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1 Introduction

In May 2006, the Dauphin Island Sea Lab (DISL), in conjunction with the National
Marine Fisheries Service Mississippi Labs (NMFS MS Labs), initiated a monthly
nearshore longline survey in Alabama coastal waters. This survey was initially
designed to complement the annual NMFS bottom longline survey (SEFSC BLL),
while sampling throughout the year and in waters inaccessible to large NMF'S ves-
sels. Atlantic sharpnose sharks Rhizoprionodon terraenovae are the most common
component of the catch. Between May 2006 and December 2011, 1,196 Atlantic
sharpnose sharks were captured during 446 bottom longline sets. Nominal and
standardized catch per unit effort (CPUE, sharks/100 hooks/hour) and length
frequency distributions are presented below.

2 Materials and Methods

2.1 Field Collections

Fisheries independent data were collected from 2006 to 2011 off the Alabama coast
(Figure 1). At each station, a single bottom-longline was set and soaked for one
hour. The main line consisted of 1.85 km (1 nm) of 4 mm monofilament (545
kg test) sampled with 100 gangions. Each gangion was made of 3.66 m of 3 mm
(320 kg test) monofilament. Gangions consisted of a longline snap and a 15/0
circle hook, baited with Atlantic mackerel Scomber scombrus. The longline was
anchored to the bottom with weights at the start, middle and end of the mainline,
and identified with buoys at each end. All sharks that could be safely boated were
removed from the mainline, unhooked and identified to species. Biotic variables
collected included sex, length (precaudal, fork, natural and stretch total), weight
and maturity (when possible). Maturity in males was assessed following Clark and
Von Schmidt (1965). Sharks were tagged in the primary dorsal fin with a plastic
rototag. Abiotic variables collected included depth as well as surface and bottom
values for temperature, salinity and dissolved oxygen using a Seabird SBE911 plus,

or an SBE 25 CTD (2006-2009), and recently with a Hydrolab MS5 multiprobe.

2.2 Modeling approach

Standardized catch per unit effort of Atlantic sharpnose sharks was calculated to
examine changes in catch-per-unit-effort (CPUE) over time (Maunder and Punt
2004). Preliminary analyses indicated that Atlantic Sharpnose CPUE were ”zero-
inflated” with a long tail (i.e., few samples with larger than expected catch) which
is typical of many fishery independent data sets (Figure 2).
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Figure 1: Atlantic sharpnose shark nominal catch-per unit-effort (CPUE) from
2006 to 2011.
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Figure 2: Histogram of Altantic Sharpnose Sharks CPUE from 2006 to 2011.



A delta-lognormal approach (Lo et al. 1992) was used to develop a standardized
index of abundance. In general, this approach models separately the proportion of
positive sets (PPS, sets that captured Atlantic sharpnose sharks/total sets made)
and the catch rates on positive sets and combines these indices to construct a
single standardized CPUE index (Cass-Calay and Schmidt 2009).

Specifically,

ly = cypy (1)
where ¢, is the estimate of mean CPUE for positive catches only for year y, and
py is the estimate of mean probability of occurrence during year y. Both ¢, and
p, were estimated using generalized linear models and boosted regression trees.
Two modeling approaches were used to compare the performance of a relatively
new technique, boosted regression trees (BRT) Elith et al. (2008) with the cur-
rent standard practice delta approach using generalized linear models. For both
modeling approaches, data used to estimate abundance for positive catches ¢ and
probability of occurrence p were assumed to have a lognormal distribution and a
binomial distribution, respectively, and modeled using the following equations:

In(c) =X +¢ (2)
and
eXﬁJrs
P Ty e @)

respectively, where ¢ is a vector of the positive catch data, p is a vector of the
presence/absence data, X is the design matrix for main effects, /3 is the parameter
vector for main effects, and E is a vector of independent normally distributed errors
with expectation zero and variance ¢ (Ingram et al 2010).

For both modeling approaches, a standardized delta index for each year was
calculated as the annual mean delta value for all samples within a calender year.
Confidence limits for each approach was estimated using non-parametric boot-
strapping with replacement (n=200) (Efron and Tibshirani 1993). Analyses were
carried out in R (version x64 3.0.0, R Development Core Team, 2013). The boosted
regression tree models were fit using the "gbm” library supplemented with func-
tions from Elith et al. (2008) and J.T. Froeschke. The initial GLM sub-models
were fit using the exhaustive search algorithm implemented in the ”bestglm” li-
brary in R.

2.2.1 Boosted regression trees

Boosted regression trees use a model averaging (ensemble) method that allows
for both explanation and prediction (Elith et al. 2008). However, BRTs have
only recently been applied to ecological questions (Friedman 2001, Leathwick et



al. 2006, Elith et al. 2008, Froeschke et al. 2010, Froeschke and Froeschke
2011). Given the ability of BRTs to model interactions and automatically select
important variables, as well as robustness to outliers and missing data, BRT models
are growing in popularity. Each individual model consists of a simple regression
tree based on a series of binary splits constructed from the predictor variables
(Hastie et al. 2001), accommodates continuous or categorical predictors, missing
values, and is not affected by transformation or outliers. This technique can also
fit complex non-linear relationships and often has superior predictive performance
to other techniques such as generalized linear and additive models that are often
used to develop standardized indices of abundance (Lo et al. 1992). Relative
importance of explanatory variables can be estimated by averaging the number
of times a variable is selected for splitting and the squared improvement resulting
from these splits (Friedman 2001, Friedman and Muelman 2003). Values are scaled
to 100 and, higher numbers indicate a stronger influence on the response variable.
The ability to model interactions is controlled by a tree complexity (tc) parameter
where the value specifies the number of nodes on each tree and subsequently the
ability to model interactions (Leathwick et al. 2006).

2.2.2 BRT Model fitting and variable selection

A delta-model was developed using BRT (hereafter: delta-brt). The objective was
to estimate the probablilty of catching one or more Atlantic Sharpnose Sharks in a
sample as well as the expected number in samples where one or more animals were
caught. To estimate the probability of occurrence, a binomial BRT was fit to these
data using a tree complexity of 5 with a learning rate = 0.001 to minimize residual
deviance without overfitting. The positive samples were were log transformed and
a BRT was fit to these data using a tree complexity of 5 with a learning rate =
0.001 with a Gaussian error distribution. A delta-value for each positive sample
was computed as the product of the probability of occurrence times un-logged
CPUE value from the positive BRT model using functions from J.T. Froeschke.

After the full model was fit, a model simplification routine (”gbm.simplify”)
was used that is similar to a backward selection routine in regression (Elith et al.
2008). Variables were removed until significant increases in residual deviance were
found between the full and reduced models. This routine was employed for both
the binomial and log-normal models and permits different explanatory variables
to be included in each sub-model.

2.2.3 GLM Model fitting and variable selection

As a basis for comparison, a standardized index of abundance was also developed
using generalized linear models following the protocol and Lo et al (1992). This



method combines two generalized linear models; an analysis of the probability of
capture and a second analysis of the number of individuals captured in positive
samples. The delta-glm is the product of fitted values from the binomial and
negative binomial model for each observation. Model selection for each sub-model
was selected from using an exhaustive search algorithm that explores all possible
combinations of main-effects models and candidate models were selected based on
lowest Akaike’s information criterion (AIC) values. Using this approach, the model
with the most support may not include ”Year” as a predictor variable, although
this variable is typically retained in the delta-glm modeling approach. Therefore,
the model with the lowest AIC value including Year as a covariate was selected
as the "best” model and does not require that same model forumulation for each
submodel.

2.3  Model validation

Model validation process was identical for both the delta-brt and delta-glm models.
Residuals were extracted and geo-referenced to identify spatial patterns (i.e., loca-
tions or regions were model fits may be poor) and plotted in histograms to examine
overall model fits. This approach was conducted seperately for both sub-models
(binomial and log-normal).

2.3.1 Binomial models residuals

For the binomial sub-models a reciever-operator-characteristic curve (ROC) was
fit as an indicator of model performance. Values for ROC estimate the degree to
which fitted values discriminate between observed presences and absences and can
be interpreted as the probability that a presence for a species drawn at random will
have a higher fitted probability than an absence drawn at random (Parisen and
Moritz 2009). The area under the ROC curve can be integrated and interpreted
as an Area Under the Curve (AUC) value that has a range range from 0.5 to 1.
Using this metric, a value of one indicates perfect discrimination of probabilities
between presence and absence samples and a value of 0.5 indicates that model
discrimination is no better than random. While models with AUC values greater
than 0.6 are considered useful (Parisien and Moritz 2009), values greater than 0.8
are considered very good, and above greater than 0.9 excellent (Lane et al. 2009).

2.3.2 Model validation: Log-normal model

For the log-normal model, residuals were extracted and plotted in the same manner
as the binomial model, however, only positive catches were included. A QQ-plot
was also used to examine model fits.



3 Results

3.1 Length

Size of Altantic sharnose sharks sampled ranged from 483 to 963 mm FL from
2006 to 2011 (Figure 3).

3.2 BRT

An initial full model was fit where CPUE was modeled as a function of year sam-
pled,month, longitude, sample block, and depth. Model selection of the binomial
sub-model indicated that all variables should be retained and inspection of resid-
uals indicated an acceptable model fit (Figure 4). Evaluation of the binomial
sub-model suggested good predictive performance AUC = 0.89 (Figure 5). One
benefit of the BRT approach is the ability to estimate the relative influence of
predictor variables on the response. For the binomial sub-model, longitude of
sampling locaton was the most important predictor of occurrence as frequency of
occurrence increased from east to west (Figure 6).

Model selection for log-normal BRT sub-model also indicated that all predictors
considered should be retained in the model and inspection of residuals indicated
an acceptable model fit (Figure 7). To provide further detail about the model fit,
a QQplot was also produced (Figure 8). Examination of the relative influence of
predictors suggest that the spatial variables were the most important predictors
of abundance (Figure 9).

3.2.1 delta-brt index

The delta-brt model (combining binomial and negative binomial models) is the
product of fitted values from the binomial and negative binomial model for each
observation (Figure 10). Annual fits were computed as the mean of delta fits for
each sample year and compared to raw estimates of CPUE (Figure 11). Com-
paritively, the delta index has less annual variabilty than the raw CPUE and the
estimates and the abrupt increase in 2010 are moderated (Table 3).

3.3 GLM

An initial full model was fit where CPUE was also modeled as a function of year
sampled,month, longitude, sample block, and depth. Model selection of the bino-
mial sub-model indicated that Year, Month, and Block variables should be retained
(Table 1) and inspection of residuals indicated an acceptable model fit (Figure 12).
Evaluation of the binomial sub-model suggested reasonable predictive performance
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Figure 3: Size frequency of 1196 captured Altantic sharpnose shark from 2006 to
2011.
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Figure 4: Map and plot of residuals from binomial portion of fitted BRT model.
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Figure 5: A receiver operating characteristic (ROC) curve illustrating the perfor-
mance of the BRT sub-model. Model performance can be estimated using the area
under the curve (AUC) where AUC is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
one (assuming 'positive’ ranks higher than 'negative’). Model values approaching
1 indicate superior model performance.
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Figure 6: Mean contributions (percent) of variables predicting presence or absence
Atlantic sharpnose shark from fitted BRT model.
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Figure 7: Map and plot of residuals from log-normal portion of fitted BRT model.
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Figure 8: Diagnostic QQ plot used to assess model fit. Inspection of model resid-
uals suggest an imperfect but acceptable fit to these data.

16



Longitude

Block

Depth

Year

Month

10 20 30
Relative influence (%)

Figure 9: Mean contributions (percent) of variables predicting log-normal abun-
dance of Atlantic sharpnose shark from fitted BRT model in samples where at
least one shark was captured.
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Figure 10: Spatially-explicit delta-index fitted values at each sampling location
using a boosted regression tree (BRT) model.
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Figure 11: Comparison of annual (raw) and standardized (delta) CPUE estimates
for Atlantic sharpnose shark using boosted regression trees (BRT).
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AUC = 0.73 (Figure 13). Model selection for log-normal GLM sub-model also
indicated that Longitude, Year, Block, and Depth predictors should be retained
in the model (Table 2) and inspection of residuals indicated an acceptable model
fit (Figure 14). To provide further detail about the model fit, a QQplot was also
produced (Figure 15).

3.3.1 delta-glm index

The delta-glm model (combining binomial and negative binomial models) is the
product of fitted values from the binomial and negative binomial model for each
observation (Figure 10). Annual fits were computed as the mean of delta fits for
cach sample year and compared to raw estimates of CPUE (Figure 16). Com-
paritively, the delta index has less annual variabilty than the raw CPUE and the
estimates and the abrupt increase in 2010 are moderated, although less than with
the delta-brt model (Table 4).

4 Discussion

This report summarizes a time series of catch per unit effort (CPUE) for Atlantic
Sharpnose Shark off the coast of Alabama, USA, from 2006 to 2011. Standardized
indices of abundance were computed to account for changes in CPUE that are
assumed independent of population size (Froeschke et al. 2013). Two modeling
approaches were used: generalized linear models (GLMs) and boosted regression
trees (BRTs). Whereas generalized linear models are the most common method
for obtaining standardized indices of abundance, boosted regression is a compa-
rable, yet rarely employed, technique. This report examines both approaches in
terms of model fit and results. Both methods of standardization resulted in a
relatively stable CPUE across years, with the exception of a notable increase in
2010. Standardizing the indices moderated the increase in 2010, particularly in the
index constructed with boosted regression. This suggests that both sampling and
biological effects may have influenced the elevated catch rates in 2010. In terms
of model fit, the BRT outperformed the GLM approach for both the binomial
and log-normal sub-models, indicating that the increased model flexibility of this
approach may be useful in the development of future CPUE indices. That said,
it is difficult to evaluate model accuracy per se as the true population trend over
time is unknown. This is something that could be further explored as a simulation
exercise.

20
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Figure 12: Map and plot of residuals from binomial portion of fitted BRT model.
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Figure 13: A receiver operating characteristic (ROC) curve illustrating the perfor-
mance of the GLM sub-model. Model performance can be estimated using the area
under the curve (AUC) where AUC is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
one (assuming ’positive’ ranks higher than 'negative’). Model values approaching
1 indicate superior model performance.
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Figure 14: Map and plot of residuals from log-normal portion of fitted GLM model.
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Figure 15: Diagnostic QQ plot used to assess model fit. Inspection of model
residuals suggest an imperfect but acceptable fit to these data.
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Figure 16: Comparison of annual (raw) and standardized (delta) CPUE estimates
for Atlantic sharpnose shark using generalized linear models (GLMs).
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Longitude Year Month  Block  Depth  Criterion
FALSE FALSE TRUE TRUE FALSE 559.21
FALSE FALSE TRUE TRUE TRUE 559.62
TRUE FALSE TRUE TRUE FALSE 561.03
TRUE FALSE TRUE TRUE TRUE 561.48
FALSE TRUE TRUE TRUE FALSE 561.49
FALSE TRUE TRUE TRUE TRUE 561.69
TRUE TRUE TRUE TRUE FALSE 563.30
TRUE FALSE TRUE FALSE TRUE 563.43
TRUE TRUE TRUE TRUE TRUE 563.55
10 TRUE FALSE TRUE FALSE FALSE 563.59
11 TRUE TRUE TRUE FALSE TRUE 565.17
12 TRUE TRUE TRUE FALSE FALSE 565.63
13 FALSE FALSE FALSE TRUE FALSE 566.20
14 FALSE FALSE FALSE TRUE TRUE 566.30
15 TRUE FALSE FALSE FALSE TRUE 567.75
16 TRUE FALSE FALSE TRUE FALSE 567.83
17 TRUE FALSE FALSE FALSE FALSE 567.85
18 TRUE FALSE FALSE TRUE TRUE 568.00
19 FALSE TRUE FALSE TRUE FALSE 569.22
20 FALSE TRUE FALSE TRUE TRUE 569.62

00 3O Ul Wi

Ne}

Table 1: Summary of variables selected for binomial GLM model. Model selection
used an exhaustive search algorithm and models were selected using Akaike’s in-
formation criterion (AIC). The 20 best models are illustrated and the model with
the lowest AIC value that included year as a covariate was selected as ”best”.
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Longitude Year Month  Block  Depth  Criterion

1 TRUE FALSE FALSE TRUE TRUE -3.56
2 FALSE FALSE FALSE TRUE TRUE -2.94
3 TRUE FALSE TRUE TRUE TRUE -1.57
4 FALSE FALSE TRUE TRUE TRUE -0.96
5 FALSE FALSE FALSE TRUE FALSE 0.66
6 TRUE FALSE FALSE TRUE FALSE 1.22
7 FALSE FALSE FALSE FALSE FALSE 2.24
8 TRUE TRUE FALSE TRUE TRUE 2.55
9 TRUE FALSE FALSE FALSE FALSE 2.57
10 FALSE FALSE TRUE TRUE FALSE 2.64
11 FALSE TRUE FALSE TRUE TRUE 3.18
12 TRUE FALSE TRUE TRUE FALSE 3.21
13 TRUE TRUE FALSE FALSE FALSE 3.28
14 FALSE FALSE FALSE FALSE TRUE 3.39
15 FALSE TRUE FALSE FALSE FALSE 3.61
16 TRUE FALSE FALSE FALSE TRUE 3.94
17 FALSE FALSE TRUE FALSE FALSE 4.24
18 FALSE TRUE FALSE TRUE FALSE 4.31
19 TRUE TRUE TRUE TRUE TRUE 4.50
20 TRUE FALSE TRUE FALSE FALSE 4.53

Table 2: Summary of variables selected for log-normal GLM model. Model selec-
tion used an exhaustive search algorithm and models were selected using Akaike’s
information criterion (AIC). The 20 best models are illustrated and the model
with the lowest AIC value that included year as a covariate was selected as ”best”

Year Nominal Sets PPS BRT LCI UCI

1 2006 1.85 93.00 042 1.08 0.53 1.63
2 2007 1.81 124.00 0.40 0.95 0.49 1.41
3 2008 295 115.00 0.50 1.36 0.76 1.96
4 2009 3.60 45.00 049 1.30 0.78 1.82
5 2010 6.81 31.00 0.58 1.89 1.13 2.65
6 2011 1.97 38.00 034 0.89 040 1.38

Table 3: Abundance index statistics for Atlantic sharpnose shark sampled during
the Dauphin Island Sea Lab (DISL) bottom longline survey, 2006-2011. Shown are
nominal CPUE (catch/100 hooks/hour), total sets per year, proportion positive
sets (PPS), standardized delta-glm index, and standardized delta-glm index.
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Year Nominal Sets PPS BRT LCI UCI

1 2006 1.85 93.00 042 1.21 091 1.52
2 2007 1.81 124.00 0.40 1.17 0.84 1.50
3 2008 295 115.00 050 1.66 1.21 2.10
4 2009 3.60 45.00 0.49 163 1.28 1.98
5 2010 6.81 31.00 0.58 3.04 2.08 4.00
6 2011 1.97 38.00 0.34 1.10 0.81 1.40

Table 4: Abundance index statistics for Atlantic sharpnose shark sampled during
the Dauphin Island Sea Lab (DISL) bottom longline survey, 2006-2011. Shown are
nominal CPUE (catch/100 hooks/hour), total sets per year, proportion positive
sets (PPS), standardized delta-brt index, and standardized delta-glm index.
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