Standardized catch rates of U.S. gray triggerfish (Balistes capriscus) from commercial logbook data

Sustainable Fisheries Branch, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC (contact: Rob Cheshire)

SEDAR32-DW-10

Submitted: 4 March 2013

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Sustainable Fisheries Branch, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC. 2013. Standardized catch rates of U.S. gray triggerfish (Balistes capriscus) from commercial logbook data. SEDAR32-DW10. SEDAR, North Charleston, SC. 17 pp.

Notice on SEDAR Working Papers

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Standardized catch rates of U.S. gray triggerfish (Balistes capriscus) from commercial logbook data

Sustainable Fisheries Branch, National Marine Fisheries Service, Southeast
Fisheries Science
Center, 101 Pivers Island Rd, Beaufort, NC 28516

11-15 February 2013

1. Introduction

Landings and fishing effort of commercial vessels operating in the southeast U.S. Atlantic have been monitored by the NMFS Southeast Fisheries Science Center through the Coastal Fisheries Logbook Program (CFLP). The program collects information about each fishing trip from all vessels holding federal permits to fish in waters managed by the Gulf of Mexico and South Atlantic Fishery Management Councils. Initiated in the Gulf in 1990, the CFLP began collecting logbooks from Atlantic commercial fishers in 1992, when 20% of Florida vessels were targeted. Beginning in 1993, sampling in Florida was increased to require reports from all vessels permitted in coastal fisheries, and since then has maintained the objective of a complete census of federally permitted vessels in the southeast U.S.

Catch per unit effort (CPUE) from the logbooks was used to develop an index of abundance for gray triggerfish landed with vertical lines (manual handline and electric/hydraulic reel), the dominant gear for this gray triggerfish stock. Thus, the size and age range of fish included in the index is the same as that of landings from this same fleet. The time series used for construction of the index spanned 1993-2011, when all vessels with federal snapper-grouper permits were required to submit logbooks on each fishing trip.

2. Data and treatment

2.1 Available Data

For each fishing trip, the CFLP database included a unique trip identifier, the landing date, fishing gear deployed, areas fished, number of days at sea, number of crew, gear-specific fishing effort, species caught, and weight of the landings (reported fields described in Appendix 1). Fishing effort data available for vertical line gear included number of lines fished, hours fished, and number of hooks per line. For this southeast U.S. Atlantic stock, areas used in analysis were those between 24 and 37 degrees latitude, inclusive of the boundaries (Figure 1).

Data were restricted to include only those trips with landings and effort data reported within 45 days of the completion of the trip (some reporting delays were longer than one year).
Reporting delays beyond 45 days likely resulted in less reliable effort data (landings data may be reliable even with lengthy reporting delays if trip ticket reports were referenced by the reporting fisher). Also excluded were records reporting multiple areas or gears fished, which
prevents designating catch and effort to specific locations or gears. Therefore, only trips which reported one area and one gear fished were included in these analyses.

Clear outliers in the data, e.g. values falling outside the 99.5 percentile of the data, were also excluded from the analyses. These outliers were identified for manual handlines as records reporting more than 20 lines fished, 15 hooks per line fished, 16 days at sea, or 4 crew members, and they were identified for electric reels as records reporting more than 7 lines fished, 13 hooks per line fished, 16 days at sea, or 6 crew members. Records with greater than 2265 pounds or a 32 pounds/hook-hr were excluded.

3. Standardization

The response variable, CPUE, was calculated for each trip as,
CPUE = pounds of gray triggerfish/hook-hours
where hook-hours is the product of number of lines fished, number of hooks per line, and total hours fished. Explanatory variables, all categorical, are described below. Estimates of variance were based on 1000 bootstrap runs where trips were chosen randomly with replacement. All analyses were programmed in R, with much of the code adapted from Dick (2004).
3.1 Explanatory variables considered

YEAR - Year was necessarily included, as standardized catch rates by year are the desired outcome. Years modeled were 1993-2011. The total number of gray triggerfish trips by year is provided in Table 1.

MONTH - Individual months were included as factors. The total number of gray triggerfish trips by month is provided in Table 2.

REGION - Areas reported in the logbook (Figure 1) were pooled into the broader geographic levels: North Carolina (NC), South Carolina (SC), Georgia and north Florida combined (Ga.NFL), and south Florida (SFL). The break between north and south Florida occurred at 28 degrees latitude, near Cape Canaveral, which has been identified as a zoogeographical boundary (Shertzer et al., 2009). The number of trips per year by area is shown in Table 3.

CREW SIZE - Crew size (crew) was pooled into four levels: one (1), two (2), three (3), or four or more (4plus). The number of trips per year by crew is shown in Table 4.

DAYS AT SEA - Days at sea (sea days) were pooled into three levels: one or two days (1-2), two or three days (3-4), and five or more days (5plus). The number of trips per year by sea days is shown in Table 5.
3.2 Positive CPUE model

Two parametric distributions were considered for modeling positive values of CPUE, lognormal and gamma. For both distributions, all explanatory variables were initially included as main effects, and then stepwise AIC (Venables and Ripley, 1997) with a backwards selection algorithm was used to eliminate those variables that did not improve model fit. For both lognormal and gamma distributions, the best model fit included all explanatory variables (lognormal shown in Table 6). The two distributions, each with their best set of explanatory variables (all of them), were compared using AIC: lognormal outperformed gamma and was therefore applied in the final GLM. Diagnostics suggested reasonable fits of the lognormal model (Figures 2, 3).

Results

Several models were considered during the SEDAR 32 DW. The sequence of models and brief summary of the SEDAR 32 DW consensus opinion is given in Table 7. Nominal CPUE averaged across areas tracked more closely the nominal CPUEs of NC (Figure 4). The standardized index increased through the 1990's then dropped in 2000 and has increased since 2003 (Figure 5, Table 1). Over the past few years, index has increased sharply, culminating in the highest expected value of the full series. There was some concern that the recent increase may be due to increased targeting of gray triggerfish as other fisheries such as black sea bass and vermilion snapper were closed to fishing. However, only anecdotal information was available for a very small number of fishers. Although the index was computed starting in 1993, the assessment might justifiably start the index in 1995, when size-limit regulations were implemented off the coast of Florida.

Literature cited

Dick, E.J. 2004. Beyond 'lognormal versus gamma': discrimination among error distributions for generalized linear models. Fish. Res. 70:351-366.

Shertzer, K.W., E.H. Williams, and J.C. Taylor. 2009. Spatial structure and temporal patterns in a large marine ecosystem: Exploited reef fishes of the southeast United States. Fish. Res.
100:126-133.
Venables, W. N. and B. D. Ripley. 1997. Modern Applied Statistics with S-Plus, $2^{\text {nd }}$ Edition. Springer-Verlag, New York.

Table 1. Standardized index of gray triggerfish from commercial logbook data.

		Relative nominal		
Year	N	CPUE	Standardized CPUE	CV
1993	625	0.624	0.700	0.059
1994	1061	0.937	0.787	0.049
1995	1139	0.914	0.927	0.041
1996	850	1.135	1.002	0.049
1997	1299	1.239	1.133	0.044
1998	1106	1.335	1.193	0.046
1999	1025	1.188	1.161	0.048
2000	933	0.763	0.806	0.050
2001	1084	0.695	0.738	0.046
2002	1554	0.849	0.639	0.037
2003	1319	0.971	0.784	0.042
2004	1492	0.899	1.038	0.037
2005	1447	0.857	1.063	0.036
2006	1301	0.863	0.855	0.040
2007	1496	0.815	0.942	0.035
2008	1391	0.998	0.895	0.037
2009	1334	1.554	1.034	0.039
2010	1203	1.716	1.533	0.041
2011	1163		1.770	0.043

Table 2. Number of gray triggerfish trips by month for each year.

Month												
Year	1	2	3	4	5	6	7	8	9	10	11	12
1993		5	45	83	121	102	119	92	8		1	49
1994	56	75	95	111	93	109	58	110	100	97	74	83
1995	84	48	87	113	121	117	125	99	99	90	95	61
1996	56	58	29	46	58	79	50	130	77	83	85	99
1997	65	67	109	102	128	140	120	114	134	139	102	79
1998	85	79	79	70	126	102	79	84	103	119	100	80
1999	100	76	74	88	128	88	89	92	63	85	58	83
2000	37	66	75	71	83	99	91	98	85	90	91	47
2001	67	67	67	83	103	116	98	137	105	86	68	87
2002	87	71	126	131	128	155	142	175	134	159	141	104
2003	63	69	90	106	130	139	92	111	111	147	145	115
2004	95	94	114	136	160	110	147	122	74	179	145	116
2005	109	110	105	108	180	139	153	136	135	94	111	67
2006	102	80	99	96	136	106	111	121	121	109	122	98
2007	74	77	101	111	129	158	142	179	135	136	112	142
2008	85	84	76	88	142	163	147	167	108	123	111	97
2009	81	87	54	94	132	185	139	162	145	96	99	60
2010	142	78	74	46	138	89	130	139	118	113	80	56
2011	112	83	33	32	131	92	142	152	176	61	65	84

Table 3. Number of gray triggerfish trips by region and year.

Year	NC	SC	Ga.NFL	SFL
1993	173	240	113	99
1994	354	427	162	118
1995	401	452	198	88
1996	260	352	162	76
1997	361	633	171	134
1998	277	563	145	121
1999	254	493	108	169
2000	215	516	100	102
2001	276	586	104	118
2002	449	676	260	168
2003	307	625	179	207
2004	287	694	212	299
2005	283	666	251	247
2006	294	671	172	164
2007	373	731	238	154
2008	371	624	315	81
2009	332	479	370	153
2010	274	505	289	135
2011	253	491	311	108

Table 4. Number of gray triggerfish trips by crew size and year.

Year	1	2	3	4
1993	78	339	165	43
1994	117	597	283	64
1995	143	622	279	95
1996	92	447	227	84
1997	145	691	353	110
1998	143	590	278	95
1999	132	540	277	75
2000	107	478	272	76
2001	139	552	315	78
2002	170	687	486	210
2003	213	615	348	142
2004	322	596	394	180
2005	233	588	427	199
2006	172	555	407	167
2007	170	607	529	190
2008	116	585	489	201
2009	118	545	483	188
2010	119	520	417	147
2011	110	512	389	152

Table 5. Number of gray triggerfish trips by days at sea and year.

Year	$1-2$	$3-4$	5 plus
1993	353	220	52
1994	596	351	114
1995	596	452	91
1996	391	369	90
1997	650	504	145
1998	604	370	132
1999	587	344	93
2000	544	301	88
2001	562	441	81
2002	642	498	413
2003	577	350	391
2004	650	363	479
2005	572	413	462
2006	462	321	518
2007	555	420	521
2008	502	418	471
2009	539	336	459
2010	483	328	392
2011	428	370	365

Table 6. Model selection results from lognormal model.

Removed	Df	Deviance	AIC
None		74340	39895
Crew	3	74493	40019
Days at sea	2	74675	40302
Region	3	75363	40428
Month	11	75922	41022
Year	18	76320	41297

Table 7. Sequence of gray triggerfish index models leading up to the final accepted version.

Model	Consensus
Delta-GLM, Stephens\&MacCall, species in at least 1% logbook trips, factors not pooled	Crew and away factor levels need to be pooled, Stephens\&MacCall species assemblages questionable North of Cape Hatteras
Delta-GLM, pool factor levels for crew size and days at sea, limit to Stephens\&MacCall to the snapper- grouper complex and apply North and South of Cape Canaveral (not North of Cape Hatteras) due to small number of samples and unlikely species associations	Excessive loss of positive trips (over half in some years)
GLM on positive gray triggerfish trips using the lognormal error distribution	Accepted

Figure 1. Commercial handline trips (left panel) and positive gray triggerfish commercial handline trips (right panel). The green symbols represent the areas that combined signify fifty percent of the total trips, the red and green circles combined represent seventy-five percent of the total trips, the red, green, and yellow symbols combined represent ninety-nine percent of the total trips, and the gray symbols represent one percent of the trips.

Figure 2. Diagnostics of lognormal model fits to positive CPUE data. Top panel shows the histogram of empirical \log CPUE, with the normal distribution (empirical mean and variance) overlaid. Bottom panel shows the quantile-quantile plot of residuals from the fitted model.

Figure 3. Diagnostics of lognormal model fits to positive CPUE data. Box-and-whisker plots give first, second (median), and third quartiles, as well as limbs that extend approximately one interquartile range beyond the nearest quartile, and outliers (circles) beyond the limbs. Residuals are raw.

Figure 4. Nominal CPUE by region across all years.

Figure 5. Gray triggerfish standardized CPUE and nominal cpue.

