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Abstract 
 
 Understanding the behavior, including movement, of red snapper (Lutjanus 

campechanus), around and among the many oil and gas platforms in the northern Gulf of 

Mexico (GOM) is crucial to the management of this important commercial and 

recreational species.  What role oil and gas production platforms play in the attraction vs. 

production continuum for red snapper is unknown, but it is certain these large structures 

have a role at some life history stage.  We used the VRAP acoustic telemetry system to 

track red snapper around two platforms in the GOM in 2005 and 2006.  Fish detections 

per hour generally decreased over the course of each experiment, and detections also 

fluctuated with strong periodicity.  Spectral analysis revealed that red snapper had a 24-

hour periodicity to their movements.  Probability of presence of fish likewise fluctuated 

within a day, perhaps indicating foraging away from the platforms.  Red snapper in this 

study showed much lower site fidelity than in previous studies of red snapper on artificial 

reefs. These results appear to support the hypothesis that platforms function largely as 

attracting devices. 
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Introduction 

 The Magnuson-Stevens Fishery Conservation and Management Act, the 1996 

revision and reauthorization of the 1976 Public Law 94-265 (Act), requires that fishery 

management plans include an identification and description of essential fish habitat 

(EFH), adverse impacts on EFH (including the effects from fishing), and actions to 

conserve and enhance EFH (Gallaway et al, 1999). One of the most pressing federal 

fisheries management concerns in the Gulf of Mexico (Gulf) region is the overfished 

status of red snapper Lutjanus campechanus (Schmitten, 1999). National Marine 

Fisheries Service (NMFS) data collection provides evidence that the primary cause of 

overfishing on red snapper is bycatch of age-0 and age-1 (juvenile) red snapper by shrimp 

trawls (Schirripa and Legault, 1999). As such, the conservation and enhancement of red 

snapper EFH may act to reduce the impacts of shrimp trawl mortality on juvenile red 

snapper (Schmitten, 1999).   

Red snapper are demersal reef-associated fish that are distributed along the 

continental shelf throughout the Gulf. Young red snapper spend most of their first year 

over sand and mud bottom on the shrimping grounds in the northern Gulf, after which 

they move offshore to reef environments (Patterson et al, 1998). Adult snapper are found 

in deeper offshore waters near coral, rocks, banks, outcrops, and manmade submerged 

objects such as oil and gas platforms and artificial reefs (Workman and Foster, 1994).   

 The way in which different life stages of red snapper utilize these various habitats 

as they grow, e.g. for feeding, protection or both, is unknown. Information on the age-0 

juvenile stage of red snapper is sparse, especially at first settlement (Szedlmayer and 

Conti, 1999). However, it has been demonstrated that as red snapper grow they show 
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strong preferences for natural and artificial habitat with vertical relief. It is these areas 

that are considered by many to constitute red snapper EFH. 

In the waters of the northern Gulf there are over 4000 functioning oil and gas 

platforms (Stanley and Wilson, 1998). Since the first platform was installed, fishers and 

scientists have been aware of their associated nekton assemblages (Stanley and Wilson, 

1997). They act as artificial reefs by providing habitat that potentially increases the 

growth and survival of the individuals, by affording shelter for protection from predation 

and spawning substrate, and by acting as a visual attractant for organisms not otherwise 

dependent on hard bottom (Gallaway et al, 1981). Oil and gas platforms differ from most 

natural habitats and from traditional artificial reefs in that their vertical profile extends 

throughout the water column into the photic zone (Stanley and Wilson, 1991). Increased 

habitat quality on, or immediately around, oil and gas platforms is believed to be derived 

from increased in situ food production associated with encrustation by fouling organisms 

and also by any amount of fortification of the bottom for support of the structure.  

Artificial reefs, such as oil and gas platforms, may be useful tools for fishery 

managers if they increase production, but many researchers question whether or not they 

are a positive influence on reef stock dynamics. There have been doubts about whether or 

not they produce or attract fish and the resolution to this question is essential to the 

management of reef fish stocks. If they indeed constitute EFH for reef fish, then they can 

be considered as viable management tools. If they are simply attracting fish to the area, 

they may be simply promoting overfishing. Currently, the Gulf Management Council 

does not include oil and gas platforms, or any other artificial reef habitat, in their 

treatment of EFH. 
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 Understanding the movement and behavior of red snapper (Lutjanus 

campechanus) around and among the many oil and gas platforms in the northern Gulf of 

Mexico (GOM) is crucial to the management of this important commercial and 

recreational species.  It has long been known that artificial reefs such as oil platforms are 

good fishing localities.  Several scientific studies have confirmed that platforms are 

common sites for fish aggregation (Seaman et al., 1989; Stanley, 1994; Love et al., 1999; 

2000; Jennings et al. 2001) and that red snapper comprise a significant percentage of 

these communities (Stanley and Wilson, 1997; Nieland and Wilson, 2002; Wilson and 

Nieland, 2004).  Platforms have also been implicated in the partial recovery of some fish 

stocks—reasons for this include increased food production and refuge from predators 

around platforms.  However, they may simply make red snapper more vulnerable to 

fishing.  Knowledge of how fish use platforms is relatively scarce.   

 Estimates of abundance can only show that red snapper do associate with 

platforms, not why.  Acoustic telemetry enables researchers to investigate site fidelity and 

observe temporal and spatial patterns in red snapper movement and behavior.  Site 

fidelity can serve as a proxy for the suitability of a platform as red snapper habitat—if the 

platform does provide some benefit, the hypothesis is that red snapper would not risk 

predation and the energy costs involved with seeking new habitat (Werner and Anholt, 

1993).  Investigating red snapper movement temporally can reveal if snapper exhibit any 

patterns, such as diel periodicity and diurnal/nocturnal or crepuscular movements.  

Temporal patterns often correspond to feeding behavior (Hobson, 1965; Helfman, 1986) 

and may give insight into whether platforms play some role in feeding by red snapper.  

Whether red snapper do or do not exhibit strong site fidelity to platforms, and do or do 
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not gain nutrition directly from food webs dependent upon platforms, also contributes to 

the resolution of the attraction vs. production debate (Bohnsack, 1989). 

 Bohnsack (1989) proposed that the varying hypotheses regarding why artificial 

reefs hold such high numbers of fish could be summarized by two mechanisms: attraction 

and production.  Artificial reefs may merely attract high numbers of fish—this 

mechanism would be likely to dominate for species that are reef-associated, recruitment-

limited, and exhibit low site fidelity.  Artificial reefs may actually increase the fitness of 

and produce biomass for some species, particularly those that are reef-dependent, habitat-

limited, and show high site fidelity. 

 The attraction versus production hypothesis attempts to explain these phenomena 

at a population level.  The Resource Mosaic Hypothesis may explain how attraction 

versus production may be operating that the local scale, i.e., at an individual reef or 

collection of reefs.  Lindbergh et al. (1990) concluded that reef-associated species feeding 

upon non-reef-associated benthic dwelling prey create areas of intense prey depletion 

around the reefs they inhabit. These feeding haloes force these predators to search beyond 

feeding haloes to find available prey.  Further, they hypothesized that spacing would be 

important in this dynamic—reefs that were close together would have overlapping haloes 

and more intense prey depletion.  The more intense the prey depletion, the higher the 

energetic cost of searching for available prey; and this higher energetic cost would 

decrease site fidelity, abundance, and growth. 

 Researchers have studied whether the resource mosaic hypothesis might apply to 

red snapper associated with artificial and natural reefs.  Strelchek et al. (2005) found that 

red snapper biomass and CPUE both decreased with increasing density of reefs.  

McCawley and Cowan (2007) found that red snapper do indeed feed upon non reef-
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associated prey surrounding both natural and artificial reefs.  Westmeyer et al. (2007) 

concluded that red snapper were exhibiting very low site fidelity to platforms in the GOM 

(<1% yr-1).  From these studies it may be surmised that red snapper are exhibiting 

behavior consistent with the resource mosaic hypothesis, however, that behavior has 

never been observed.  A major goal of this study was to see if I could observe behavior 

that would be consistent with red snapper moving away from oil platforms to feed.  

Because the resource mosaic hypothesis has implications for the spacing of reefs, 

managers of artificial reef programs might be interested to know whether the existence of 

foraging haloes should inform their decisions about where to place artificial reefs.   

 Another major goal of this study was to observe ‘a day in the life of a fish.’  

Telemetry can collect data that gives more information than just where fish are.  Because 

the date and time of both positions and detections are collected also, researchers can use 

these temporal data to look at temporal patterns.  For instance, if fish are making 

movements away from reefs, telemetry can also show when these movements are 

occurring.  If fish are leaving the coverage area entirely, telemetric data can also show 

when fish are in the coverage area, and when they are not.   
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Methods 

 I performed two telemetry experiments on platforms in the GOM.  I collected red 

snapper aboard a charter fishing vessel during the summers of 2005 and 2006.  

Collections were performed at a complex of petroleum production platforms known as 

‘the Circle,’ because they roughly form a circle around the salt dome from which crude 

oil is extracted.  The Circle (28ْْ 39.402 N, 090 ْ14.126 W) is located about 50 km off 

Louisiana in the northern GOM (Figure 1); all platforms in the Circle are owned and 

operated by Chevron-Texaco.  Although I caught fish at several platforms, I released all 

fish at the platforms around which I deployed the Vemco® radio acoustic positioning 

(VRAP) system.  In 2005, I deployed VRAP around ST 135-M; in 2006, ST 134-S 

(Figure 1).  Platform 135-M stands at the southwestern end of the Circle in 45 m of 

water; platform 134-S stands at the northern end in 37 m of water.  The combined 

platforms in the Circle have a 2.5 km radius.   

 I chose this site because of an existing relationship between LSU researchers and 

the Chevron-Texaco personnel at the Circle platforms.  They were not only willing to 

allow us to perform experiments on and near platforms; we also were provided with 

information regarding boat traffic and logistical support such as transportation to study 

sites via helicopter.  For this experiment, they also provided us with a site to house the 

VRAP’s base station, where power and existing radio communication infrastructure were 

available.   

 I deployed the VRAP system around one platform each year to track the 

movements of red snapper around the structures (Figure 2).  The VRAP system is 

composed of three receivers that detect and record transmitters with independent 

hydrophones.  Each  
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a) 

 

b) 

Figure 1.  Maps of the study area showing the position of a) ‘the Circle’ (circled in red) in 
the Gulf of Mexico and b) the positions of platforms ST-135 M, ST-134 S, and ST-151 Y 
within the Circle.  
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a) 

 

b) 

Figure 2.  Plots of the buoy deployment in a) 2005 and b) 2006.
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transmitter has a unique code and emits a ping at random intervals, so that VRAP can 

identify and track multiple individuals.  Random intervals minimize simultaneous 

transmissions from multiple transmitters—VRAP cannot record more than one 

transmission at a time.  All transmitters had battery lives (approximately one year) that 

exceeded the length of the study, which was designed to study short-term movement and 

site fidelity.  Some of the transmitters also were equipped with depth sensors (6 in 2005, 

and 9 in 2006), and communicated depth during transmission.    

A base station kept on ST-151 Y (Figure 1) in both years initialized the receivers 

for recording and uploaded data at user-defined intervals.  When all three receivers 

recorded a transmission, the base station calculated a position for that fish.  The base 

station also recorded ‘unresolved tags’—transmitters detected by two or fewer receivers.  

This feature allows VRAP to detect fish presence, even when it is unable to calculate 

position.  The base station then recorded the positions or unresolved tags, along with the 

date and time of transmission, for each fish. 

I also deployed stationary tags within the array for two purposes (Figure 2).  

Because the buoys were moored and moved with the currents, I needed a way to subtract 

this movement from the fish positions.  Stationary tags also allow estimation of error in 

detectability.  When fish are not detected by the system, it could be because they are not 

present in the array or the system is unable to detect them.  Because stationary tags are 

always present in the array, any loss in detectability will be due to the limitations of the 

system, hydrographic features in the area, battery loss in either the tags or the 

hydrophones, or other factors which could all be considered system-wide error.  The 

effects of those factors can be estimated by trends in detections of stationary tags. 
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 Each experiment was intended to last two weeks during the spring/summer—after 

cold fronts were no longer a threat, and before hurricane season was likely to affect the 

GOM.  In 2005, I deployed VRAP for five days in May (26-30) before one of the 

receivers was struck and damaged by a supply boat.  I was not able to re-deploy until 

August, when I was able to get another seven days of data (6-12 August).  In 2006, I was 

able to get a continuous two-week dataset (17-30 May).  I chose the study length because 

two weeks is the effective battery life of the buoys, I was not attempting to observe long-

term movements or behavior.   

I collected red snapper for tracking with hook and line.  Each fish was checked for 

visible signs of catastrophic decompression—bulging eyes, external hemorrhaging, or 

everted stomachs (Rummer and Bennett, 2005)—and then placed into a pre-surgery 

holding tank after their air bladder was vented.  The fish remained in the pre-surgery tank 

until they were able to swim upright on their own.  At that point, fish were determined to 

be suitable for transmitter implantation.  Fish were brought to level four anesthesia in a 

325 mg l-1 solution of MS-222.  A small incision was made just dorsal to the ventral 

midline, between the pelvic fins and the anus, with a sterile, disposable scalpel.  I then 

implanted an ultrasonic transmitter (Vemco, Ltd.), inserted a Floy® anchor tag (for visual 

identification in case of recapture) into the incision, and closed the incision with two 

catgut sutures and an acrylic adhesive (Krazy Glue®).  Fish then were transferred to a 

post-surgery recovery tank and held until they again were able to swim upright.  To 

estimate acute mortality, I monitored fish for ability to orient to the bottom and swim 

down upon release (Patterson et al., 2001).   

To analyze the data, I first plotted fish positions.  To account for movement of the 

buoys, I first calculated the mean position of each stationary tag.  I then calculated the 



 11

difference between each position of a stationary tag and its mean position in the x-

direction (dx) and in the y-direction (dy).  Because the VRAP system can not detect more 

than one tag at a time, the time at which a stationary tag was detected was never the same 

as when a fish was detected.  For this reason, I interpolated dx and dy over the times at 

which fish positions were recorded and used these numbers to correct the fish positions in 

both the x- and y-direction (Figures 3 -5). 

To determine when red snapper were present at the platform, I combined 

positions and unresolved tags.  If an individual was detected by VRAP during any hour of 

the study, I considered that fish to be ‘present’ during that hour.  By definition, a fish 

would either be present each hour, even if detected more than once, or absent, if not 

detected at all.  First I plotted the fish identification codes (ID) by hour of the study, 

placing a ‘dot’ on the x-axis for each hour of the study the fish was present (Figure 6).  I 

then plotted the number of fish detected per hour (if a fish was detected at least once in an 

hour, it was counted once and no more) for each hour of the study.  To estimate system-

wide error, I modeled the average hourly detections of stationary tags (the average was 

calculated by day of the study, so that I am looking at day 1’s average detections per hour 

vs. day 2’s vs. day 3’s, etc.).  I regressed on ID, time of day (day vs. night), and day of 

study.  (‘Day’ hours were 0600-2000, and ‘night’ hours were the remaining hours.)  I 

then subtracted the values predicted by the model from the average hourly detections by 

day of study of tagged fish and calculated the slopes of the de-trended data. 

To detect periodicity, I performed a spectral analysis (PROC SPECTRA, SAS 

Institute, INC., 2007) on fish detected per hour.  Spectral analysis can detect cycles in 

presences and absences.   I used the spectra to determine whether there was identifiable 
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Figure 3.  Plot of the a) dx- and b) dy- corrections for fish positions in May 2005 (figure 
continued). 
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Figure 4.  Plot of the a) dx- and b) dy- corrections for fish positions in August 2005 
(figure continued). 
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Figure 5. Plot of the a) dx- and b) dy- corrections for fish positions in 2006 (figure 
continued). 
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Figure 6.  Fish ‘presences’ for a) 2006 and b) 2005—the hours of the study each fish 
registered a detection.  
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 periodicity in the presence/absence data on a daily or sub-daily basis.  To resolve trends 

within a day, I also plotted the number of fish detected per hour by time of day (in hours) 

and applied a LOESS regression fit (PROC LOESS, SAS Institute, INC., 2007).  The 

LOESS regression helps visualize maximums and minimums in the number of detections 

per hour of the day.  So, if the spectral analysis shows diel periodicity, the LOESS 

regression can show at what times of day more and fewer snapper are present. 

To further resolve periodicity, I modeled the presence and absence data with 

logistic regression (PROC REG, SAS Institute, INC., 2007) and PROC GLIMMIX (SAS 

Intistute, INC., 2007).  For each hour of the study, a fish was coded ‘1’, if it was detected 

by VRAP during that hour, and ‘0’, if it was not.  I then regressed this binary response on 

the variables: day (of the study, starting with 1); hour of day (from 0-23) and its square, 

cube, and fourth power; year; moonphase; photo-period; wind speed; wave height; tide 

level and stage (WAVCIS; 90° 29’, 28° 52’; Louisiana State University).   

  Logistic regression is a generalized linear model (GLM) of the form; 

E(Y)= g-1(X· β + α),  

where X is a vector of the independent variables (Table 1), and β is a vector of the fixed 

effect (independent) parameters (β is not a slope, even though it is part of a linear 

equation; in GLM, the linear function is linked to the dependent variable), and α is the 

intercept. The function g(·) is the monotonic link function, which links the mean value of 

Y, E(Y),  to the linear predictor, X· β + α; g-1(·) is its inverse.   
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Table 1.  Independent variables used in the logistic regression, and their units and 
descriptions. 
 
Variable Units Type Values 

Day 1-14 Ordinal  2006 

Day 1-5, 71-77 Ordinal 2005 

Hour of day 1 hour, but (0-

23)/100 for 

purposes of 

regression 

Ordinal 0.0, 0.01, 0. 02, . . ., 

0. 23 

(Hour of day)^2 (0-23/100)^2 Ordinal 0.0, 0. 001, 0. 004, . 

. ., 0.00529 

(Hour of day)^3 (0-23/100)^3 Ordinal 0.0, 0.0001, 0. 0008, 

. . ., 0.00121 

(Hour of day)^4 (0-23/100)^4 Ordinal 0.0, 0.00001, 

0.000016, . . ., 

0.000280 

Year 1 year Nominal 2005, 2006 

Moon-phase Quarter moon Nominal Full, last, new, first 

Photoperiod Hours of daylight Continuous  

Wind speed Kilometers-per-hour Continuous  

Wave height Meters Continuous  

Tide level Meters Continuous  

Tide stage Ebb, flood Nominal  
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For logistic regression, the link function is the logit transform;  

Logit(Y)=(Y)/Y-1); 

Where Y is the dependent variable and takes the values of 0 for absent and 1 for present, 

and E(Y) is the expected or mean value of the dependent variable, and gives the predicted 

probability of presence.  

The logistic regression model did not converge, so variables found to be 

significant (day, hour, hour-squared, year, photoperiod, and moonphase) then were used 

in PROC GLIMMIX.  The GLIMMIX procedure performs a generalized linear mixed 

model (GLMM), which uses both random variables and fixed effects in model building.  

The addition of the random variables allows the GLMM to account for observations that 

cluster—clustered observations will tend to be more alike than observations from other 

clusters because they are positively correlated.   

The form of the GLMM equation is a conditional model: 

E[Y|γ]= g-1(X· β + Z· γ) 

The expected value of Y is conditional on γ, a vector of random effects, which is 

univariate normal with mean 0 and covariance matrix G.  The univariate random effect γ 

adds to the GLM the use of cluster-level terms that take the same value for observations 

in a cluster, but different values for different clusters; it adjusts the intercept at the level 

of the cluster, but does not modify the fixed effects.  Simply, it produces a separate 

intercept for each cluster.  I used this GLMM to specify individuals as clusters, so that 

individual fishes’ probability of presence were not part of the calculation of the fixed-

effect terms.  Z is a design matrix for the random effects.  With only one random effect, it 

is comprised of only one column—the intercept column. 
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  I ran different combinations of these variables in GLIMMIX to achieve the most 

parsimonious model as determined by the lowest pseudo-AIC, a measure of model fit 

(smaller is better).   

Pearson’s product moment correlation (PROC CORR, SAS Institute, INC., 2007) 

was used to test for correlation among variables.  I ran a ‘survival’ or time-to-event 

analysis (PROC LIFETEST, SAS Institute, INC., 2007), which gives both probability of 

survival, or continued presence at the platform, and the mean period before permanent 

absence occurs.  It is important to note that absence can be the result of emigration or 

mortality, including fishing mortality.   

To examine spatial patterns, I calculated the distance moved in the x and y 

direction (dx and dy, respectively) between successive points.  I plotted dx and dy on 

feather plots, so that the angle and distance of successive movements could be visualized.  

I then calculated a mean angle for each fish (Zar, 1998), which gives the mean of all the 

angles of movement, and a radius which can be used as a measure of dispersion about the 

mean angle (the longer the radius, the less the dispersion).  I also calculated distance from 

the platform for each position of a red snapper, after which I calculated and plotted mean 

distance from the platform by hour-of-study, and hour-of-day.   

I also calculated speed between positions by dividing distance moved over the 

interval (in seconds) between positions.  When it became clear that the vast majority of 

the intervals were too large to permit an accurate estimate of speed, I plotted interval vs. 

speed to see if there was asymptote which could provide a maximum time interval as a 

threshold.  Speeds below this threshold were multiplied by body length (m, SL) to 

calculate mean speed in body length s-1 by hour-of-study and hour-of-day. 
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For those tags that gave depth, I calculated and plotted mean depth by both hour-

of-study and hour-of-day.  I also performed spectral analysis (PROC SPECTRA, SAS 

Institute, INC., 2007) on the all depths for each hour of the study. 
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Results 

 In 2005, I captured and implanted 16 red snapper.  In 2006, I captured and 

implanted 20 red snapper.  Table 2 gives information about the captured fish. 

Table 2.  The year of capture, identification code (ID) of the tag implanted, the standard 
length, capture sight and release sight of each individual implanted for the study. 
 

Year ID 
Std Length 
(mm) Capture sight Release sight 

2005 1101 356 ST-67 B ST-135 M 
2005 1100 368 ST-67 B ST-135 M 
2005 1102 279 ST-67 B ST-135 M 
2005 1103 279 ST-67 B ST-135 M 
2005 1104 318 ST-128 X ST-135 M 
2005 1105 338 ST-128 X ST-135 M 
2005 1106 483 ST-135 M ST-135 M 
2005 1107 279 ST-135 M ST-135 M 
2005 1109 300 ST-135 M ST-135 M 
2005 1110 356 ST-135 M ST-135 M 
2005 119 292 ST-135 M ST-135 M 
2005 120 279 ST-135 M ST-135 M 
2005 121 318 ST-135 M ST-135 M 
2005 122 401 ST-135 M ST-135 M 
2005 123 318 ST-128 X ST-135 M 
2005 124 318 ST-128 X ST-135 M 
2006 1113 410 ST-135 V ST-134 S 
2006 1114 445 ST-128 R ST-134 S 
2006 1115 451 ST-128 R ST-134 S 
2006 1116 480 ST-128 R ST-134 S 
2006 1117 420 ST-128 R ST-134 S 
2006 1118 360 ST 134 W ST-134 S 
2006 1119 472 ST-128 R ST-134 S 
2006 1120 410 ST-128 R ST-134 S 
2006 1121 554 ST-135 V ST-134 S 
2006 1122 423 ST-135 V ST-134 S 
2006 210 460 ST 134 W ST-134 S 
2006 211 395 ST 134 W ST-134 S 
2006 212 405 ST-135 M ST-134 S 
2006 213 432 ST-135 M ST-134 S 
2006 214 415 ST-135 M ST-134 S 
2006 215 470 ST-135 M ST-134 S 
2006 216 404 ST-135 M ST-134 S 
2006 218 482 ST-135 M ST-134 S 
2006 219 476 ST-135 V ST-134 S 
2006 1123 430 not recorded ST-134 S 
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All red snapper implanted with a transmitter were able to swim down and were 

assumed to have survived surgery.  The positions recorded by VRAP appear to cluster 

largely around the platform for each fish in each year over the experimental time interval 

(figures 7-12).   I report the 2006 results first, because the study period was not 

interrupted.  I will then report the 2005 results, because they often complement or support 

the 2006 study. 

In 2006, the VRAP system was able to detect 14 of the 20 red snapper implanted 

with transmitters; and the number of individuals detected decreased over the study period 

(Figure 6).  Six left immediately or were consumed by a migratory predator that left the 

study area (before being tracked by VRAP); another two left after two days, and another 

two after eight days.  Ten stayed near the platform for at least twelve days, but only five 

remained at the end of the 14 day study.  One fish was detected only once (as an 

unresolved tag) during the two weeks of tracking; I strongly suspect that this was a ghost 

tag.  The VRAP system is designed such that if two transmissions occur simultaneously, 

it will ignore both.  However, sometimes it translates this “collision” of transmissions as 

a coded tag—a ghost tag.  Often the ghost tag has an unknown ID, and is easily identified 

as a ghost tag.  Rarely, the ghost tag will have the ID of a one of transmitters used.  In 

this case, transmitter 210 was not detected on day 1, but was detected subsequently, and 

just once, on day 10.  For this reason, I believe this record is a ghost tag.   

In 2005, VRAP detected 15 of 16 individuals; two of those left on day 1 of the study 

(Figure 6).  Another fish left during day 2, and all others remained until the experiment 

was interrupted (day 5).  When I redeployed on August 23rd, there were five fish still at 

the platform; all of these fish remained until the end of the study (12 August). 
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Figure 7.  Plot of all fish for which positions were calculated in 2006. 
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Figure 8.  Plot of all fish for which positions were calculated in 2005.
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Figure 9.  Plot of fish #213. 
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Figure 10.  Plot of fish #1120. 
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Figure 11.  Plot of fish #1101; fish #1101 was not present when I redeployed in August. 
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Figure 12.  Plot of fish #1104; fish #1104 was present when I redployed in August.
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Plotting the number of fish detected per hour-of-study revealed that detections 

appeared to decrease through time in both years, (most apparent in 2006, Figures 13 and 

14).  In addition, the number of detections varied periodically at smaller temporal scales 

(Figures 13 and 14b).  Spectral analysis revealed peaks at 23.8 hours in 2006, 20.4 hours 

in May 2005, and 23.2 hours in August 2005 (Figure 15), strongly indicating diel 

periodicity in detections, and by inference red snapper behavior.  The August 2005 plot 

also shows a less prominent peak at 11.6 hours, indicating semi-diel periodicity.   
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Figure 13.  The number of fish detected per hour in 2006. 
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Figure 14.  The number of fish detected per hour in a) May and b) August 2005. 
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Figure 15.  Periodogram from the spectral analysis on fish detections per hour in a) 2006, 
b) May 2005, and c) August 2005. 



 35

Stationary tags did show a decline in detections in both years (Figures 16 and 17).  

There was a decline in the average number of fish detected for each day of the study in 

2006, even after the de-trending (Figure 18).  In 2005, it looks like there a decline 

between deployments, but there is no apparent trend within either deployment (Figure 

19).   
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Figure 16.  Values predicted from the regression on average hourly detections per day of 
stationary tags in 2006.  The data are log-transformed. 

 

The LOESS regression plot from 2006 revealed highest values during nighttime 

hours, with fewer detections occurring during the day (Figure 20).  Similarly, the 2005 

data and LOESS regressions indicate the number of detections were higher during 

nighttime hours, but lowest near dusk, 1600-2000 hours  (Figures 21 and 22). The logistic 

regression did not converge; but day, hour, hour2, moonphase, and photoperiod were 

significant variables, so I used them to form the model for the generalized linear mixed  



 36

0

0.5

1

1.5

2

2.5

1 2 3 4 5 71 72 73 74 75 76 77

Day of Study

D
et

ec
io

ns
 

Figure 17.  Values predicted from the regression on average hourly detections per day of 
stationary tags in 2005.  The data are log-transformed. 
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Figure 18.  Average hourly detections per day of tagged fish in 2006; triangles are the 
original data, and squares are the detrended data.  All data are log-transformed. 
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Figure 19.  Average hourly detections per day of tagged fish in 2005; triangles are the 
original data, and squares are the detrended data.  All data are log-transformed. 
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Figure 20.  The number of fish detected per hour of day in 2006, with a LOESS 
regression fit to display diel trends.   
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Figure 21.  The number of fish detected per hour of day in May 2005, with a LOESS 
regression fit to display diel trends.   
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Figure 22.  The number of fish detected per hour of day in August 2005, with a LOESS 
regression fit to display diel trends.   
 
model (GLMM).  The correlation between day and moon-phase was high (r= 0.77), so I 

did not include day in the GLMM to reduce colinearity.  The most parsimonious model, 

i.e., with lowest pseudo-AIC, contained the variables: hour, hour2, and moon-phase.  

Probability of presence declined with successive moon-phases: 81% at full moon, 45% at 

last quarter, and 1% during new moons and first quarters (Figure 23).  Both experiments 

began during a full moon, and occurred during similar cycles despite the interruption in 

2005.  Within a day, probability of presence was similar to the LOESS regression results: 

highest overnight and declining during the day (Figure 24).   
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Figure 23.  Mean probability of presence, across all fish and both years, by moonphase.  
Error bars indicate one standard error. 
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Figure 24.  Probability of presence, across all fish, by hour of day. 

The survival analysis found that mean survival time for 2006 was 165.8 hours, or 

6.9 days; 70% of the data were ‘events’—fish abandoning the platform, and 30% were 

censored (Figure 24).  In 2005, the mean survival time was 0, because the only three 

events were fish that had left immediately; all other data were censored (Figure 25). 

The feather plots of 2006 data do not indicate directed (non-random) movements; 

however, fish 213, 219 and 1113 appear to have ‘axes’ to their movements—movements 

appear to be predominantly north/south; the 2005 feather plots show 
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Figure 25.  Probability of presence, as calculated by the survival analysis. 

movements that again appear to be random in direction, although fish 1109 shows a 

similar north/south axis (Figures 26 and 27).  However, the mean angles calculated for 

each fish did not confirm an ‘axis’ of movements.  The radii of the fish with ‘axes’ were 

shorter (their mean angles showed more dispersion) than some of those for the fish 

without axes and fish appear to have made larger movements with time as the experiment 

progressed. 

The distance from the platform results were mixed.  In 2006, the fish showed a 

significant difference between day and night values (Figure 28), but this difference was 

quite small (3 meters).  In 2005, fish were farther from the platform at night during May 

but farther during the day in August (Figure 29).  The difference during August 2005 was 

not significant. 

Figure 30 shows that speeds calculated with intervals less than 5 minutes showed 

the greatest range—speeds calculated for intervals greater than that were rarely larger 

than 1m/sec.  Figures 31 and 32 show the speeds by hour-of-day with the mean values for 

each hour superimposed.  Speeds were lower in 2006 than in 2005, but otherwise there 

were no observable patterns either within a day or throughout the study.  
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 Mean depth by hour-of-study is plotted in figure 33 for 2006, in figure 34 for 

May 2005, and in figure 35 for August 2005.  Depth, like detections, displays regular 

increases and decreases.  Spectral analysis revealed a strong peak at 24.1 hours in 2006 

(Figure 36); the 2005 data had peaks at 6.0 and 20.8 hours in May (figure 37) and some 

power at 11.8 hours in August (Figure 38).



 42

 

 

Figure 26.  Feather plots showing the consecutive movements of fish during the 2006 experiment.  Each vector represents a movement 
between consecutive points. 
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Figure 27.  Feather plots showing the consecutive movements of fish during the 2005 experiment.  Each vector represents a movement 
between consecutive points. 
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Figure 28.  Mean distance from the platform for all fish by time of day in 2006.  Letters 
indicate significant differences. 
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Figure 29.  Mean distance from the platform for all fish by time of day in 2006.  Letters 
indicate significant differences. 
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Figure 30.  Interval, the time between two recorded positions, versus the speed of 
movement between those two positions. 
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Figure 31.  Speed, in body lengths per second, for hour of day for 2006.  The mean value 
for each hour is superimposed. 
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Figure 32.  Speed, in body lengths per second, for hour of day for 2005.  The mean value 
for each hour is superimposed 
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Figure 33.  Mean depth, in meters, for each hour of the study in 2006. 
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Figure 34.  Mean depth, in meters, for each hour of the study in May 2005. 
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Figure 35.  Mean depth, in meters, for each hour of the study in August 2005.
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Figure 36.  Periodogram from the spectral analysis on all depths per hour of study in 
2006.  Hours are on the x-axis, and the y-axis shows the power of the periodicity.   
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Figure 37.  Periodogram from the spectral analysis on all depths per hour of study in May 
2005.  Hours are on the x-axis, and the y-axis shows the power of the periodicity. 
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Figure 38.  Periodogram from the spectral analysis on all depths per hour of study in 
August 2005.  Hours are on the x-axis, and the y-axis shows the power of the periodicity.
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Discussion 

Our study is the first to use a real-time telemetry system to describe the movement 

and behavior of red snapper.  Population estimates have shown that red snapper 

congregate near platforms in large numbers (Stanley and Wilson, 1997; Nieland and 

Wilson, 2002; Wilson and Nieland, 2004); and site fidelity studies on a variety of 

artificial reef types and sizes have reported widely varying results, ranging from  <25% to 

>60% yr -1 (Beaumariage, 1969; Fable, 1980; Szedlmayer and Shipp, 1994; Szedlmayer, 

1997; Patterson et al., 2001; Patterson et al., 2003; Szedlmayer and Schroepfer, 2005).  

However, some tag-and-release studies show that one-way, long-term movements of red 

snapper are possible for fish that have been at large for many days (Szedlmayer and 

Shipp, 1994; Patterson et al., 2001).  These results, sometimes conflicting, have 

contributed to the confusion over whether artificial reefs attract or produce red snapper, 

because of the role that site fidelity plays in some of the conceptual models defining the 

argument (e.g., Bohnsack, 1989; Lindberg et al., 1990; Strelcheck et al., 2005).  

 None of the above studies, however, provide insight about how red snapper use 

artificial habitats in the short-term, and this too has relevance to the attraction/production 

debate.  The two years of data collected here provide this information, and together, 

illuminate to some extent how red snapper use platforms, albeit that pattern of use varied 

slightly between years.  In 2006, I was able to collect a complete two-week dataset that 

provides the best short-term picture.  In 2005, my experiment was interrupted.  However, 

I was able to redeploy when a few of my tagged fish still were within the detection radius 

of the VRAP system, giving some additional short-term information, along with a longer-

term perspective.  In both years, there were departures on day 1 of the study; in fact, 

some of the fish appear to have left before the VRAP was initialized.  It is possible that 
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these fish were consumed by predators during swimdown, as I frequently observed 

marine mammals and fish predators in close proximity to the charter boat where the 

tagging was taking place.   In 2006, I found that fish departed individually throughout the 

two weeks (Figure 2), feather plots showing that large movements were possible 

beginning from the time of release support this contention (Figure 15).  In 2005, the 

experiment was interrupted when 12 individuals were still at the platform.  By the time I 

redeployed, there were only 5 remaining; these fish then remained until the end of the 

study.  The fish tagged in this study exhibited almost binomial behavior; fish either 

exhibited high site fidelity—two months or more—or almost none at all—leaving the 

study area in less than two weeks. 

It is interesting to note, however, that all of the red snapper exhibited low site 

fidelity when compared to results from more traditional tagging studies, particularly 

considering the brevity of my study.  The GLMM shows declining probability of 

presence with successive moon-phases, from 81% at the beginning to 1% by the end of 

the experiments.  This result is probably spurious, and I believe that moonphase is simply 

representing days-at-large.  In 2005, a full moon cycle passed while the VRAP system 

was not deployed.  No fish returned during this interval, despite the fact that the 

associated moon phases did.  Similarly, Westmeyer et al. (2007), who collected 

presence/absence telemetry data on acoustic-tagged red snapper over a several month 

period, did not observe cyclical patterns in site fidelity.  Presumably, if fish were more 

likely to be present during a full moon (rather than the beginning of the experiment) and 

less likely to be present during the first quarter (rather than the end of the experiment), I 

should have seen a cyclical pattern in the data. 
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The “survival” analysis models the decline in probability of presence on the scale 

of days, although the true fate of the fish is undetermined.  The 2006 probability of 

survival curve declines quickly (Figure 14).  In fact, there is a less than 50% chance of a 

fish remaining at 200 hours after release, or about 8.3 days.  The mean survival time is 

only 6.9 days, so the average fish either emigrated or was preyed upon in less than a 

week.  Westmeyer et al. (2007) also reported low site fidelity to platforms, <1%, than 

previous studies of red snapper site fidelity to artificial reefs (Szedlmayer and Shipp, 

1994; Szedlmayer, 1997).  It is worth noting that the structures in the above-cited studies 

were smaller by several orders of magnitude than platforms.  It is possible that the 

number of red snapper and other reef-associated species inhabiting platforms (Stanley 

and Wilson, 1997; Nieland and Wilson, 2002; Wilson and Nieland, 2004) could create 

rather large foraging haloes of depleted prey resources (Lindberg et al., 1990; and 

Bortone et al., 1998), providing that these fishes mostly consume prey derived from the 

benthos as has been described for red snapper at artificial and natural reefs in other 

locations (McCawley and Cowan, 2007; Wells at al. 2008).  As such, this could force red 

snapper to make long searches for available prey, a behavior that is consistent with the 

resource mosaic hypothesis (Lindberg et al. 1990).  I hypothesize that if movement is 

fitness driven, large movements to forage may become so energetically costly there is no 

incentive for fish to return.  

The number of fish detected each hour oscillated at regular intervals, in both 2006 

and August 2005 (Figures 6 and 7); the Fourier periodogram reveals that these 

oscillations occur on roughly 24-hour periods (Figure 8).  The tagged fish that remained 

in the study area consistently left and re-entered the area within the detection radius daily.  

Distances from the platform concur with the results of the detections, showing 
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differences between day and night values (Figures 18 and 20).  Fish moved farther away 

during the day, and the distances they moved increased with the number of days at large 

(Figures 17 and 19).  The LOESS regression fit from 2006 shows that detections were 

higher during nighttime hours and lower during daytime hours (Figure 9).  The 2005 data 

are less clear, but the August 2005 data show a similar pattern (Figure 11).  The lowest 

numbers of fish detected, however, are found between 1800-2100 h.  The probability of 

presence calculated for both years confirms this pattern (Figure 22).  I feel confident in 

saying that red snapper appeared to remain closer to the platforms during nighttime hours 

and dispersed during daytime hours.   

Mean depth likewise showed regular increases and decreases; this pattern was 

identified as semi-diel or diel using spectral analysis (Figures 27 and 29). While there 

were no obvious patterns in mean depth by hour of day, 3-D plots reveal that fish are 

making larger movements at depth.  It is likely that this diel periodicity represents 

feeding behavior; many diurnal and nocturnal fish school during their inactive phase and 

disperse to forage during their active phase (Hobson, 1965; Helfman, 1986).  These facts 

could explain the observed patterns in fish detections—red snapper may be aggregating 

near the platform, but foraging away from the platform.  This would be consistent with 

diet studies indicating that red snapper, and other reef-associated species, feed on non 

reef-associated prey items (Sedberry and Cuellar, 1993; Lindquist et al., 1994; 

McCawley and Cowan 2007).  Such behavior by red snapper appears to be consistent for 

fish inhabiting both artificial and natural reefs (McCawley and Cowan 2007; Wells et al. 

2008).   

 Red snapper in my study appear to have frequently moved away from the 

platforms and outside of the detection radius of VRAP (a maximum of 350 meters in 
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2006) on a diel basis.  If these movements are indeed related to foraging, the resulting  

haloes of depleted prey are at least, 384,845 m2, and could be much larger.  I interpret 

these results to mean that foraging opportunities are not likely to be the primary factor 

that compels red snapper to aggregate at oil and gas platforms.  

In most fishes, the necessity of foraging and the risk of being eaten while doing so 

is a constant struggle (Werner and Anholt 1993).  If an individual red snapper must 

search a large area of the surrounding seafloor before finding sufficient prey, the risk of 

predation increases, thus making the choice of returning to a point of origin complicated, 

especially if large movements result in discovery of other nearby natural and artificial 

habitats.  From the standpoint of Bohnsack’s (1989) conceptual model, the lack of 

dependence on the platforms directly for prey resources, coupled with low site fidelity 

and high fishing pressure in the western Gulf (SEDAR 7 2005), suggests to me that it is 

unlikely that oil and gas platforms are directly responsible for increasing productivity of 

the red snapper stock.    

It is also possible that what I have interpreted here to be low site fidelity may 

actually be a consequence of increased vulnerability to predation attributable to red 

snapper foraging behavior.  In a recent synthesis of available information about fish use 

of oil and gas platforms (VERSAR 2008), results indicate that these very large structures 

likely affect red snapper much differently than do relatively small, low relief artificial 

reefs.  The latter are well-studied compared to the much larger platforms, which may be 

attributable to the difficulty associated with sampling larger structures.  That said, some 

clear differences are apparent: 1) low-relief reefs support a much less complex 

community of fishes than do platforms.  In studies off Alabama, most of the biomass 

around small reefs was comprised by only 3 species, namely red snapper, gag grouper, 
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and grey trigger fish (Strelcheck et al. 2005).  These 3 species account for more than 85% 

of the fish biomass observed, with red snapper alone accounting for about 75% of the 

biomass.  Relatively few large piscivores were observed during visual surveys of the 

reefs, suggesting that large predators may not accumulate in large numbers around low-

relief reefs on the inner shelf.  In contrast, red snapper are abundant on platforms, but 

they comprise a relatively small fraction of total numbers and biomass of the fish 

assemblage (<15%, VERSAR 2008).  While speculative, I conclude that if the high 

vertical relief of platforms is causing these structures to act as fish attraction devices for 

large predators such as sharks, barracuda, large jacks, king mackerel, etc., it is 

conceivable that increased predation mortality of red snapper who reside near platforms 

offsets any biomass accumulation that would otherwise occur in the absence of predators. 

This phenomenon could be driving my low site-fidelity numbers as much as, if not more 

than, any resource-mosaic dynamics and foraging haloes. 

The VRAP system is not without weaknesses, and these should be considered in 

future attempts to work with this system around large structures like platforms.  One 

issue that must be addressed is the ability of VRAP to detect transmitters.  The receivers 

are contained within moored buoys that do move with the tides, and were moored around 

an oil platform with eight piles, which undoubtedly obstructed transmissions.  My 

assumption is that these obstructions did not vary with time, and as such would not 

preclude identification of diel patterns of behavior.  The VRAP system also is limited by 

detection radius, as all telemetry systems are affected by the acoustic noise at the site of 

deployment.  Platforms 134-S and 135-M were both active during my study and 

surrounded by other active production platforms—the study area is quite noisy 

acoustically, and our detection radius (150 m in 2006, 350 in 2005) no doubt was limited 
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by this noise.  In addition, high numbers of snapping shrimp on platforms also creates 

noise that can affect detection radius (personal observation).   

Problems related to detection radius appear to have affected other red snapper site 

fidelity estimates, although the issue has received little discussion.   Szedlmayer (1997) 

described high site fidelity based upon red snapper that remained within the maximum 

detection radius of the receiver, which was 1.6 km, but failed to include those that left 

immediately or those did not stay within 1.6 in subsequent calculations.   In a mark and 

recapture study, Szedlmayer and Shipp (1994) considered movement less than 2 km to 

demonstrate high site fidelity.   In contrast, Patterson et al. (2003) modeled decline in 

recaptures at experimental reefs following saturation tagging to estimate red snapper site 

fidelity.  They reported more conservative (24.8-26.5% per year) site fidelity estimates 

for the same types and sizes of artificial reefs as did Szedlmayer and coauthors, but 

included fish reefs in their calculations that left immediately or that were recovered 

nearby but on other experimental reefs.  Establishing the proper distance in this context 

can be difficult, but should not be arbitrary or merely based on detection radius, which, as 

seen above, can vary widely.  Even examples from the literature may offer little 

guidance, as minimum distances required to indicate emigration can vary widely by 

species.  In a study of the dispersal of Galjoen, Attwood and Bennett (1994) concluded 

that fish remaining within 50 km wide transects to be residents.  Beamish and McFarlane 

(1988) concluded that movements of less than 200 km to be exhibiting resident behavior 

for sablefish.  Willis et al. (2001) considered fish captured within 500 m of their original 

tagging site to have remained residents. 

Perhaps a better approach would be to study site fidelity in the context of home 

range.  Researchers studying both wildlife and fish have used the home range concept to 
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study habitat affinity for their species.  Determining well-defined home ranges for red 

snapper could enlighten their habitat affinities and whether oil and gas platforms or other 

artificial reefs coincide with these affinities.  Determining site fidelity to that home range 

could then be far more informative. 

This new study and that of Westmeyer et al. (2007) indicate that site fidelity to 

platforms may be very low, and it appears that red snapper move away from the 

platforms to forage.  Both of these behaviors would be interpreted to lie on the attraction 

end of the spectrum as defined by Bohnsack (1989).   
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Appendix: Remaining Fish Plots 
 

This appendix contains the plots of all fish for which there were more than 24 

hours worth of positions. 
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