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Introduction 
 
The 2012 red snapper (Lutjanus campechanus) assessment will use a two-area Stock Synthesis 
model to estimate reference points for an overall northern Gulf of Mexico (GoM) stock.  When 
parameterized for multiple areas, Stock Synthesis can account for movement of both recruits and 
adults between regions.  Currently, there are no estimates of the extent of movement of red 
snapper recruits between the northeastern and northwestern GoM.  The purpose of this research 
is to obtain estimates of the extent to which recruits move between the two areas, on an annual 
basis, for direct input into the red snapper Stock Synthesis model.  This modeling effort also 
produces an index of annual recruitment deviations expected from oceanographic factors, which 
can be used to inform recruitment patterns in the stock assessment model.  We use the 
Connectivity Modeling System (Paris et al. 2013), an individual-based model which estimates 
the movement of particles in a 3-D velocity field, and has the capacity to simulate complex 
behaviors such as those displayed by fish larvae.  The connectivity model is used to simulate the 
release of red snapper eggs during the spawning season for years 2003 – 2012.    
 
This study builds on similar work done by Johnson et al. (2012), where a numerical circulation 
model was used to estimate larval connectivity between Campeche Bank and the northern GoM.  
For the four years investigated, they found evidence of little connectivity between the two 
regions, and suggested that the Campeche region does not contribute significantly to the northern 
population.  Here we focus exclusively on the northern Gulf of Mexico to investigate the nature 
of connectivity between the northeast and northwest, as well as expected deviations in 
recruitment over time, and provide specific inputs for the current red snapper Stock Synthesis 
assessment model.  
 
Methods 
 
Connectivity Modeling System 
 
The Connectivity Modeling System (CMS) is a biophysical modeling system based on a 
Lagrangian framework, and was developed to study complex larval migrations (Paris et al. 
2013).  The CMS uses outputs from hydrodynamic models and tracks the three-dimensional 
movements of advected particles through time, given a specified set of release points and particle 
behaviors.  Optional modules are provided to allow for complex behaviors and movements, 
simulating observed biological phenomena such as egg buoyancy, ontogenetic vertical migration, 
and tidal stream transport.  The specific model set up used for this study is outlined in detail 
below.   
 
Ocean velocity fields 
 
The hydrodynamic model we used was the HYCOM + NCODA Gulf of Mexico 1/25° Analysis, 
a freely available ocean model with daily velocity fields available from 2003 – 2012 
(www.hycom.org).  HYCOM is a hybrid isopycnal coordinate ocean model (i.e., isopycnal in the 
stratified open ocean, fixed-depth in the unstratified surface layers, and terrain-following in 
shallow coastal waters), while allows for optimal simulation of both coastal and open-ocean 
features simultaneously (Chassignet et al. 2007).  The model is data-assimilative, using real-time 

http://www.hycom.org/


observations of the ocean’s surface via satellite altimetry, as well as vertical profile information 
from CTDs, the ARGO observation program, and other sources.  This allows for a three-
dimensional depiction of ocean currents in real time at a relatively high resolution.    
 
Initial conditions of the biological model 

 
Spawning time 

 
Spawning season for both E and W populations of red snapper in the northern GoM generally 
begins in May and ends in early fall.  Collins et al. (2001) reported a single peak from May – 
July for both NE and NW populations.  Rooker et al. (2004) noted a single peak occurring form 
late May to early June for a study off the coast of Texas.  Spawning is estimated to occur 
approximately every 3 days (Brown-Peterson et al. 2009, Jackson et al. 2006, Woods 2003) and 
there is no lunar periodicity apparent in the timing of spawning (Jackson et al. 2006).  For our 
model runs, we simulated homogeneous spawning activity throughout the peak spawning period 
of May 1 to August 31 every year.  Releases of particles representing eggs were simulated every 
3 days throughout the spawning period for all 10 years.     
 

Spawning location 
 
Exact spawning locations of red snapper across the entire northern GoM are unknown, with only 
a few scattered observations having been published (e.g., Collins et al. 2001)  Unlike other 
lutjanids, which spawn at very specific, predictable locations and times during the lunar cycle, 
red snapper spawn more continuously in space and time.  Presumably, the spatial distribution of 
spawning stock biomass over the spawning season should serve as a reasonable proxy for 
spawning activity.  In the absence of more informative proxies for spawning, we based our egg 
releases on a probabilistic model of red snapper biomass across space.   
 
To determine the spatial distribution of SSB, we used the 2011 Expanded Annual Stock 
Assessment survey, which provides a synoptic view of the distribution of red snapper across the 
northern GoM during their spawning season.  The survey covered the entire shelf from TX to FL, 
and a total of 2487 red snapper were caught in the 1171 longline stations and 1939 vertical line 
stations (Fitzhugh et al. 2012).  Cruises were carried out from April to November and during 
various hours of the day.  We wished to make use of the combined vertical line and longline data 
set to get the highest spatial resolution possible, but the two gears displayed very different size-
selectivities with regards to red snapper caught.  Additionally, the site selection method was 
changed partway through the vertical sampling survey (first the vertical lines were deployed in a 
paired fashion with the longlines, and later independently from the longlines around areas of 
known red snapper habitat), so we further classified the vertical line into two separate gear types: 
paired and independent.   The ratio of males to females in the survey did not differ significantly 
by latitude, so we modeled the abundance of the entire population with the assumption that the 
abundance of females was proportional to total abundance.   
 
Modeling of red snapper egg numbers across space was accomplished with a series of steps: 1) 
modeling the expected abundance of different age classes by depth, longitude, gear, and other 
sampling factors, 2) converting expected abundance to eggs via a fecundity-at-age relationship, 



3) kriging the residual abundance of eggs (observed – predicted) across the domain, and 4) 
adding the kriging predictions to the expected number of eggs at each latitude and depth bin to 
create a final map of egg numbers across space.  These steps are detailed in the paragraphs 
below.   
 
To account for the effects of these gear selectivities in our estimates of biomass, we first created 
a two-stage generalized linear model to estimate the effects of gear and other sampling artifacts.  
Presence/absence (p) of 4 age classes were modeled as a function of age, gear type, month and 
hour of sampling, and the longitude and depth at which sampling was carried out:     
 
(Eqn. 1)   logit (p) = β0 + β1(gear) + β2(age) + β3(gear*age) + β4(month)+ β5(longitude) + 

β6(depth) + β7(hour) 
 
Abundance when present was modeled as a truncated negative binomial using the link function:   
 
(Eqn. 2)   log (µ) = β0 + β1(gear) + β2(age) + β3(gear*age) + β4(month)+ β5(longitude) + 

β6(depth) + β7(hour) 
 

All variables were treated as categorical factors; longitudes were binned at 1-degree resolution, 
depth by 10-m bins, and time by 6-hour bins.  Interaction effects between gear and age were 
modeled because catchability rates for both gears appeared to be largely dependent on the size of 
the fish.  Based on the logistic model, we calculated an ROC curve, which expresses the true 
positive rate (sensitivity) as a function of the false positive rate (100-specificity) for each value 
of p.  A threshold value can be specified where the sum of the sensitivity and the specificity are 
at their maximum.  This allows us to convert the expressed probabilities of the model to 
presences (above the threshold) and absences (below the threshold), and thus define where red 
snapper are not likely to occur.     
 
Using the parameters estimated by the generalized linear model, we predicted relative abundance 
of each age class across space.  Predictions were made at the locations of the original data points 
by predicting on the depth, longitude, sampling month, hour, and gear type at that point for each 
age class.  Both predicted and observed abundances at each data point were converted to 
numbers of eggs through the following calculations: 
 

(Eqn. 3)              𝐸𝑎,𝑖 = � 𝑁𝑎,𝑖 ∗ 𝑝𝑎,𝑖 ∗ 𝐸𝑎                             𝑖𝑓 𝑝𝑎,𝑖 > 𝑅𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
0                                                    𝑖𝑓 𝑝𝑎,𝑖 < 𝑅𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

                                 

 
(Eqn. 4)                                                 𝐸𝑖 =  ∑  𝐸𝑎,𝑖  4

𝑎=1  
 
where E is the number of eggs at each data point i, a is an age class, N is the estimated 
abundance when present of each age class a at each data point i, p is the probability of 
occurrence of each age class a at each data point i, and Ea is the estimated fecundity at age.     
The estimated fecundity at each age class was calculated from fecundity relationships reported in 
Porch et al. (2013).  The observed number of eggs was also calculated for each data point:  
 
(Eqn. 5)                                         𝐸𝑜𝑏𝑠 𝑖 =  ∑  𝑁𝑜𝑏𝑠 𝑎,𝑖 ∗ 𝐸𝑎  4

𝑎=1  



where Nobs is the observed abundance at age a at data point i. The residual eggs, i.e., Ei – Eobs i, 
represents variations the egg numbers not explained by our model, which are presumably due to 
variations in abundance due to fine-scale differences in habitat types.   
 
This small-scale residual variation in egg numbers was interpolated across the domain through 
the use of kriging.  Empirical variograms were created for data pairs with distances < 50 km, 
using the classical method of moments estimator.  The variogram model was fit using ordinary 
least squares and with no fixed nugget.  A regular grid of points (10 km resolution) was overlaid 
on the sampling domain, and parameters from the variogram model were used to make 
predictions of residual egg numbers across this grid.   
 
To estimate the total egg numbers across the 10 km resolution grid, we extracted the latitude and 
depth bins in which each of the grid points fell.  Using the parameter estimates from the logistic 
model (Eqn. 1) and truncated negative binomial model (Eqn. 2) built previously, we then 
calculated the expected probability of occurrence and abundance when present, at age, based on 
latitude and depth, but for a single standardized gear, month, and time of day.  Multiplying the 
probability of occurrence by the abundance when present then gives us the expected abundance 
across the domain, in the absence of sampling artifacts.  Because the logistic component of the 
two-stage model will not estimate a value of zero, this prediction gives a non-zero abundance 
value for each grid point and each age.  To determine where across the domain red snapper are 
not likely to occur, we used kriging to interpolate the logistic probability of occurrence 
component of the model across the domain.  Again, we used the classical method of moments 
estimator for data pairs with distances <50 km, and fit the variogram model using ordinary least 
squares with no fixed nugget.  Expected number of eggs at each grid cell, based on latitude and 
depth bin, was then calculated using Eqns. 3 and 4.     
 
Total egg number at each grid cell was calculated by adding the expected eggs (based on the 
depth and longitude) to the residual eggs (based on the kriging predictions).  Particle releases 
were carried out in CMS at each grid cell where E > 0 by releasing E eggs at each release time 
step (i.e., every 3 days throughout the spawning season).  Numbers of eggs released from each 
grid cell were kept constant throughout all years, as our goal was to understand differences in 
recruitment from year to year unrelated to the level of SSB.    
 

Settlement 
 
Red snapper begin settling out of the pelagic stage no earlier than 26 days, with most settling by 
28 days of age, and maximum settlement age is estimated to be about 30 d (Szedlmayer and 
Conti 1999, Drass et al. 2000, Rooker et al. 2004).  We therefore specified the settlement 
competency period as lasting for 5 days (26-30 d).  High-value settlement habitat is estimated to 
occur between 15 and 64 m depth (Johnson et al. 2012).  We downloaded the global 30 arc-
second bathymetry data grid available from GEBCO (General Bathymetric Chart of the Oceans; 
www.gebco.net), and extracted contours at the 15 and 64 m isobaths for the northern GoM.  
Suitable settlement habitat was defined by the area between these isobaths (Fig. 1).  The 
settlement habitat was divided into 102 roughly equally-sized polygons, so that simulated 
particles could be tracked from source to sink.  Successful settlement is defined by those 
particles which reach the suitable settlement habitat during the competency window.   

http://www.gebco.net/


Vertical movement 
 
In the CMS, vertical movements are defined via a probability matrix, which specifies the 
distribution of particles in the water column throughout time.  Time steps for the probability 
matrix are most logically defined by using different stages of larval metamorphosis (e.g., 
preflexion, postflexion), as lutjanids tend to shift in their vertical distributions with these 
changes.  Red snapper eggs are known to hatch at approximately 24 hours after fertilization 
(Rooker et al. 2004).  Based on a study of reared larvae, Drass et al. (2000) showed that 
notochord flexion began at 12 days after hatching and was complete by 15 days after hatching.  
We therefore defined the following phases (in days after release): hatching 0-1 days, preflexion 
2-12 days, flexion 13-16 days, postflexion 17-25 days. 
 
Little is known on the vertical movements of the red snapper in its pelagic larval stage.  For 
example, a detailed study of lutjanid movements by phase in the FL straits reported capture of 
only two individual red snappers, which were insufficient to describe the pelagic larval dynamics 
for the species (D’Alessandro et al. 2010).  Johnson et al. (2012) reported unpublished data (G. 
Zapfe) which showed that red snapper larvae were most numerous within the upper 30 m of the 
water column, suggesting vertical distributions similar to other lutjanid species.  Based on the 
depth of initial spawning, average PLD, and average lengths of adult, we presumed that L. analis 
might be the congener most closely approximating larval movements, and we used the vertical 
migration information from this species as our best estimate of the movements of red snapper 
larvae.  However, because this was the greatest area of uncertainty regarding the reproductive 
and larval biology of the red snapper, and because larval transport patterns are very sensitive to 
changes in the depth at which larvae occur, we carried out a series of sensitivity runs to quantify 
the effect of this uncertainty on our estimates.  We altered the vertical distributions of the larvae 
by 1) increasing the standard deviations of the distributions and 2) moving the mean of the 
distributions slightly shallower and deeper in the water column (Fig. 2). For each vertical 
distribution, the CMS was rerun using the same assumptions with regards to other biological 
attributes, and the recruitment indices recalculated.      
   
Other CMS specifications 
 
We used the built-in turbulence module of the CMS, which adds a random component to the 
motion of the particles to represent turbulent diffusion.  This component represents sub-grid 
turbulent processes not resolved by the resolution of the hydrodynamic model.  We used a value 
of 10 m2 s-1 for horizontal diffusivity and 1 m2 s-1 for vertical diffusivity.  We also used the 
‘avoid coast’ algorithm built in the CMS, which helps to prevent particles from getting stranded 
on the land mask.  Because fish larvae are not passive drifters, they can likely swim away from 
the coast to avoid being stranded.  This module thus provides a more realistic estimate of the 
movements of fish larvae near coasts.   
 
Results 
 
Model of predicted fecundity index over the study domain 
 



The selected model, based on the lowest AIC value, included all factors: gear, age class, month 
and hour of sampling, longitude, depth, and the gear x age interaction (Tables 1 and 2).  In the 
logistic model, gear type explained the greatest amount of deviance in the model (9.1%) 
followed by depth (9.0%), longitude (6.7%), the age class x gear interaction factor (2.5%), and 
hour and age class (<1%).  Probability of red snapper presence was estimated to be highest off 
the coasts of Texas and Louisiana (Fig. 3).  All age classes were also predicted to occur, with 
slightly lower probabilities, off the Florida Big Bend region.  The ROC curve analysis of the 
logistic regression resulted in a false positive rate of 0.29, and the false negative rate was 0.13.  
Variogram models, constructed for both the residual numbers of eggs and the probability of 
occurrence by age class, showed good fits (Fig. 4).  Spatial autocorrelation of these prediction 
points was estimated to occur up to approximately 10 km.   
 
The final estimated index of fecundity was highest off the coast of Texas, with a smaller area of 
relatively high fecundity off the Big Bend region (Fig. 5).  Generally, for the northwestern GoM, 
nearly all grid cells were estimated to have some level of spawning biomass, whereas biomass 
was limited to a smaller depth range in the northeast GoM.  South of the Tampa Bay region, red 
snapper were not predicted to occur, except for a few small isolated patches.   
 
Connectivity modeling  
 
The results presented here are based on simulations where the total number of particles released 
was kept constant across months and across years.  This allows us to consider changes in 
recruitment patterns due exclusively to annual variation in ocean current patterns, and not related 
to SSB.  In interpreting the results, it is also important to note that we first considered the 
movement of particles in the northern GoM and therefore recruitment from other locations is not 
accounted for.     
 
Relative recruitment success across the entire northern GoM varied across years, with the 
greatest number of successful recruits occurring in 2012 (Fig. 6).  Other years with relatively 
high recruitment were 2004, 2005, and 2006.  The lowest estimated recruitment level occurred in 
2008.  While the recruitment index varied depending on the vertical larval distribution patterns 
assumed, the sensitivity runs largely agreed in regards to general trends.  For example, all 
sensitivity runs estimated that 2008 was the year of worst recruitment success, while 2012 was 
the year of highest predicted recruitment success.   
 
Spatial patterns in recruitment were also variable among years (Fig. 7).  The majority of particles 
were predicted to self-recruit to their respective regions (W to W or E to E).  Recruitment from 
one region to another varied through time, but in general was limited, with an average of only 
4% of successfully-recruited larvae released from the west moving from west to east, and 18% of 
successfully-recruited larvae released from the east moving west (Table 3).  Recruitment was 
poor in the West Florida Shelf, with a small number of recruits appearing in the southern extent 
of the Shelf only in select years.   
 
Discussion 
 



These results show that red snapper larvae are likely to be largely self-recruiting, and that mixing 
of larvae between the E and W regions does occur but in limited amounts.  Patterns in 
recruitment variability over years will be further considered in light of recruitment anomalies 
estimated from stock assessment models.  Further work will be done to consider the effects of 
inclusion of a recruitment index in the current Stock Synthesis model.  Finally, particle 
trajectories will be analyzed in relation to oceanic processes, to understand the mechanisms by 
which successful recruitment events occur in time and space.     
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Table 1.  Estimated parameters from the selected generalized linear model of red snapper 
probability of occurrence.   
 

 
Esti

 
Std. Error z value Pr(>|z|) 

 (Intercept) -3.85 0.29 -13.50 <0.001 *** 
age class 5 0.36 0.21 1.67 0.094 

 age class 6 0.60 0.20 2.95 0.003 ** 
age class 7+ 1.56 0.19 8.34 <0.001 *** 
gear VLpaired -1.73 0.38 -4.59 0.001 ** 
gear VLindependent 1.11 0.19 5.92 0.001 ** 
depth [30,40] 1.76 0.17 10.31 <0.001 *** 
depth [40,50] 1.74 0.18 9.75 <0.001 *** 
depth [50,60] 1.76 0.17 10.50 <0.001 *** 
depth [60,70] 2.22 0.17 13.00 <0.001 *** 
depth [70,80] 1.78 0.19 9.62 <0.001 *** 
depth [80,90] 2.34 0.21 11.38 <0.001 *** 
depth [90,100] 2.40 0.20 11.99 <0.001 *** 
depth [100,500] -0.54 0.22 -2.42 0.015 * 
longitude [-96,-95] 0.29 0.20 1.47 0.142 

 longitude [-95,-94] 0.03 0.17 0.16 0.875 
 longitude [-94,-93] 0.39 0.16 2.40 0.016 * 

longitude [-93,-92] 0.10 0.18 0.54 0.591 
 longitude [-92,-91] 0.07 0.19 0.38 0.701 
 longitude [-91,-90] -0.07 0.24 -0.30 0.766 
 longitude [-90,-89] 0.93 0.21 4.43 0.001 ** 

longitude [-89,-88] -0.19 0.20 -0.95 0.341 
 longitude [-88,-87] -0.47 0.22 -2.15 0.032 * 

longitude [-87,-86] -0.89 0.24 -3.74 0.001 ** 
longitude [-86,-85] -0.19 0.18 -1.03 0.304 

 longitude [-85,-84] -1.04 0.19 -5.52 0.001 ** 
longitude [-84,-81] -2.34 0.23 -10.10 <0.001 *** 
month 5 -0.02 0.15 -0.10 0.918 

 month 6 -0.23 0.16 -1.47 0.143 
 month 7 -0.55 0.20 -2.71 0.007 ** 

month 8 -0.61 0.14 -4.26 0.000 *** 
month 9 -0.23 0.17 -1.36 0.173 

 month 10 -0.70 0.17 -4.06 0.000 *** 
hour [6,12] 0.16 0.13 1.24 0.217 

 hour [12,18] 0.21 0.12 1.75 0.080 
 hour [18,23] 0.38 0.13 2.95 0.003 ** 

age class 5:gear VLpaired -0.77 0.57 -1.34 0.179 
 age class 6:gear VLpaired -1.43 0.64 -2.24 0.025 * 

age class 7+:gear VLpaired -2.68 0.70 -3.85 0.000 *** 
age class 5:gear VLindependent -0.52 0.25 -2.13 0.033 * 
age class 6:gear VLindependent -1.11 0.24 -4.57 <0.001 *** 
age class 7+:gear VLindependent -2.27 0.23 -9.82 <0.001 *** 

 
  



Table 2.  Estimated parameters from the selected generalized linear model of red snapper 
abundance when present.    
 

 
Estimate Std. Error z value Pr(>|z|) 

 (Intercept):1 -0.61 0.45 -1.36 0.175  
(Intercept):2 -0.38 0.10 -3.93 <0.001 *** 
age class 5 0.70 0.37 1.91 0.057 

 age class 6 0.84 0.35 2.37 0.018 * 
age class 7+ 1.39 0.32 4.31 <0.001 *** 
gear VLpaired 1.05 0.59 1.76 0.079 

 gear VLindependent 1.80 0.32 5.59 <0.001 *** 
longitude [-96,-95] 0.05 0.26 0.20 0.843 

 longitude [-95,-94] -0.06 0.22 -0.25 0.800 
 longitude [-94,-93] 0.24 0.22 1.10 0.270 
 longitude [-93,-92] -0.23 0.24 -0.94 0.348 
 longitude [-92,-91] -0.34 0.25 -1.37 0.172 
 longitude [-91,-90] -0.46 0.33 -1.38 0.167 
 longitude [-90,-89] -0.02 0.26 -0.10 0.924 
 longitude [-89,-88] -0.46 0.27 -1.73 0.084 
 longitude [-88,-87] -0.48 0.31 -1.59 0.113 
 longitude [-87,-86] -0.99 0.36 -2.77 0.006 ** 

longitude [-86,-85] -0.29 0.25 -1.15 0.250 
 longitude [-85,-84] -0.68 0.27 -2.50 0.013 * 

longitude [-84,-81] -1.60 0.45 -3.55 <0.001 *** 
depth [30,40] -0.04 0.25 -0.14 0.885 

 depth [40,50] -0.25 0.27 -0.94 0.350 
 depth [50,60] 0.42 0.24 1.77 0.077 
 depth [60,70] 0.19 0.24 0.79 0.428 
 depth [70,80] 0.00 0.26 0.01 0.993 
 depth [80,90] 0.54 0.27 1.95 0.051 
 depth [90,100] -0.18 0.28 -0.63 0.526 
 depth [100,500] -0.14 0.35 -0.40 0.690 
 month 5 -0.45 0.20 -2.26 0.024 * 

month 6 -0.62 0.21 -2.92 0.004 ** 
month 7 -0.14 0.28 -0.49 0.627 

 month 8 -0.23 0.19 -1.22 0.221 
 month 9 0.14 0.23 0.61 0.540 
 month 10 -0.81 0.23 -3.52 <0.001 *** 

hour [6,12] 0.06 0.19 0.30 0.767 
 hour [12,18] -0.02 0.16 -0.10 0.919 
 hour [18,23] 0.13 0.17 0.73 0.467 
 age class 5:gear VLpaired -0.09 0.83 -0.11 0.914 
 age class 6:gear VLpaired -0.88 0.94 -0.94 0.346 
 age class 7+:gear VLpaired -22.63 5782.40 0.00 0.997 
 age class 5:gear VLindependent -1.19 0.39 -3.02 0.003 ** 

age class 6:gear VLindependent -1.96 0.39 -4.97 <0.001 *** 
age class 7+:gear VLindependent -2.43 0.37 -6.60 <0.001 *** 

 
 



Table 3.  Percentage of particles successfully recruited, by year and region.   
 

 
West 

 
East 

Year to West to East 
 

to East to West 
2003 97.35 2.65 

 
80.05 19.95 

2004 98.18 1.82 
 

71.85 28.15 
2005 99.04 0.96 

 
66.68 33.32 

2006 98.14 1.86 
 

86.02 13.98 
2007 97.99 2.01 

 
66.94 33.06 

2008 98.24 1.76 
 

80.87 19.13 
2009 92.55 7.45 

 
86.78 13.22 

2010 94.02 5.98 
 

91.99 8.01 
2011 88.62 11.38 

 
99.68 0.32 

2012 95.07 4.93 
 

92.49 7.51 
Mean 95.92 4.08 

 
82.34 17.66 

 
 
  



 
 

 
Figure 1.  Map of assumed suitable recruitment habitat for red snapper.  The habitat was divided 
into 102 polygons of approximately equal area.   



 

Figure 2.  Visualization of the specified probability matrix defining simulated red snapper 
vertical larval migrations over time.  Different colors denote the assumptions made for individual 
sensitivity runs.   
 

 



 
Figure 3.  Kriging predictions for the probability of occurrence by age class.  Grid cells with 
values below the ROC threshold (probable absences) are denoted with black dots.   



 
 
Figure 4.  Variogram model fits used for kriging model residual egg nubmers and probabilities of 
occurrence by age.   
 
 
 
 
 



 
 
Figure 5.  Final predictive map showing the index of total numbers of eggs over the 10 km 
resolution prediction grid.  Particles were released from grid cells where the total estimated 
fecundity index was greater than zero.  Numbers of particles released from each grid cell were 
scaled relative to the index.   
 
 
 
 
 
 
 

Figure 6.  Index of overall recruitment success for northern GoM red snapper by year as 
estimated by the individual vertical distribution sensitivity runs.    



 
 
Figure 7.  Connectivity matrices for the base model run showing variation in spatial recruitment 
patterns by year.  Rows are source nodes (particle release sites) and columns are receiving nodes 
(particle settlement sites); nodes are ordered clockwise from Mexico to Florida.  Self-recruitment 
is indicated by the dashed diagonal line.  Solid lines denote split between west and east (the LA-
MS border).   
 


