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Abstract 

This paper is part of a set that represent the first attempt of the Gulf of Mexico (GOM) Integrated 

Ecosystem Assessment (IEA) to work with its state and academic partners to integrate ecosystem level 

information into a single species stock assessment.  The specific purpose of this work is demonstrate 

how various ecosystem indicators and environmental covariates produces via the GOM IEA process can 

be brought into the single species assessment modeling process and to provide guidance as how to most 

correctly incorporate them into the single species assessment models, namely Stock Synthesis (SS).  

 Several methods are outlined for deviations in both recruitment deviations as well as natural mortality.  

The important assumptions regarding the Ecopath-Ecosim model used to generate estimates of historic 

natural mortality are discussed. 
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Introduction 

The Gulf of Mexico Integrated Ecosystem Assessment (GOM IEA) Program is producing several 

ecosystem indicators and products for use in SEDAR 33.  One of the more quantitative ways these 

products can be used is to directly account for some of the variation in the data presented to the single 

species assessment model, error that would otherwise be viewed by the model as random.  By explicitly 

accounting for ecosystem processes in the assessment model we give the model the ability to account 

for variations in key life history events other than changes solely in spawning stock biomass or fishing 

mortality.  

It has long been accepted that environmental factors play a major role in accounting for year-to-year 

variability in exploited fish stocks (Hjort, 1914; Cushing, 1982). These environmental factors can include 

changes in air and ocean temperatures (Chavez et al., 2003), upwelling (Ware and McFarlane, 1995), or 

timing of the spring transition (Logerwell et al., 2003). One of the main ways that the environment 

influences fish population dynamics is by modulating annual recruitment, usually in the form of young of 

the year survival. Explicitly including environmental variables underlying this modulation into stock 

assessments can help determine whether changes in recruitment are a result of changes internal (i.e. 

parental stock size or spawning–stock biomass) or external (i.e. changes in recruit survivorship) to the 

population structure. At least three situations can benefit from the inclusion of environmental data: (i) 

environmental variability causes a large deviations in recruitment, but conventional fishery and survey 

data are not adequate to capture this variability clearly, so including environmental data helps the 

model estimate the correct time-series of recruitment; (ii) fish recruit to the fishery at a young age, but 

there are no surveys of young fish to estimate the recent levels of recruitment to improve forecasts; (iii) 

there is a long-term signal in the environment that affects recruitment, but this trend is confounded 

with a one-way decrement in the spawning biomass. In this regard, including environmental data can 

decrease the variance in parameter estimation and help to determine the true stock–recruitment 

relationship and subsequent management benchmarks. 

One of the most elusive yet most important parameters of any age-structured stock assessment is the 

rate of annual rate of natural mortality (M).  M is average rate at which a fish would die in the absence 

of fishing.  However, because this rate is nearly impossible to measure in the field, it is most often 

assumed to be constant over time, and its level is usually based on life history correlates or the oldest 

fish of that species ever observed.  While it is recognized that even though a constant rate is assumed, 

there is still annual variation in this rate that is usually too difficult to quantify.  In this situation the 

assumption of a constant rate may not be misplaced.  However, if in reality there is a trend in M, or 

episodic events that can cause spikes in this rate that are not properly accounted for in the stock 

assessment model of that species, this could have significant implications regarding the estimated status 

of the stock relative to management benchmarks.    
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METHODS 

All methods described here will pertain to the Stock Synthesis (SS) Integrated Assessment Modeling 

framework (Methot and Wetzel, 2013).  An important reference document to accompany this document 

is the SS User’s Manual, which can be found on the NOAA Fisheries Toolbox webpage 

(http://nft.nefsc.noaa.gov/downloads/SSv3.24f-Documentation.zip).  The first analysis that should be 

considered before working with the environmental data is to determine the behavior of the targeted 

deviations (either recruitment of natural mortality for this paper) without the influence of the 

environmental data in the model.  The patterns that emerge will then be the result of all other 

observational data in the model (CPUE, length/age compositions, etc), which can be highly informative.    

When using environmental covariate to modulate recruitment deviations it is important to demonstrate 

that these deviations are significantly related to a chosen environmental index.  An important initial 

exploratory analysis will extract the deviations the model and use them as the dependent variable in a 

statistical analysis conducted outside the assessment model.  Then there are two methods for using the 

environmental index in the SS model.  It needs to be kept in mind however that when using the “model 

method” (described below) SS assumes a linear relation between the deviations and the environmental 

covariate.  However, when using the “data method” (described below) there is increased flexibility in 

this assumption. 

The other approach that can be used to determine if the deviation are significantly related to an 

environmental covariate is a more classical hypothesis testing approach.  Without the environmental 

data in the model, the null hypothesis is that the deviations and the environmental data should have a 

slope equal to zero.  If, on the other hand, a significant relation does exists then the slope parameter 

estimated within the SS model should be significantly different than zero as well as reduce the negative 

log-likehood by at least two or more units. 

Testing the significance of an environmental covariate with natural mortality is not as straight forward 

as there is no separate slope parameter estimated within the SS model.  In this case, one is generally left 

with estimating the natural mortality deviations in the absence of the environmental data and then 

applying a statistical test (i.e. linear regression) externally to test for a relation.  Because both the 

independent and dependent variables have observation error associated with them, a function 

regression may be the best model choice. 

 

Recruitment 

The standard approach to include environmental data into population models has been through the 

addition of a parameter to the standard stock–recruitment function, which allows recruit survival to 

deviate annually from the mean levels predicted by the simpler function (Hilborn andWalters, 1992, p. 

285). Because this approach modifies the structure of the existing stock–recruitment model by adding a 

parameter, this method is referred to here as the model method. The shortcoming of the model method 

is that it relies on the unrealistic assumption that the environmental index is measured without error. 
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Furthermore, because this method accounts for the portion of the overall recruitment standard 

deviation caused by the environment through the additional parameter in the modified stock–

recruitment function, the environmentally caused deviation no longer contributes to the overall 

recruitment standard deviation, usually an assumed (i.e. not estimated) value in the stock assessment 

model. This necessitates that the assumed overall recruitment standard deviation value be reduced to 

reflect variation attributable only to forces other than the environment. However, because the level of 

the overall recruitment standard deviation scales the log-bias adjustment (so that the expected 

arithmetic mean recruitment is equal to the mean from the stock–recruitment function), this reduced 

value causes an incorrect log-bias adjustment for the estimates of both the annual as well as the virgin 

recruitment values. 

The Model Method.  The model method directly adjusts the level of recruitment expected from the 

stock–recruitment function as 

 

where β is the (slope) parameter relating the environmental time-series (Et) to the recruitment 

deviation. For years where recruitment residuals were estimated, the level of total recruitment was 

given by 

 

where σR is the standard deviation for recruitment in log space, and ~Rt is the lognormal recruit 

deviation in year y.  Note that because a portion of the deviation in recruitment is being accounted for 

by an environmental covariate, when using this method the overall sigma-r term in the model should be 

reduced to reflect this accounting. 

The Data Method.  Another approach that seeks to overcome the shortcoming of the model method is 

to use the environmental time-series in the same manner that an age-0 survey is used. With this 

approach, the environmental data are considered an index of recruitment variability and, as such, are 

used to tune the time-series of annual recruitment deviations from the fitted stock–recruitment curve 

(Brandon et al., 2007). Because the environmental time series is fitted as part of the stock-assessment-

model objective function, and hence contributes to the total maximum likelihood component, this 

approach is referred to as the data method.  Similar to a survey, the data method allows the 

environmental data to have annual observation error associated with it and, unlike with the model 

method, missing years are treated only as missing years of data. The environmental effect is assumed to 

occur after any density-dependence on recruitment has taken effect. 

The data method treats the environmental data as if it were a survey of annual recruitment deviations. 

This approach is similar to using the environmental index as if it were a survey of age-0 recruitment 

abundance. By focusing on the fit to the deviations, it removes the effect of spawning biomass on 

recruitment. In this method, the likelihood of the deviations are expressed as 
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where Et is the environmental observation at time t, Dt the deviation from the fitted stock–recruitment 

function at time t, and σt the standard deviation of the observation error of the environmental time-

series. 

 

Stock Synthesis Coding Methodology 

The section below should be considered as a supplement to the SS Users Manual, not a standalone 

explanation.  It is written to include some content that may not be specifically pointed out in the 

manual.  As such, it should be considered along with the manual and not as a replacement for it.  For 

further considerations on the two methods, see Schirripa et al. 2009. 

Model Method.  When using the model method recruit deviations are modeled as a strict function of an 

environmental input (i.e. no error).  The recruitment deviation data will go into the SS data file in the 

environmental data section.  Before entering the environmental data, it should first be transformed into 

z-scores (z-score = (observation - mean of all observations)/SD all observations).  This will ensure the 

values are centered on zero.    

Next, an environmental link parameter needs to be turned on in the Spawner-Recruitment section of 

the control file.  This parameter creates a multiplicative adjustment to the target parameter, so Py = P * 

exp(env_link * env_datay).   The environmental link function should be the same number as the 

environmental time series the user wishes to associate with the deviations.  Make sure that the link 

parameter is associated with recruitment deviations rather than spawning stock biomass (also an 

option).  Because no true observational data is added to the model, but one more parameter is added, 

the model method lends itself well to hypothesis testing.  That is, if the environmental observations and 

the addition of the one parameter do in fact account for more of the unexplained variation, this can be 

quantified via the change negative log likelihood of the overall model fit.  When using this method, the 

higher the value of the estimated environmental link parameter, the more sensitive the recruitment 

deviations are to the environmental data. 

Data Method. When using the data method recruit deviations are modeled the same way that any other 

CPUE time series, only instead of the CPUE time series indexing biomass, the environmental data 

indexes recruit deviations.  In this way, the environmental data is input into the data file as a survey with 

a year and standard deviation association.   It is not necessary to associate and estimate a catchability 

coefficient (q) for the environmental “survey” unless a non-linear relation between the recruitment 

deviations and the environmental data is desired.  It is, however, necessary to specify that the 

environmental data is indexing recruit deviation by setting the size selectivity for this survey equal to 

one of the “special selectivity” patterns (Table 1). 
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Natural Mortality 

The Ecopath-with-Ecosim (EwE) is one method in which to generate estimates of natural mortality.  

Several considerations are necessary in order to ensure that the estimates of M from EwE are properly 

aligned in time with those of SS.  Time varying estimates of instantaneous, per year, M are an emergent 

property of the EwE that can be regulated by two processes: (1) non-predation (‘other’) mortality (M0), 

a catch-all rate including all mortality not elsewhere included, and is internally computed from:    

       
       

  
 

Where P is the total production rate of group i, EE is the ‘ecotrophic efficiency’, and B represents the 

biomass; and (2) predation mortality (M2, including any cannibalism), which serves to link the predators 

and prey as: 

      

 

   

       

  
 

where the summation is over all n predator groups j feeding on group i, Qj is the total consumption rate 

for group j, and DCji is the fraction of predator j’s diet contributed by prey i. Qj is calculated as the 

product of Bj, the biomass of group j and (Q/B)j, the consumption/biomass ratio for group j.   

Predator-Prey Definitions.  The first consideration we address is the predator-prey matrix specified for 

the target species.  It is important to determine if the EwE model specifies whether each stanza of the 

species has predators or not.  If there are specified predators, then top down events and process will 

affect annual variations in M; if not, we would expect bottom-up process only to drive annual variations. 

It is important to ensure that assumptions in the ecosystem model match those known to occur in 

reality and of the SS model.  If no predators are present on the target species we should not expect large 

changes in natural mortality. 

Compensatory Natural Mortality.  A second consideration is the EwE representation of compensatory 

natural mortality.  Compensatory juvenile mortality is represented through changes in Z for juvenile 

stanzas associated with changes in foraging time and predator abundances.  Compensatory changes in 

natural mortality rate (M) can be simulated by combining two effects: non-zero feeding time 

adjustment, and either high EE from Ecopath or high proportion of ‘other’ mortality being sensitive to 

changes in predator feeding time. With these settings, especially when vulnerabilities of prey to a group 

are low, decreases in biomass lead to reduced feeding time, which leads to proportional reduction in 

natural mortality rate (Christensen and Walters, 2004). 

Reproduction.  In EwE fecundity is assumed proportional to body weight above a weight at maturity, 

and size-numbers-dependent monthly egg production is used to predict changes in recruitment rates of 

age 0 fish. Compensatory juvenile mortality is represented through changes in Z for juvenile stanzas 

associated with changes in foraging time and predator abundances, as in split-group calculations 

(Christensen and Walters, 2004). 
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Top-Down versus Bottom-Up Control.  Natural mortality can come in the form of either top down, 

bottom up, or both combined. Top-down (consumer) regulatory processes are said to occur when, for 

example, predators keep prey populations at levels below the population size that would be observed in 

the absence of predators. If on the other hand, factors such as food and/or habitat availability are the 

main drivers explaining population fluctuations, a population is said to be regulated by bottom-up 

(resource) regulatory processes.   This distinction is important when attempting to understand the 

results.   

In the original Ecosim formulations (Walters et al., 1997, 2000) the consumption rate for a given 

predator feeding on a prey was thus predicted from the effective search rate for predator–prey specific 

interactions, base vulnerabilities expressing the rate with which prey move between being vulnerable 

and not vulnerable, prey biomass, predator abundance (numbers for split pool groups as discussed later, 

and biomasses for other groups). The model as implemented implies that ‘top-down versus bottom-up’ 

control is in fact a continuum, where low v’s implies bottom-up and high v’s top-down control. The input 

vulnerability rates (υij) in EwE are scaled to range from 0 to 1, with 0.3 serving as default for mixed 

control, and 0 implying bottom-up, 1 implying top-down control. The actual vulnerabilities (vij) used in 

the computations are rescaled from the entered υij’s as: vij = exp[2 × (exp(υij) − 1)] (Christensen and 

Walters, 2004). 

 

Stock Synthesis Coding Methodology 

Model Methods.  Allowing a parameter, such as natural mortality, in SS to deviate freely on an annual 

basis is quite straight forward.  Any parameter with a “long parameter line” (see SS Manual) can be 

allowed to deviate annually.  Driving these deviations will be the sum total of all observational data 

within the model.  To allow a parameter to freely deviate on an annual basis one first defines the type of 

deviation that is desired in element number nine in that parameter line (“use dev”).  There are three 

numerical options (1) multiplicative, (2) additive, and (3) random walk additive.  To allow for a fully 

freed-up estimate of an annual deviation one ensures that element number 8 in the parameter line is 

set to “0” (indicating NOT to associate it with any environmental data input). The next and final step is 

define the start (element #10) and end (element #11) years the deviations will be estimated.  Results of 

the fitted deviations can be viewed in the Report.sso file. 

Figure 1 uses data from the previous gag assessment to demonstrate how annual deviations in natural 

mortality would manifest if allowed to deviate freely and in the absence of any environmental 

covariates.  Even without including environmental data, signs of increased natural mortality can be seen 

in adult gag in 2005, which coincides with a strong red tide even that year. 

The second method of allowing a parameter to deviate is by the blocking of years.  With this option the 

user can define years in which deviations are expected to be similar such that only one deviation need 

be estimated for the entire block.  Blocks can be 1 year to nyears-1 in size.  When using blocks, as with 



SEDAR33-DW10 

8 
 

any time varying option, the deviation can be estimated via multiplicative, additive, or simple 

replacement.   

The third option to allow a parameter to deviate is to use a smoothed function.  SS has the option of two 

smoothed functions.  The first is a random walk function in which Nyears-1 parameters are estimated 

and a standard deviation is defined.  The defined standard deviation dictates how large of a deviation 

the “walk” is allowed to stray from the base parameter value.  The second smooth function is a logistic 

function in which three additional parameters are estimated (the width, the inflection, and offset).  To 

use the smoothed function one must define the environmental data time series identification number to 

be fit using element 8 in the parameter line.  

Modified Data Method.  It is not possible at present in SS to vary natural mortality using data in the 

same manner as is done with recruitment.  However, a modified data method can be designed which 

can achieve similar results.  The first step in designing the modified data method is to create a set of 

one-year blocks that encompass the time period of the environmental data (n_blocks = n_years) and to 

use this block design for the natural mortality parameter.  Then, each year’s “new” natural mortality 

value in the custom set up is given a Bayesian prior and standard deviation equal to the environmental 

data value and standard deviation.  In this way, the new annual value of natural mortality will be 

indexed by the environmental data, as in the data method, but not as strictly dictated by the data, as in 

the model method.  This method is superior to the using a smoothed function if natural mortality is 

believed to be driven by episodic events, such as red tides or the inadvertent release of contaminants, 

rather than by more auto-correlated events, such as low frequency ecosystem regime shifts.    

 

DISCUSSION 

Perhaps one of the most controversial aspects of including environmental data into a single species 

model is the notion that inclusion of the data will result in a better model fit.  This is not necessarily the 

case.  Great consideration must be given to the structure of the model and the auxiliary data and 

potentially competing observation data before such a determination can be made.  For instance, by 

definition when using the data method, the additional data can only result in a higher likelihood (unless 

the data is fit mathematically perfect).  The consequences of the environmental process should already 

be imbedded in the rest of the observational data; so generally speaking, indexing these processes 

should not necessarily improve the model fit.  This is especially true if one regresses the free deviations 

against an environmental covariate, and then inserts this relationship back into the model.  The 

inclusion of environmental data is often used to verify the signal that already exists in the data.  This is 

especially true with parameters that are routinely allowed to be estimated, such as recruitment 

deviations.  In the case of recruitment deviations the key improvement will come by allowing the model 

another way to explain variation in recruitment other than changes in spawning stock biomass.  In the 

case of natural mortality, the model is given a means to account for observed changes in stock size that 

are not necessarily accompanied by higher landings during the same time period.  changes However, in 

the case of natural mortality, a parameter that is routinely held constant, we may well expect to see an 
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improvement in fit if that parameter is allowed to be freely estimated year to year. This might even be 

expected whether or not an environmental driver is included or not because one is adding parameters 

to the model rather than observation data.   

There are ways though that the inclusion of environmental data can improve the model in general.  For 

instance, given a satisfactory fit to the environmental driver, one might expect to see smaller standard 

deviations on some of the estimated parameters and/or derived quantities, resulting in higher precision 

about those estimates.  But perhaps the most useful manner that environmental data can improve the 

assessment is to provide observational data outside the bounds of fishery dependent data.  For 

instance, if the environmental driver in question has been recorded during a time period before reliable 

length compositional data was collected, recruitment deviations may well be able to be estimated much 

further back in time.  Conversely, if the environmental driver data can be collected in real time, then 

estimates of recruitment deviations in the current assessment year, or years before the recruits are seen 

in the fishery data, maybe very useful in forecasts of the future condition of that stock.  Environmental 

regime shifts are another critical way that environmental covariates can be of great help.  If a dramatic 

drop in recruitment values are observed and the model is given no other means to account for this drop, 

then the model is left to attempt to reduce its estimates of spawning stock biomass to account for the 

change, which may well not be the case.   
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                   SPECIAL SELECTIVITY 

Pattern N Parameters Description 

30 0 Sets expected survey abundance equal to 
spawning biomass (population fecundity) 

31 0 Sets expected survey abundance equal to 
exp(recruitment deviation).  This is useful 
if environmental data is used as an index of 
recruitment variability. 

32 0 Sets expected survey abundance equal to 
exp(recruitment deviation ) * SpawnBiomass.  So 
this is recruitment without density-dependence (for 
pre-recruit survey) because most ecological logic 
places the density-dependent stage during the 
juvenile period following the larval stage that is 
most sensitive to 
environmental perturbation. 

33 0 Sets expected survey abundance equal to age 0 

recruitment. 

Do not input any size/age comp for surveys using pattern 30-33. 
The “catchability” coefficient for these selectivity patterns 30-33 have all the general 
properties of the catchability coefficient for real surveys, e.g. they can be time-varying, 
use power relationship, etc. 

  

Table 1.  Selectivity options for recruitment deviations when using the data method 

(from SS Users Manual). 



SEDAR33-DW10 

12 
 

 

  

Table 2.  Long parameter line options for natural mortality estiamtes (from SS Users 

Manual). 
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Table 2 (cont.) 
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Figure 1.  Options for time-varying parameters in Stock Synthesis for recruitment deviations (upper left) 

and natural mortality (upper right and lower left and lower right)  
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 Figure 2.  Estimates of natural mortality (M) for gag for three life stanzas in the absence of any 

environmental data when M is allowed to deviate freely on an annual basis, 1970-2008. 


