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Introduction 

Natural mortality (M) is a parameter in most fish stock assessment models.  For 

instance, the yield equation depends directly on M 

 ( )( , , , ) 1 ( , ) ( )F M FY a t F M e N a t W a
F M

− − ⎛= − ⎜ +⎝ ⎠
⎞
⎟  (1) 

 where a is and index for age, t is time, F is fishing mortality, and W(a) is a function for 

weight at age a, and N(a,t) is the number of individuals of age a at time t.  Natural 

mortality can occur through predation or non-predation events such as senescence and 

disease.  The von Bertalanffy growth equation (VBGE) is widely used to give estimates 

of growth parameters, but methods for estimating M are far less uniform within the 

discipline.  It is also a difficult life history trait to measure in the laboratory or the field.  

It is generally accepted that natural mortality is very high during the larval stages 

and decreases as the age of the fish increases, approaching a steady rate (Jennings et al. 

2001).  The rate then increases exponentially when the fish nears maximum age.  A 

graphical representation looks like a vertical section of a bathtub , and was described by 

Chen and Watanabe as a Bathtub curve (Chen and Watanabe 1989).  Natural mortality 

may also vary with size, sex, parasite load, density, food availability and predator 

numbers.  However, in most cases, a single value—usually 0.2—for natural mortality is 

assumed for stock assessments, despite evidence to the contrary (Pope 1979, Quinn and 

Deriso 1999, Jennings et al. 2001).   
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When the same value of a parameter is used in almost all analyses, it may mean 

that there are no methods for obtaining a better estimate.  There are, however, a variety of 

methods available for estimating natural mortality, and Vetter published a review of those 

methods (1988).  Vetter reviewed catch-analysis methods, life history-based models, and 

predation models.  Since her review, there have been a number of new models and model 

improvements. 

In the following paper, I will review the methods available to estimate natural 

mortality since Vetter’s review.  I will describe a simulation study that tests the 

performance of most of the models I review when the parameters are known.  Finally, I 

illustrate, through a case study on California sheephead, Semicossyphus pulcher, when it 

is appropriate to use a constant value for natural mortality. 

Review of Methods to Estimate M 

Life History Methods 

The following is a table of the life history methods Vetter reviewed: 

Life history-based methods for estimating natural mortality describe relationships 

between M and traits like age, growth rate, and weight.  Table 1 illustrates the methods 

that Vetter (1988) reviewed.   

Going beyond Myers and Doyle (Myers and Doyle 1983) and building on 

Gunderson (1980), Gunderson and Dygert (1988) use reproductive effort as such a trait: 

 0.03 1.68M GSI= +  (2) 
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where GSI is the gonadal-somatic-index.  The GSI is a ratio of gonad mass to total body 

mass, and a high value indicates a large investment in reproduction.   

Chen and Watanabe (1989) provide the first age-dependent model of natural 

mortality to our knowledge: 

 

( ) ( )( )
( ) ( ) ( )

0-k t-t

2
1 2

0

1
m

m m

kM t for t t
e

k
mM t a t t a t t for t

a

= <
−

= + − + − > t

 (3) 

 ( )0
0a 1 mk t te− −= −  (4) 

 ( )0
1a mk t tke− −=  (5) 

  (6) 
( )( 02

2a 0.5
k t tmek

− −

= −
)

 ( )0
m

1t log 1 kte
k

⎛ ⎞
0t= − −⎜ ⎟

⎝ ⎠
+  (7) 

where M  is average natural mortality, is the age at maturity, is the theoretical age 

when size is zero, and k is the von Bertalanffy growth coefficient.  This equation may 

be applied to data for which the von Bertalanffy growth parameters are known.  Their 

results show strong coherence to results obtained using past methods, and they therefore 

deem their equations as “suitable for fish population dynamics”.   

mt 0t

k

 Hoenig’s method is commonly used in fishery biology (Hoenig 1983, Jennings et 

al. 2001, Hewitt and Hoenig 2005) 
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max

3M
t

≈  (8) 

if approximately 5% of the population is still alive at the maximum age.  

However, Hewitt and Hoenig (2005) expand on the earlier version with a larger data set.  

The new empirically derived method is the following 

 
max

4.22M
t

≈  (9) 

if approximately 1.5% of the population is still alive at the maximum age.   
 

Jensen (1996) revisits the Beverton and Holt invariants 

 m
MMt and
k

 (10) 

and relates them to constant values calculated by regressions across a variety of fish 

species.  His results are the following:  

 1.65

m

M
x

=  (11) 

 1.5M
k
=  (12) 

He reasons that since the Beverton Holt invariants were derived independently from any 

growth model, these relations are applicable across fish regardless of their growth 

function.  The parameter k, however, is the the vonBertalanffy growth coefficient.  

Therefore, there must be sufficient data to estimate k in order for one to use Jensen’s 

equations. 
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Richter and Efanov (1977) used data from temperate stocks to relate natural 

mortality to the age at which 50% of the stock is mature 

 0.72

1.52 0.16M
masst

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (13) 

where  is the age in years when 50% of the stock is at mature.   masst

Peterson and Wroblewski (1984) put forward an allometric model for M based on 

weight (see Vetter 1988).  There is empirical evidence in fish populations that natural 

mortality is closely related to individual body weight (Post and Evans 1989).  McGurk 

expands on the Peterson-Wroblewski model in his 1986 paper: 

  (14) 0.250.00526WM −= W

where WM  is natural mortality at weight W, and W is dry body mass.  He believed an 

issue with previous models was the assumption that predation occurs everywhere 

randomly.  As a result he included a measure of spatial patchiness using Lloyd’s index 

(1967).  He uses data from pelagic eggs and larvae to test his model output against the 

Peterson-Wroblewski estimates of M.  His results show that the Peterson-Wroblewski 

model fits data for average-sized to large animals, but constantly underestimates the eggs 

and larvae of the same animals.  However, his model represents eggs and larvae with 

relatively low mortality very well.  He attributes the less good fit to eggs and larvae with 

higher mortality to real variation in time and space of patchiness and mortality. 
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Similarly, Lorenzen (1996a, 1996b) models natural mortality as a power function 

of weight: 

 b
W uM M W=  (15) 

where WM  is natural mortality at weight W grams, uM  is mortality at unit weight, and b 

is the scaling factor.  Natural mortality is measured as an annual rate.  Lorenzen 

compared the results of M for fish in natural ecosystems and in aquaculture ponds.  He 

found a higher mortality at unit weight for fish in natural ecosystems than for those in 

aquaculture ponds, even though they were held in the same latitudinal zone.  

Growth coefficient 

Since many of the life history models depend on the parameters of the von 

Bertalanffy growth equation (VBGE), we review some methods for estimating its 

parameters.  Two commonly used methods for estimating k are ELEFAN and 

MULTIFAN.  ELEFAN (Pauly and David 1981) is a computer-based method developed 

to analyze size-frequency distributions.  The program “traces” the average of five age 

classes using the VBGE.  ELEFAN is still used by the FAO to assess stocks in 

developing countries. MULTIFAN is a maximum likelihood method that assumes von 

Bertalanffy growth and normal distributions for mean lengths at age (Fournier et al. 1990, 

1991).  MULTIFAN can be used on multiple size-frequency data sets and is typically 

used to assess tuna stocks in the Eastern Tropical Pacific(Hampton 1997, Hampton 2000, 

Goodyear 2002). 
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Chapter ## in this thesis describes 2 Bayesian methods for estimating all 

parameters of the VBGE. 

Predation Methods 

These methods were developed to take into account the species interactions 

between predator and prey and translate that interaction to a mortality rate for the stock 

species.  Multispecies virtual population analysis (MSVPA) was initiated by both Pope 

(1979) and Helgason & Gislason (1979).  Vetter (1988) provides earlier references and a 

discussion of the application of MSVPA, and Magnusson (1995) provides a review. 

Catch-Analysis Methods   

Recently, Pine et al. (2003) published a review of tagging methods for estimating 

components of natural mortality.  In the following section we review the key papers Pine 

et al. (2003) omitted. 

 Size-specific models of natural mortality are rarely used due to the difficulty of 

obtaining even a general estimate.  It is recognized, however, that mortality is variable 

with age (Beverton and Holt 1957, Ricker 1975).  There is a general consensus that 

mortality is higher in larval and juvenile stages, lowers at maturity, and increases again 

when the maximum age is approached (Vetter 1988).  The Tag-attrition model (Kleiber et 

al. 1987; Hampton 1997) is a size aggregated capture-recapture model.  Hampton (2000) 

builds upon the Tag-attrition model to estimate mortality in tropical tunas.  In Hampton’s 

model, the tagging data were classified based on the size at release.  A VBGE was used 

to calculate growth while the tagged fish was at liberty.  Then, using maximum 
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likelihood, natural and fishing mortality are estimated.  Hampton (2000) found that 

natural mortality increased at the latest age classes. 

Brooks et al. (1998) suggest generalizations of tagging models that produce 

estimates for natural mortality when both recreational and commercial fishing is present.  

Their method allows for the inclusion of data from fisheries that have been open for any 

length of time; normally, fishing is considered pulse or continuous.  Brooks et al.’s 

(1998) method had good precision and will likely perform well in contentious situations 

with multiple user groups. 

Beyer et al. (1999) present a size-specific method that assumes an inverse 

relationship between mortality and body size and a mortality that is approaching a 

minimum as fish grow to their maximum size.  If there is no evidence that the species 

senesce or avoid fishing gear at older ages, this model will likely perform well. 

Simulation Study 

The number of models to estimate natural mortality is quite large, but which one should 

be used.  Data will certainly limit the choice, but there will still be a number of options.  

In order to test the performance of these models, we conducted a population simulation. 

We used literature values for life history parameters of the blue shark, Prionace 

glauca, from the Apostolaki et al. paper (2005).  Individuals grow according to the von 

Bertalanffy growth equation 

 ( ) ( )( )01 k a t
aL a L e ε− −

∞= − +  (16) 

where is asymptotic size, is the individual growth rate, a is an index of age, is  L∞ k 0t
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used to calculate size at birth, and aε is a random normal error with mean 0 and variance  

5.  Weight scales with length allometrically: 

  (17) ( ) ( )3.23190.000000804W a L a=

where is kilograms at age a in kilograms.  Since blue sharks are livebearers, 

fecundity is in calculated in pup units  

( )W a

  (18) ( )0.6052( ) 91.97a W aΦ = −

where is the number of pups each mother of age a produces.  The previous 

equation doesn’t account for whether the mother is mature, so we included a function that 

describes the proportion mature: 

( )aΦ

 ( ) ( )50

1
1m c a Ap a

e− −
=

+
 (19) 

where is the age when 50% of the population is mature (5 years) and c is a shape 

parameter.   

50A

The stock-recruitment relationship follows a Beverton-Holt relationship 

 ( ) ( )
( )1

E t
R t

E t
α
β

=
+

 (20) 

where ( )R t is recruits in time t, α andβ are Beverton-Holt parameters, and ( )E t is the 

number of pups in time t.  Natural mortality is included in three forms: independent, size 

dependent, and age dependent.  The population persists according to the following: 
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 ( ) ( ) ( ) ( )2
1 3

1, 1 ,
mm m U

L aN a t N a t e
⎛ ⎞

− − + +⎜ ⎟⎜
⎝+ + =

a ⎟
⎠  (21) 

where N is the number of individuals at time t and age a, is the size and age- 1m
 
independent mortality rate, is the size-based mortality rate,  is the age-based  2m 3m
 
component, and is the function describing the bathtub curve ( )U a

 ( ) ( )( ) ( )( )d a d g a gU a c e eλ λ− − −⎡ ⎤= +⎣ ⎦  (22) 

where c is a scaling factor, d is the approximate age when constant mid-life mortality  
 
begins, and g is the approximate age when constant mid-life mortality ends.  In our case,  
 

3d = and . 15g =
  

We run the simulation through 100 time steps 1000 times, which gives us an array  

of the stochastic population sizes through time and simulation runs.  We allow the 

population to reach a stable age and size distribution (Figures 1 and 2) and we have 100 

matrices for length, weight, and proportion mature at age (one example is given in Figure 

3). 

 Application of the models to our simulated data 

 For our population simulation we used a combined mortality of 0.2, without 

considering the age-based mortality.  Once the age-based component is included, the true 

mortality at age looks like the bathtub curve described earlier (See Figure 4, Chen and 

Watanabe 1989).  We list our results in Table 2.  McGurk’s method fits very well until 

the oldest age classes, and the Chen and Watanbe method fits quite well throughout.  The 

constant values derived from the life history methods average across periods of very high 
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mortality (early and late life).  We argue that the McGurk method and the Chen and 

Watanabe method are far superior at estimating the true natural mortality.  The difference 

between the two is the assumption that fish will senesce, but whether one’s assumption is 

they do or they do not, both methods are available to apply to data.  

When is a constant mortality appropriate? An application to California sheephead 

 Calculating key life history parameters for long-lived fishes is often difficult.  We 

rarely have sufficient length-at-age or catch-at-age data to derive the parameters directly; 

in these cases we cannot depend on established growth models or methods for estimating 

natural mortality that require age data.   

 A prime example of this dilemma is the recent stock assessment of California 

sheephead, Semicossyphus  pulcher (Alonzo et al. 2004).  In the following section, I 

compare estimates of natural mortality for California sheephead using data from the 

commercial fishery compiled during the sheephead assessment.  I find estimates of M, the 

natural mortality rate, using weight and life history-based methods.  The estimate of 

constant mortality stabilizes if the fish recruit to the model after age two.  

Methods and Results 

 We used a number of methods to calculate natural mortality that depend on the 

weight or the life history of the fish (Vetter 1988).  The following length-weight 

relationship is used throughout the sheephead assessment: 

 ( )5 2.8572.6935 10W −= × FL  (23) 
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5

where W is weight in kilograms and FL is fork length in centimeters.   We used total 

length data for the estimate of asymptotic size, therefore we needed to convert to fork 

length to use Eqn. (23) for our estimates (Alonzo et al. 2004).   

 Given W, the Peterson and Wroblewski (1984) equation relating mortality to 

weight is  

  (24) 1 0.21.29WM year W− −=

 
where WM  is natural mortality at mass W.   

Lorenzen (1996a) models natural mortality as a power function of weight in 

natural ecosystems  

  (25) 1 0.2883.00WM year W− −=

where WM  is natural mortality, at W mass.  The coefficient in Eqn. 6 is a joint estimate 

of fish in natural ecosystems based on Lorenzen’s empirical work (Lorenzen 1996a)

 Jensen (1996) derived two models to estimate M (Equations 7 and 8) We used k = 

0.0683 and 

.  

mx = 4-6 years for our analysis, which is consistent with Alonzo et al.(2004).  

The estimates of M using each of the models discussed are summarized in Table 3. 

 Since California sheephead are long-lived fish (tmax = 50 years), calculating an 

average natural mortality across a population is also appropriate (Beverton and Holt 

1959).  Assuming individuals follow von Bertalanffy growth we can find weight at age 

using Eqn. (23).  We can then relate this to the population using the following equations: 

 ( ) ( ) ( )0 rM t tN t N e −=  (26) 
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 ( ) ( )(
11

r

T

r
t t

)M t M W
T

−

=

= ∑ t  (27) 

where N(t) is the population size at time t,  ( )rM t  is the estimate of average mortality 

when fish are recruited to the model at age tr , T is the endpoint (50 in this case), and 

( )( )M W t is a weight-dependent mortality model (either Lorenzen’s or Peterson and 

Wroblewski’s).  Simulating this population through 50 years, we use the population size 

at T = 50 and compare it to the population size at t = 1 using Eqn. (26) and Eqn. (27).  

Running the simulations twice, once for Lorenzen’s equation and once for Peterson and 

Wroblewski’s, we arrive at estimates of average natural mortality.  In Figure 5 we show 

the population size as a function of time for both mortality models.  Using Lorenzen’s 

model for mortality, we calculated an average natural mortality rate of 0.54.  Using 

Peterson and Wroblewski’s mortality model, we calculated 0.60 as the average natural 

mortality rate.  

Discussion 

 In most stock assessments, M is a fixed value.  Our example shows that the age at 

which the fish recruit to the fishery can have a large impact on the estimate of a constant 

M.  Assuming a weight-based mortality in fishes, Figure 5 shows that there is severe 

mortality in the first few years.  Average natural mortality will change drastically—likely 

an order of magnitude or more—if those first few years are excluded from the 

calculation.  In Figure 6, we plot ( )rM t  as a function of the age the fish recruit to the 

model; after age two, the estimates of M  become more stable for California sheephead.  
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Alonzo et al. (2004) used an estimate of 0.2.  As shown in Figure 6, our analysis supports 

their findings if the Peterson and Wroblewski mortality model is assumed. 

Discussion 

Natural mortality is a very important, yet illusive life history parameter.  Errors in 

the estimation of mortality affect the outcome of various models used in stock 

assessments.  Mertz and Myers (1997) show that an error in cohort reconstruction (cohort 

analysis) occurs when an inaccurate estimate of natural mortality is provided.  Clark 

(1999) determines that an erroneous natural mortality estimate creates bias in the 

estimates of stock size provided by an age-structured model.  Williams and Shertzer 

(2003) state that policy based on mortality is particularly sensitive to the estimation of 

model parameters  We demonstrate in Figure 7 the difference in yield when fishing 

mortality is fixed and M is allowed to vary.   

We argue that the weight- and age-based method are most appropriate, and since 

many of the methods that estimate a constant value for M require growth data, the 

weight- and age-based methods are not data intensive. 

Future Work 

 From our population simulation, we calculated mean weights at age and mean 

population sizes at age.  For a future area of research, we propose using a distribution-

based approach to estimating M.  Using Bayesian statistics to find a posterior distribution 

for M given a model choice and a stochastic population simulation.  Bayesian Model 

Averaging is an approach that would allow all or part of the relevant models to be 
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applied.  More attention should be paid to estimating M, given it is a foundational 

parameter in stock assessment. 
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Figure 1.  The age distribution of blue shark in our simulated population. 
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Figure 2.  The distribution of biomass at age in our population simulation. 
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 Figure 3. The length at age, weight at age, fecundity at weight, and proportion 

mature at age relationships in our pseudo-population. 
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          Figure 4.  The true mean mortality at each age in our simulated population.  
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Figure 5.  Population Size as a function of time for both mortality models. 
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( )rM t

Figure 6.  Comparing average mortality estimates, both with different ages of 
recruitment to the model, and different mortality models.  When fish recruit to the 
model at age two, we see a dramatic change in the average mortality estimate—
approximately 0.2 and 0.1 compared to 0.6 and 0.54 when the fish immediately 
recruit to the model. 
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The Effect of Natural Mortality on Yield
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Figure 7.  This graph illustrates the difference mortality can make on setting yield. 
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Table 1. Life history traits related to natural mortality rate as published in the literature 
Traits Species Source 

maxt , , , metabolic rate, 
reproduction 

k L∞ various (Beverton and Holt 1959) 

maxt , k ,  L∞
Clupeids, 

Engraulids (Beverton 1963) 

W∞  general (Ursin 1967) 

maxt , ,  k max.biomasst general (Alverson and Carney 1975) 
growth rate Larval fish (Ware 1975) 

L∞ , gonad size, condition 
factor 

Gadoids (Jones and Johnston 1977) 

maxt  general (Blinov 1977) 
GSI, ASM, ,  maxt L∞ general (Gunderson 1980) 
W∞ , k , , water 

temperature 
L∞ 175 stocks (Pauly 1980) 

energy cost of reproduction general (Myers and Doyle 1983) 
maxt  various (Hoenig 1983) 

weight various (Peterson and Wroblewski 
1984) 

k ,  L∞ various (Roff 1986) 
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Table 2.  The results of applying eight mortality models to simulated data. 

                       Constant                      Weight-based                              Age-based
 

Age Weight Hoenig's Jensen 
Rickter 

and 
Efanov 

Peterson 
and 

Wroblewski
Lorenzen McGurk Chen and 

Watanabe

1 1.90 M=0.27725 M = 0.33 M = 0.32 0.16 0.25 0.41 0.43 
2 4.23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M = 0.195
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.13 0.20 0.31 0.34 
3 7.47 0.12 0.17 0.25 0.28 
4 11.48 0.10 0.15 0.21 0.25 
5 16.04 0.10 0.13 0.19 0.22 
6 20.96 0.09 0.12 0.17 0.20 
7 26.07 0.08 0.12 0.16 0.19 
8 31.22 0.08 0.11 0.15 0.18 
9 36.28 0.08 0.11 0.14 0.17 
10 41.17 0.08 0.10 0.13 0.17 
11 45.83 0.07 0.10 0.13 0.18 
12 50.20 0.07 0.10 0.12 0.20 
13 54.27 0.07 0.09 0.12 0.22 
14 58.03 0.07 0.09 0.12 0.24 
15 61.48 0.07 0.09 0.11 0.25 
16 64.62 0.07 0.09 0.11 0.26 
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Table 3.  A summary of the estimates of natural mortality.  The last two rows of the last 
two columns contain estimates for M with respect to a range of body weights: 5.84 kg to 
0.15 kg respectively.   

 Model Parameters Estimates for M 

Jensen 
(1996) 

1.5M
k
=  k = 0.0683 0.1025 

1.65

m

M
x

=  mx  = 4 to 6 years 0.4125 to 0.275 

Peterson and 
Wroblewski 

1984 

1 0.21.29WM year W− −= 5 FL

FL

 ( )5 2.8572.6935 10W −= ×

 

0.22 for 5.84kg 
to 

0.55 for 0.15kg 

Lorenzen 
(1996a, 
2000) 

1 0.2883.00WM year W− −=  ( )5 2.8572.6935 10W −= ×

 

0.24 for 5.84kg 
to 

0.71 for 0.15kg 
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