously subject to observer coverage because they either were targeting non-highly migratory species or were not fishing gillnets in a drift or strike fashion. These vessels were selected for observer coverage in an effort to determine their impact on finetooth shark, Carcharhinus isodon, landings and their overall fishing impact on shark resources when the gear is not targeting sharks. In 2006, the National Marine Fisheries Service Southeast Regional Office requested further expansion of the scope of the shark gillnet observer program to include all vessels fishing gillnets regardless of target, and for coverage to be extended to cover the full geographic range of gillnet fishing effort in the southeast United States. This was requested because of the need to monitor (at statistically adequate levels) all gillnet fishing effort to assess risks to right whales and other protected species. Further, in 2007 the regulations implementing the Atlantic Large Whale Take Reduction Plan were amended and included the removal of the mandatory 100% observer coverage for drift gillnet vessels during the right whale calving season but now prohibit all gillnets in an expanded southeast U.S. restricted area that covers an area from Cape Canaveral, FL, to the North Carolina/South Carolina border, from November 15 - April 15. The rule does posses limited exemptions, only in waters south of 29 degrees N latitude, for shark strikenet fishing during this same period and for Spanish mackerel gillnet fishing in the months of December and March. Based on these regulations and on current funding levels, the shark gillnet observer program now covers all anchored (sink, stab, set), strike, or drift gillnet fishing by vessels that fish from Florida to North Carolina and the Gulf of Mexico year-round. Current protocols for selection of vessels for observer coverage and collection of data are found in Passerotti et al. (2010). Herein, we develop a catch rate series for Atlantic sharpnose shark and bonnethead shark based on data collected by on-board observers from 2005-2011.

I. Fishery description

Vessel and gear descriptions are provided in detail in Passerotti et al. (2010 and references therein).

Catch rates analysis

A combined data set was developed based from Passerotti et al. (2010 and references therein). Catch rates were standardized in a two-part generalized linear model analysis using the PROC GENMOD procedure in SAS (SAS Inst., Inc.). For the purposes of analysis, several categorical variables were constructed:

-"Year" (7 levels)=2005-2011

"Area" (4 levels)=location of net set (Figure 1).
South Florida=South of 27°51' N Latitude
Central Florida=27°51' N to 30°00' N LatitudeN. Florida/Georgia=30°00' N Latitude to 32°00' N Latitude
North Carolina= North of 32°00' N Latitude
Gulf of Mexico=All sets within the eastern Gulf of Mexico from -88.0 W longitude east.

- 'Target'' (3 levels) Shark Mackerel (Spanish or King Mackerel) Other Teleost Dogfish

- "SetBegin" (4 levels) Dawn=0401-1000 hrs Day=1001-1600 hrs Dusk=1601-2200 hrs Night=2201-0400 hrs

-"Season" (4 levels): corresponds to the level of observer coverage as it pertains to the right whale calving season. Rightwhale1=Jan-Mar Nonrightwhale1=Apr-Jun Nonrightwhale2=Jul-Sep Rightwhale2=Oct-Dec

-"Meshsize" (3 levels): corresponds to the principal mesh size used in the fishing gear. Small mesh=2"-6" stretched mesh Medium mesh=7"-9" stretched mesh Large mesh=>10" stretched mesh

The proportion of sets that caught a shark (when at least one shark was caught) was modeled assuming a binomial distribution with a logit link function. The positive catches were modeled assuming a lognormal distribution with a normal link function. Positive catches were modeled using a dependent variable of the natural logarithm of the number of sharks caught per 10^{-7} net area hours, i.e.:

CPUE=log [(shark kept+ shark released)/(net length*net depth*soak time/1000000)]

Initially, a null model was run with no factors entered into the model. Models were then fit in a stepwise forward manner adding one independent variable. Each factor was ranked from greatest to least reduction in deviance per degree of freedom when compared to the null model. The factor with the greatest reduction in deviance was then incorporated into the model providing the effect was significant at p<0.05 based on a Chi-Square test, and the deviance per degree of freedom was reduced by at least 1% from the less complex model. The process was

continued until no factors met the criterion for incorporation into the final model. Regardless of its level of significance, year was kept in all final models. After selecting the set of fixed factors and interactions for each error distribution, all interactions that included the factor year were treated as random interactions (Ortiz and Arocha, 2004). This process converted the basic models from generalized linear models into generalized linear mixed models. The final modeldetermination was evaluated using the Akaike Information Criteria (AIC), and Schwarz's Bayesian Criterion (BIC). Models with smaller AIC and BIC values are preferred to those with larger values. These models were fit using a SAS macro, GLIMMIX (glmm800MaOB.sas: Russ Wolfinger, SAS Institute Inc.) and the MIXED procedure in SAS statistical computer software (PROC GLIMMIX). Relative indices of abundance were calculated as the product of the year effect least square means from the two independent models. The standard error of the combined index was estimated with the delta method (Appendix 1 in Lo et al., 1992).

Results and Discussion

Atlantic Sharpnose Shark

The proportion of positive sets (i.e. at least one shark was caught) was 30.8%. The stepwise construction of the models is summarized in Table 1. The index statistics can be found in Table 2.

The delta-lognormal abundance index is shown in Figure 2. To allow for visual comparison with the nominal values, both series were scaled to the maximum of their respective index. The average size of Atlantic sharpnose sharks caught by year is reported in Table 3. Table 4 provides a table of the frequency of observations by factor and level. Diagnostic plots assessing the fit of the models were deemed acceptable (Figure 3).

Table 1. Analysis of deviance of explanatory variables for the binomial and lognormal generalized linear formulations of the proportion of positive and positive catches for Atlantic sharpnose shark.

Proportion positive-Binomial error distribution	on				
FACTOR	DEVIANCE/DF	%DIFF	DELTA%	CHISQUARE	PR>CHI
NULL	4.168				
YEAR	3.5609	14.566	14.566	137.33	<.0001
YEAR+					
SEASON	2.7532	33.944	19.379	157.68	<.0001
AREA	3.0994	25.638		97.77	<.0001
TARGET	3.3852	18.781		42.66	<.0001
MESHSIZE	3.4931	16.192		19.52	<.0001
SETBEGIN	3.5949	13.750		4.48	0.2139

6

YEAR+SEASON+					
AREA	2.5166	39.621	5.677	53.12	<.0001
MESHSIZE	2.5977	37.675		33.49	<.0001
TARGET	2.7679	33.592		5.62	0.1316
YEAR+SEASON+AREA+					
MESHSIZE	2.3012	44.789	5.168	42.94	<.0001
MIXED MODEL	AIC 219.4				
YEAR+SEASON+AREA+MESHSIZE YEAR+SEASON+AREA+MESHSIZE YEAR*SEASON	219.4				
YEAR+SEASON+AREA+MESHSIZE YEAR*AREA	279.7				
YEAR+SEASON+AREA+MESHSIZE YEAR*MESHSIZE	280.2				
Positive catches-Lognormal error distribution					
FACTOR	DEVIANCE/DF	%DIFF	DELTA%	CHISQUARE	PR>CHI
NULL	2.105				
YEAR	2.084	0.974	0.974	10.02	0.1238
YEAR+	1.007				
TARGET	1.927	8.425	7.451	34.58	<.0001
AREA	1.935	8.078		34.09	<.0001
SETBEGIN	1.977	6.049		24.25	<.0001
SEASON	2.016	4.191		16.37	0.001
MESHSIZE	2.025	3.801		12.69	0.0004
YEAR+TARGET+					
SEASON	1.812	13.880	5.455	27.84	<.0001
AREA	1.833	12.925		24.42	<.0001
SETBEGIN	1.877	10.829		13.82	0.0032
MESHSIZE	1.919	8.829		2.82	0.0934
YEAR+TARGET+SEASON+					
AREA	1.714	18.565	4.685	26.70	<.0001
SETBEGIN	1.757	16.526		15.69	0.0013
YEAR+TARGET+SEASON+AREA+					
SETBEGIN	1.700	19.225	0.660	6.43	0.0926
MIXED MODEL	AIC				
YEAR+TARGET+SEASON+AREA	1373.6				
YEAR+TARGET+SEASON+AREA YEAR*TARGET	1372.9				
YEAR+TARGET+SEASON+AREA YEAR*SEASON	1370.8				
YEAR+TARGET+SEASON+AREA YEAR*AREA	1357.8				

shark	with the associated co	oefficie	ents of	variation (CV) as	nd num
Year	Standardized index	CV	Ν	Nominal index	CV
2005	2319.97	0.30	73	7055.30	0.10
2006	1408.92	0.25	141	1521.48	0.24
2007	1615.35	0.47	79	472.94	1.59
2008	1189.67	0.38	119	1076.37	0.42
2009	2280.50	0.30	171	1021.63	0.68
2010	471.50	0.37	290	642.81	0.27
2011	291.17	0.29	415	541.85	0.16

Table 2. The absolute standardized and nominal index of abundance for Atlantic sharpnose shark with the associated coefficients of variation (CV) and number of sets observed (N).

Table 3. Mean size of Atlantic sharpnose shark from the sink gillnet fishery.

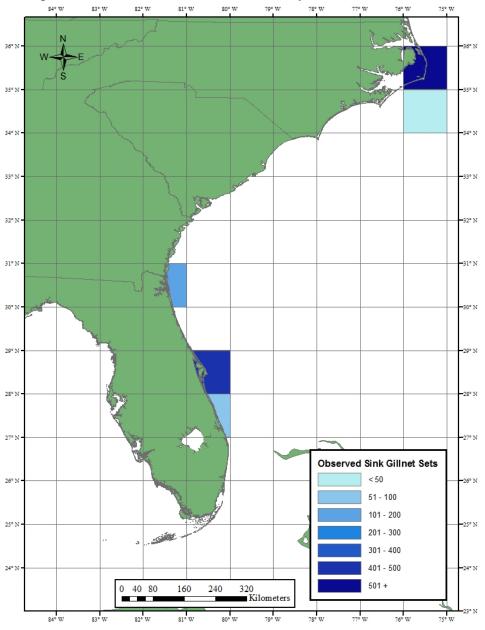
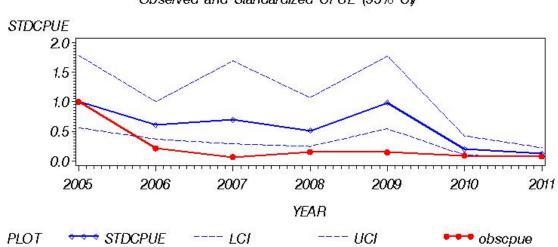
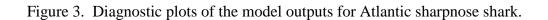
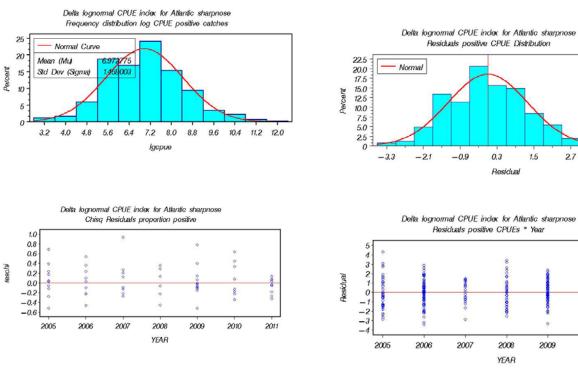
Year	Mean	Standard Deviation	Ν
2005	75.21	11.69	194
2006	72.92	9.92	145
2007	76.08	11.63	13
2008	77.76	5.48	72
2009	72.13	11.27	191
2010	74.51	11.13	79
2011	67.31	17.69	195

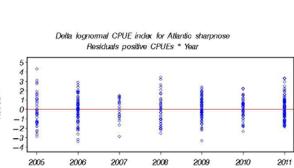
Table 4. Frequency of observations by factor and level used in the development of the standardized catch rate series.

FACTOR	LEVEL	FREQUENCY
		OF TOTAL
YEAR	2005	5.6
	2006	10.8
	2007	6.0
	2008	9.1
	2009	13.1
	2010	23.0
	2011	32.4
AREA	Central Florida	35.8
	Georgia	10.5
	Gulf of Mexico	1.8
	North Carolina	47.7
	South Florida	4.2
TARGET	Mackerel	51.4
	Other	32.1

	Shark	14.5
	Dogfish	1.9
SETBEGIN	Dawn	49.7
	Day	38.5
	Dusk	9.1
	Night	2.7
SEASON	Rightwhale1=Jan	29.8
	Nonrightwhale1=Apr	23.4
	Nonrightwhale2=Jul	19.0
	Rightwhale2=Oct	27.8
MESHSIZE	Large	1.3
	Medium	5.7
	Small	93.0

Figure 1. Distribution of fishing effort in the southeast US sink gillnet fishery 2005-2011. Fishing areas defined for GLM analysis are: South Florida, Central Florida, North Florida/Georgia, North Carolina and Gulf of Mexico. An individual plot by year and in some locations was not possible because of vessel confidentiality.


Figure 2. Nominal and standardized indices of abundance for Atlantic sharpnose shark. The dashed lines are the 95% confidence limits for the standardized index. Each index has been divided by the maximum of the index.

Delta lognormal CPUE index for Atlantic sharpnose Observed and Standardized CPUE (95% C)

YEAR

0.3


Residual

1.5

2.7

3.9

-0.9

Bonnethead Shark

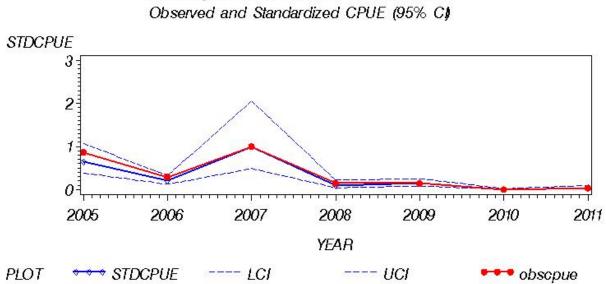
The proportion of positive sets (i.e. at least one shark was caught) was 18.4%. The stepwise construction of the models is summarized in Table 5. The index statistics can be found in Table 6.

The delta-lognormal abundance index is shown in Figure 4. To allow for visual comparison with the nominal values, both series were scaled to the maximum of their respective index. The average size of bonnethead sharks caught by year is reported in Table 7. Diagnostic plots assessing the fit of the models were deemed acceptable (Figure 5).

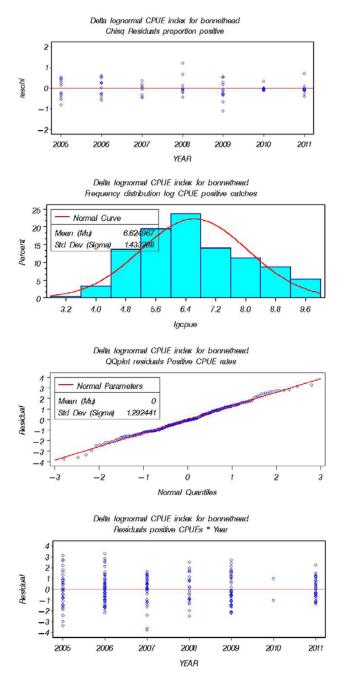
Table 5. Analysis of deviance of explanatory variables for the binomial and lognormal generalized linear formulations of the proportion of positive and positive catches for Atlantic sharpnose shark.

Proportion positive-Binomial error distribution					
FACTOR	DEVIANCE/DF	%DIFF	DELTA%	CHISQUARE	PR>CHI
NULL	3.9765				
YEAR	2.7109	31.827	31.827	257.98	<.0001
YEAR+					
AREA	1.8735	52.886	21.059	162.43	<.0001
TARGET	2.2012	44.645		100.91	<.0001
SEASON	2.3711	40.372		69.98	<.0001
SETBEGIN	2.7052	31.970		9.17	0.0271
MESHSIZE	2.7154	31.714		4.6	0.1
YEAR+AREA+					
TARGET	1.6364	58.848	5.963	47.81	<.0001
SEASON	1.7036	57.158		35.86	<.0001
SETBEGIN	1.8775	52.785		4.91	0.1785
YEAR+AREA+TARGET+					
SEASON	1.575	60.392	1.544	15.65	0.0013
MIXED MODEL	AIC				
YEAR+AREA+TARGET+SEASON	383.8				
YEAR+AREA+TARGET+SEASON YEAR*AREA	410.3				
YEAR+AREA+TARGET+SEASON YEAR*TARGET	426.7				
YEAR+AREA+TARGET+SEASON YEAR*SEASON	414.5				
Positive catches-Lognormal error distribution					
FACTOR	DEVIANCE/DF	%DIFF	DELTA%	CHISQUARE	PR>CHI
NULL	2.061				
YEAR	1.851	10.180	10.180	31.87	<.0001
YEAR+					

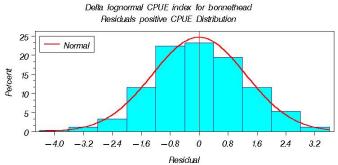
MESHSIZE	1.734	15.847	5.667	17.71	0.0001
AREA	1.830	11.184		6.86	0.1434
SETBEGIN	1.836	10.932		5.13	0.1626
TARGET	1.837	10.859		3.89	0.1427
SEASON	1.863	9.627		1.63	0.6518
MIXED MODEL	AIC				
YEAR+MESHSIZE	813.8				
YEAR+MESHSIZE YEAR*MESHSIZE	815.6				


Table 6. The absolute standardized and nominal index of abundance for bonnethead shark with the associated coefficients of variation (CV) and number of sets observed (N).

Year	Standardized index	CV	Ν	Nominal index	CV
2005	2114.30	0.26	73	1861.91	0.30
2006	651.80	0.25	141	626.75	0.26
2007	3308.05	0.37	79	2150.92	0.57
2008	301.33	0.45	119	310.45	0.44
2009	470.19	0.29	171	304.39	0.45
2010	7.58	1.41	290	2.45	4.35
2011	136.84	0.42	416	75.19	0.77


Table 7. Mean size of bonnethead shark from the sink gillnet fishery.

Year	Mean	Standard Deviation	Ν
2005	79.7	18.2	84
2006	66.13	15.24	30
2007	75.18	27.68	11
2008	72.34	11.94	41
2009	74.27	9.62	56
2010	78.33	29.94	3
2011	61.52	20.19	88


Figure 4. Nominal and standardized indices of abundance for bonnethead shark. The dashed lines are the 95% confidence limits for the standardized index. Each index has been divided by the maximum of the index.

Delta lognormal CPUE index for bonnethead

Figure 5. Diagnostic plots of the model outputs for bonnethead shark.

