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We will first address the last point made by the Comment Letter (the claimed misuse of 

terminology) in order to clarify apparent misconceptions of model parameters and to avoid 

confusion in terminology.   

Our model was fit to length frequency and standardized catch-per-unit-effort data 

obtained from post-1998 observers on penaeid shrimp fishery in the Western Gulf of Mexico.  

The data did not contain measures of absolute abundance (e.g., catch).  Sample size (number of 

measured fish) did not reflect abundance or shrimp effort.  Sample size was used only for the 

calculation of likelihood of the length frequency data based on robustified multinomial or 

Dirichlet distributions.  Absolute estimates of recruitment were not made.  As stated in our paper, 

the quantity estimated was the recruitment deviation in log-space ( ( )y iR ).  The contribution to 

the objective function (sum of the negative log probability functions) was proportional to the 

sum of squared recruitment deviations (see equation 11) which impels that ( ) 0y iR   when 

the contribution is at a minimum (note that the sum of the logged recruitment indices found in 

Table 7 is 0). Therefore, our terminology is correct.  Also note that the subtraction of the mean 

recruitment deviation in equation (1a) is redundant when the objective function is at a minimum; 
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however, the standardization helps stabilize trial values of total mortality when AD Model 

searches for a solution (i.e., the objective function is not at minimum and
( ) 0y iR   ). 

We next address the issues as encountered in the Comment Letter.  The Comment  states 

that it is unreasonable to assume constant total mortality because of the known changes in shrimp 

fishing effort.  However, if mortality is strongly density-dependent then fishing and other sources 

of mortality will offset each other such that changes in shrimp effort will have little influence on 

total mortality.  In other words, large variation of total mortality could be generated by changes 

in abundance but these changes would be impervious to changes in shrimp fishing effort.  If 

shrimp fishing mortality is independent of abundance and an important component of total 

mortality (and if fishing effort is correlated with recruitment) then we acknowledge that our 

analysis would find a better fit to the data with the density-dependent model.  For example, the 

current management paradigm for red snapper assumes density independence and predicts a 

strong stock response and subsequent recruitment of red snapper from shrimp effort reduction.  

Our analysis could incorrectly declare density-dependent mortality the better fit if such data were 

obtained. However, the estimate of the coefficient of density dependence would have a negative 

value (mortality inversely related to recruitment).  This was not the case (see Gazey et al. 2012). 

Length frequency data with the same monthly sample sizes as in our paper were 

simulated to investigate the behavior of the model following the concerns raised by the Comment 

(mortality is a function of fishing effort and independent of abundance and recruitment).  Natural 

mortality was assumed to be constant at 1.0 and 0.6 for age-0 and age-1, respectively.   Additive 

shrimping mortality was set proportional to the 1999 to 2006 shrimping effort (statistical areas 

10 to 21 and depths 10 to 30 fathoms, see Table 1) such that mean total mortality agreed with 

that reported in lower panel of Table 7 in our paper (von Bertalanffy growth with density-

independent mortality).  Logged recruitment deviations were generated from a normal 

distribution of mean 0 and standard deviation of 0.2.  All other parameters were set as listed by 

the lower panel in Table 7.  These parameters with population dynamics defined in our paper 

were used to produce simulated predicated length frequencies.  Randomness was introduced 

through a random multivariate logistic distribution with a coefficient of variation of 0.4.  No 

indices of abundance were generated.  The simulated length frequency data were fit to the 

density independent and dependent models as described in our paper but without the abundance 
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index component.  The density-independent model correctly recovered all parameters.  The 

density-dependent model fit the data slightly better and correctly recovered all parameters 

(including the trend in annual total mortality) with the exception of the recruitment deviations 

and the coefficient of density dependence (estimated value of approximately 1.0 with a standard 

deviation of 0.8 instead of the expected value of 0.0).  As predicted by the Comment the density-

dependent model varied total mortality over time by changing the recruitment deviation to find a 

better fit to the model.  If small recruitment deviations were input to the simulation model then 

the subsequent estimates of the deviations mimicked the trend in shrimping effort.  Conversely, 

if large recruitment deviations were input to the simulation then the subsequent estimates of 

recruitment deviation were closer to the input values and the coefficient of density dependence 

was near 0.0.  The inference from this simulation exercise is that recruitment deviations change 

to fit changes in mortality; therefore, the statistical support for density-dependent mortality 

reported in Gazey et al. (2008) and Gazey et al. (2012) is not correct.  

The Comment recommends the comparison of 1) a density-dependent natural mortality 

estimate that can vary with recruitment to 2) a constant density-independent natural mortality 

estimate where fishing mortality has been accounted for in both the density-dependent and 

density-independent estimates.  There are difficulties with this suggestion.  First, under density-

dependence not only does fishing mortality replace natural mortality (some fish are destined to 

die) but natural mortality may be inversely related to shrimp effort (e.g., if fish are removed then 

those remaining have a better chance of survival).  We are not aware of a concise model that 

would represent these dynamics.  Second, estimation of natural mortality with age structured 

population models is notoriously difficult (Hilborn and Walters 1992) and will likely be 

particularly difficult for the red snapper population (Forrest et al. In Review).  For example, if 

mortality is portrayed as a iM q E  in our model (where Ei is relative shrimp effort for month i 

and the estimated parameters are natural mortality, M, and catchability coefficient, qa , for age-a) 

then subsequent estimates of the q’s approach 0.0.  This does not mean that fishing mortality is 0 

but it may imply that the parameters are confounded. 

In order to provide some insight on the behaviour of juvenile red snapper total mortality 

with shrimping effort we applied the model as described in Gazey et al. (2008) with total 

mortality stratified by year and age to the updated observer juvenile red snapper data described 
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by Gazey et al. (2012).  In other words, mortality was assumed to be constant for the sampled 

months nested within a year for each of the two age-classes.  The subsequent total mortality 

estimates for age-0 and age-1 during 1999-2011 are listed in Table 1.  Because of the added 

parameters (13 years by 2 ages), there is a substantial uncertainty in these estimates (mean CV is 

approximately 0.4 and 0.5 for age age-0 and age-1, respectively).  Shrimp fishing effort from 

Statistical Areas 10-21 and depths 10 to 30 fathoms, viewed by the Fishery Management Council 

as the best indicator of effort directed on juvenile red snapper, is also listed in Table 1.  Figure 1 

plots the mortality estimates versus scaled shrimp effort (mean=1).    In this approach we are 

looking for evidence of at least some positive relationship between mortality and shrimping 

effort.   No correlation would indicate very strong density-dependence.  The estimated 

probability for zero correlation between mortality and shrimping effort was 0.21 for age-0 and 

0.93 for age-1.  The trend lines suggest at least some response in age-0 mortality from changes in 

shrimp fishing effort and strong density-dependence for age-1.  Figure 2 compares the estimated 

recruitment index (estimated recruit deviation in log space exponentiated and then re-scaled such 

that the 1999-2011 mean was 1.0) with the SEAMAP Western Gulf of Mexico age-0 selectivity 

fall abundance index (Pollack et a. 2012, Table 51; re-scaled such that the 1999-2011 mean was 

1.0).  The agreement was poor for 1999 to 2005 but was good for 2006 to 2011. 

The Comment questions our assertion that age-0 total mortality generally exceeds that 

reported by SEDAR7 (2007) because “the results of this study have large variability over time 

and invalid assumptions that undermine the authors’ suggestions”.  The Comment points out that 

our smallest annual age-0 mortality estimate is in fact smaller than that reported by SEDAR7.  

We acknowledge that age-0 mortality is highly variable; however, the scale or mean (1999-2006) 

of the mortality rates was substantially greater than the SEDAR7 benchmark 2001-2003 mean 

regardless of the alternative models applied (see Table 7).  The simulation exercise conducted for 

this response and simulations by Forrest et al. (In Review) found estimation of scale parameters 

(e.g., total mortality) by density-dependent models to be very robust even when applied to 

density-independent generated data. 

As noted in our paper the estimated recruitment deviations followed the recruitment 

trends calculated by SEDAR7 (Porch 2005, his Figure 7).  However, as noted in the Comment, 

the recruitment estimates made by the SEDAR Update (after our paper was published) were 
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quite different (see Figure 3).  Further, note that the SEAMAP abundance index has little 

agreement with the SEDAR Update results over any period of time (see Figure 4).  The SEDAR 

Update report acknowledged these differences (between SEDAR7, the Update and SEAMAP) 

and attributes them to addition of new data, issues with model convergence and choice of data 

sets used in the SEDAR models.  The point is that estimates of age-0 recruitment are volatile.  

We believe that comparison of models and trying to determine the causal mechanisms for 

differences in recruitment is good practice.  However, these discrepancies are poor evidence for 

model invalidation. 

In summary, we acknowledge that the density dependent model found in Gazey et al. 

(2008) can modify recruitment deviations to fit total mortality.  We concur with the Comment 

Letter that the ability of the density-dependent model to respond to variations in mortality, 

whereas the density-independent model cannot respond to variations in mortality, calls into 

question the statistical validity of the comparison.  All other assertions made by the Comment  

(incorrect terminology, total mortality must respond to changes in fishing effort even under 

density-dependence, invalid estimates of mean total mortality, and model invalidation through 

the comparison of recruitment estimates) we rebut.  The analysis conducted above for this 

response provided some support for density dependence in juvenile red snapper.  We believe that 

the density dependent model as presented by Gazey et al (2008) and Gazey et al. (2012) provides 

a good description of juvenile red snapper population dynamics and robust estimates of 

mortality. 

The upcoming assessment needs to address the impact of substantial reduction in shrimp 

fishing after 2002.  To date, responses in the SEAMAP abundance indices (Figure 4), shrimp 

fishery observer indices of juvenile red snapper abundance (Gazey et al. 2012, Figure 1), or 

estimated mortality (Gazey et al 2012, Figure 5) have not been detected. We believe density-

dependent mortality from habitat limitation explains the lack of relationship. 
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Table 1.  Estimated instantaneous total mortality and recruitment deviation as well as SEAMAP index of age-0 abundance and shrimp fishing effort.

Year Est. SD Est. SD Est. SD Est. SD All Strata
3

SEAMAP
4

Est. Scaled

1999 3.027 0.379 1.233 0.892 4.260 0.969 0.835 0.326 1.922 1.277 203,747 1.441

2000 0.962 0.743 0.800 0.570 1.762 0.937 0.827 0.340 1.908 0.833 232,671 1.645

2001 2.447 0.542 1.913 1.239 4.360 1.353 0.370 0.356 1.208 0.574 251,318 1.777

2002 0.001 0.001 0.947 0.532 0.948 0.532 -0.560 0.351 0.477 0.913 279,331 1.975

2003 3.104 0.549 2.762 0.928 5.866 1.078 -0.624 0.278 0.447 1.417 230,342 1.629

2004 2.188 0.840 1.802 0.572 3.990 1.016 -0.488 0.400 0.512 1.832 154,552 1.093

2005 1.675 0.542 2.409 0.731 4.084 0.910 -0.251 0.380 0.649 1.128 104,778 0.741

2006 0.686 0.807 1.609 0.501 2.295 0.949 0.125 0.360 0.945 1.025 88,213 0.624

2007 0.001 0.000 1.667 0.948 1.668 0.948 0.213 0.363 1.033 1.087 57,480 0.406

2008 1.269 0.854 0.699 0.589 1.968 1.037 -0.102 0.368 0.753 0.125 43,273 0.306

2009 0.547 0.642 2.420 0.738 2.967 0.978 0.858 0.347 1.968 1.845 58,937 0.417

2010 1.237 0.629 1.640 1.573 2.877 1.694 -1.344 0.419 0.218 0.324 49,619 0.351

2011 1.401 0.642 0.001 0.002 1.402 0.642 0.141 0.405 0.960 0.619 84,038 0.594

Mean 1.427 0.170 1.531 0.233 2.958 0.289 0.000 0.101 1.000 1.000 141,408 1.000

Notes:

1 - Parameter estimates using the Gazey et al. (2008) model with total mortality stratified by year and age of red snapper.

2 - Age-0 and age-1 total mortality estimates summed.

3 - The estimated recruit deviation was exponentiated and then re-scaled such that the 1999-2011 mean was 1.0.

4 - SEAMAP Western Gulf of Mexico age-0 selectivity fall abundance index (Pollack et a. 2012, Table 51) re-scaled  such that the 1999-2011 mean was 1.0.

5 - Nominal shrimp effort net-days in Statistical Areas 10 to 21 and depth 10 to 30 fathoms.

Z Age-0
1

Z Age-1
1

Recruit Dev
1

Effort
5

Z Total
2

Recruit Index
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Figure 1.  Total juvenile red snapper mortality estimates for 1999 to 2011 versus scaled shrimp 

effort.  Top panel plots age-0 and lower panel plots age-1.  The error bars represent plus/minus 

one standard deviation. 
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Figure 2.  Estimated recruitment index (all strata) and the SEAMAP Western Gulf of Mexico 

age-0 selectivity fall abundance index (Pollack et a. 2012, Table 51).  Both series were re-scaled 

such that the 1999-2011 mean was 1.0. 

 

 

 

Figure 3.  Estimated recruitment trends from Gazey et al. (2008), Porch (2005) and the SEDAR 

Update (2009). 
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Figure 4.  SEAMAP Western Gulf of Mexico age-0 selectivity fall abundance index (Pollack et 

a. 2012, Table 51) and SEDAR Update (2009) recruitment index.  Both series standardized to a 

mean of 1.0. 
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