Red Snapper Abundance Indices from Combined Bottom Trawl Surveys in the Eastern Gulf of Mexico

Adam G. Pollack, G. Walter Ingram, Jr. and Terry A. Henwood

SEDAR31-AW07

11 January 2013

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite as:
Pollack, A.G., G.W. Ingram Jr., and T.A. Henwood. 2013. Red Snapper Abundance Indices from Combined Bottom Trawl Surveys in the Eastern Gulf of Mexico. SEDAR31-AW07. SEDAR, North Charleston, SC. 27 pp.

Red Snapper Abundance Indices from Combined Bottom Trawl Surveys in the Eastern Gulf of Mexico

Adam G. Pollack, G. Walter Ingram, Jr. and Terry A. Henwood NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, MS

Abstract

The Southeast Area Monitoring and Assessment Program (SEAMAP) has been conducting standardized groundfish trawls in the Gulf of Mexico since 1972. In 1987, an area off the coast of Alabama, designated the Alabama Artificial Reef Permit Area (AARPA), was established to provide habitat for commercially and recreationally important fish. With the establishment and expansion of the AARPA, trawling in this area became increasingly difficult and led to the exclusion of the AARPA from the SEAMAP sampling universe. Dauphin Island Sea Lab (DISL) has recently undertaken a multifaceted approach to sample within the AARPA and with the help of side scan sonar, conducted bottom trawls. Relative abundance indices for red snapper using the combined SEAMAP and DISL survey data were estimated using delta-lognormal modeling for age 0 (fall survey) and age 1 (summer survey) red snapper.

Introduction

At the red snapper (Lutjanus campechanus) Data Workshop (DW) for Southeast Data Assessment and Review (SEDAR 31), a question was raised about incorporating data collected during the Southeast Area Monitoring and Assessment Program (SEAMAP) Groundfish Survey with bottom trawl data collected by Dauphin Island Sea Lab (DISL). The DISL survey data focuses on an area off the coast of Alabama designated as the Alabama Artificial Reef Permit Area (AARPA) (Figure 1). Historically, the AARPA and surrounding areas (located mainly in shrimp statistical zone 10) were sampled under SEAMAP until 1989 and sporadically thereafter (Tables 1 and 2) due to the increasing number of artificial reefs in the area and large amount of hangs in shrimp statistical zone 10 which made it difficult to find suitable bottom for trawling operations. Currently, the AARPA (roughly $3,263 \mathrm{~km}^{2}$) is not included in the sampling universe due to the large number of artificial reefs and the difficulty in finding suitable area to set gear. The DISL survey was able to sample in the area primarily because they used side scan sonar to map the sea floor and identify paths to pull the trawl gear.

The SEAMAP Groundfish Survey has been used in previous stock assessments, not only for red snapper, but for other key species. This fishery independent survey provides a long time series (1982 and 1972 for the summer and fall surveys, respectively) for age 0 (fall survey) and age 1 (summer survey) red snapper. The primary objective of the SEAMAP survey was to collect data on the abundance and distribution of demersal organisms in the northern Gulf of Mexico (GOM). This survey, which was conducted semi-annually (summer and fall), provided an important source of fisheries independent information on many commercially and recreationally important species throughout the GOM. The purpose of this document was to provide abundance indices for red snapper and serves as an extension to the work presented by Pollack et al. (2012) at the DW for SEDAR 31.

Methodology

Survey Design

The survey methodologies and descriptions of the SEAMAP datasets used herein have been presented in detail by Nichols (2004) and Pollack et al. (2012). The methodology for the DISL data has been presented in Gregalis et al. (2012). The majority of the methodology for the DISL survey follows standardized SEAMAP protocols concerning the trawling operations and processing of the catch. The main difference was how the stations are selected during each survey, as part of the overall survey design.

Data

A total of 1,401 and 2,587 stations were sampled during the summer (1982-2011) and fall (19722011), respectively under SEAMAP and DISL (Table 1 and Table 2). Data from SEAMAP was limited to shrimp statistical zones 10 and 11 because of the limited recent sampling that has taken place in shrimp statistical zones 3-9. Trawl data was obtained from the Gulf States Marine Fisheries Commission database from Alabama, Florida, Louisiana and Mississippi state agencies and other state partners and incorporated with data collected by the SEFSC. Data from DISL was provided by Marcus Drymon and limited to the timeframe of the SEAMAP survey during the summer (May-July) and fall (October-November). Spatial coverage of both surveys was shown in Figure 2 and Figure 3 for 2010 and 2011, respectively.

Index Construction

Delta-lognormal modeling methods were used to estimate relative abundance indices for red snapper (Lo et al. 1992). The main advantage of using this method was allowance for the probability of zero catch (Ortiz et al. 2000). The index computed by this method was a mathematical combination of yearly abundance estimates from two distinct generalized linear models: a binomial (logistic) model which described the proportion of positive abundance values (i.e. presence/absence) and a lognormal model which described variability in only the nonzero abundance data (Lo et al. 1992).

The delta-lognormal index of relative abundance $\left(I_{y}\right)$ as described by Lo et al. (1992) was estimated as:
(2) $I_{y}=c_{y} p_{y}$,
where c_{y} was the estimate of mean CPUE for positive catches only for year y, and p_{y} was the estimate of mean probability of occurrence during year y. Both c_{y} and p_{y} were estimated using generalized linear models. Data used to estimate abundance for positive catches (c) and probability of occurrence (p) were assumed to have a lognormal distribution and a binomial distribution, respectively, and modeled using the following equations:
(3) $\ln (c)=X \beta+\varepsilon$
and

$$
\begin{equation*}
p=\frac{e^{\mathrm{X} \beta+\varepsilon}}{1+e^{\mathbf{X} \beta+\varepsilon}}, \tag{4}
\end{equation*}
$$

respectively, where c was a vector of the positive catch data, p was a vector of the presence/absence data, X was the design matrix for main effects, β was the parameter vector for main effects, and ε was a vector of independent normally distributed errors with expectation zero and variance σ^{2}. Therefore, c_{y} and p_{y} were estimated as least-squares means for each year along with their corresponding standard errors, $\operatorname{SE}\left(c_{y}\right)$ and $\operatorname{SE}\left(p_{y}\right)$, respectively. From these estimates, I_{y} was calculated, as in equation (1), and its variance calculated as:
(5) $\quad V\left(I_{y}\right) \approx V\left(c_{y}\right) p_{y}^{2}+c_{y}^{2} V\left(p_{y}\right)+2 c_{y} p_{y} \operatorname{Cov}(c, p)$,
where:
(6) $\left.\quad \operatorname{Cov}(c, p) \approx \rho_{\mathrm{c}, \mathrm{p}} \mid \operatorname{SE}\left(c_{y}\right) \operatorname{SE}\left(p_{y}\right)\right]$,
and $\rho_{\mathrm{c}, \mathrm{p}}$ denoted correlation of c and p among years.
The submodels of the delta-lognormal model were built using a backward selection procedure based on type 3 analyses with an inclusion level of significance of $\alpha=0.05$. Binomial submodel performance was evaluated using Akaike's Information Criteria (AIC), while the performance of the lognormal submodel was evaluated based on analyses of residual scatter and QQ plots in addition to AIC. Variables that could be included in the submodels were:

Submodel Variables (Summer Survey)

Year: 1982-2011
Depth Zone: < 10 fathoms, 10-30 fathoms, >30 fathoms
Time of Day: Day, Night
Survey: SEAMAP, DISL

Submodel Variables (Fall Survey)

Year: 1972-2011
Depth Zone: < 10 fathoms, 10-30 fathoms, >30 fathoms
Time of Day: Day, Night
Survey: SEAMAP, DISL
Depth was compiled into zones following the same zones used to calculate effort from the commercial shrimp fleet. The survey variable was based solely on the source of the data. While there are some SEAMAP stations that fall within the AARPA, this was mainly before the vast deployment of artificial reefs in the area.

Results and Discussion

For the EGOM abundance index for red snapper (summer survey), the nominal CPUE and number of stations with a positive catch are presented in Figure 4. Year, time of day and depth zone were retained in both the binomial and lognormal submodels. Table 3 summarizes backward selection procedure used to select the final set of variables used in the submodels and their significance. The AIC for the binomial and lognormal submodels were 6,633.9 and 1,067.1, respectively. There was a slight increase in AIC ($1,066.8$ to $1,067.1$) in the lognormal submodel when survey was dropped; however, this was acceptable since the p-value (0.6667) indicated survey was insignificant. The diagnostic plots for the binomial and lognormal submodels are shown in Figures 5-7 and indicated the distribution of the residuals was approximately normal. Annual abundance indices are presented in Table 4 and Figure 8.

For the EGOM abundance index for red snapper (fall survey), the nominal CPUE and number of stations with a positive catch are presented in Figure 9. Year, time of day and depth zone were retained in both the binomial and lognormal submodels. Table 5 summarizes backward selection procedure used to select the final set of variables used in the submodels and their significance. The AIC for the binomial and lognormal submodels were $11,864.3$ and $4,121.8$, respectively. There was a slight increase in AIC in both the binomial ($1,066.8$ to $1,067.1$) and lognormal $(4,120.9$ to $4,121.8)$ submodels when survey was dropped; however, this was acceptable since the p-value (0.3948 and 0.8392 , respectively) indicated survey was insignificant. The diagnostic plots for the binomial and lognormal submodels are shown in Figures 10-12 and indicated the distribution of the residuals was approximately normal. Annual abundance indices are presented in Table 6 and Figure 13.

Comparisons between the indices produced from the SEAMAP summer survey and the combined SEAMAP/DISL summer surveys are presented in Figure 14, as well as the annual abundance indices from just the SEAMAP summer survey (Table 7). The higher peak in red snapper abundance in summer 2010 may be attributed to the location of all the DISL samples, which were concentrated in the northeastern corner of the AARPA, which appears to be a productive area for red snapper as evidenced by the high catch rates in the area from the SEAMAP summer survey (Figure 2). This is also evidenced by the lack of difference in abundance indices in fall 2010 (Figure 14 and Table 8) and summer 2011, when a wide range of areas were sampled in the AARPA (Figures 2 and 3). There was an increase in AIC for the binomial submodel when the DISL summer data was appended to the SEAMAP summer data ($6,477.5$ to 6,633.9); however, there was a decrease in AIC for the lognormal submodel $(1,067.1$ to $1,018.4$). When the DISL fall data was appended to the SEAMAP fall data there were increases in AIC for both the binomial (11,674.6 to 11,864.3) and lognormal (4,108.1 to 4,121.8) submodels.

Overall, we have some reservations about the combined index presented herein. Primarily, we question whether it is useful to maintain a time series for trawl data for an area where the habitat has been altered. If the area changes from trawlable shrimp/groundfish habitat to untrawlable artificial reef habitat, catches will change accordingly. These changes are related to habitat alteration and not changes in the relative abundance of red snapper on trawlable bottom. If artificial habitat has been created, the only logical reason for "before and after" comparisons
would be to document the effects of habitat alterations. That is not the purpose of this analysis, and in our opinion, incorporating the DISL data is of questionable scientific merit.

Literature Cited

Gregalis, K.C., L.S. Schlenker, J.M. Drymon, J.F. Mareska and S.P. Powers. 2012. Evaluating the Performance of Vertical Longlines to Survey Reef Fish Populations in the Northern Gulf of Mexico, Transactions of the American Fisheries Society, 141(6): 1453-1464.

Lo, N.C.H., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic Science 49:2515-2526.

Nichols, S. 2007. Indexes of abundance for small coastal sharks from the SEAMAP trawl surveys. SEDAR13-DW-31.

Ortiz, M. 2006. Standardized catch rates for gag grouper (Mycteroperca microlepis) from the marine recreational fisheries statistical survey (MRFSS). SEDAR10-DW-09.

Pollack, A.G., G.W. Ingram Jr. and D.G. Foster 2012. Red snapper abundance indices from SEAMAP groundfish surveys in the northern Gulf of Mexico. SEDAR31-DW-20.

Table 1. Number of stations sampled by Southeast Area Monitoring and Assessment Program (SEAMAP) during the annual summer groundfish survey and Dauphin Island Sea Lab (DISL) in the Alabama Artificial Reef Permit Area (AARPA).

Year	SEAMAP Survey			DISL Survey AARPA	Total
	Shrimp Statistical Zone		Total		
	10	11			
1982	14	22	36		36
1983	8	13	21		21
1984	13	16	29		29
1985	10	26	36		36
1986	14	21	35		35
1987	30	66	96		96
1988	19	49	68		68
1989	23	30	53		53
1990		68	68		68
1991		46	46		46
1992	1	45	46		46
1993		45	45		45
1994		61	61		61
1995		44	44		44
1996		46	46		46
1997		44	44		44
1998		35	35		35
1999		44	44		44
2000		45	45		45
2001		36	36		36
2002		44	44		44
2003		44	44		44
2004		39	39		39
2005		32	32		32
2006		45	45		45
2007		41	41		41
2008	11	43	54		54
2009	24	67	91		91
2010	14	22	36	6	42
2011	8	16	24	12	36
Total	189	1195	1384	18	1401

Table 2. Number of stations sampled by Southeast Area Monitoring and Assessment Program (SEAMAP) during the annual fall groundfish survey and Dauphin Island Sea Lab (DISL) in the Alabama Artificial Reef Permit Area (AARPA).

Year	SEAMAP Survey			DISL Survey AARPA	Total
	Shrimp Statistical Zone		Total		
	10	11			
1972	10	55	65		65
1973	17	98	115		115
1974	12	92	104		104
1975		93	93		93
1976		108	108		108
1977		97	97		97
1978	36	101	137		137
1979		109	109		109
1980	24	85	109		109
1981	21	85	106		106
1982	21	102	123		123
1983	17	82	99		99
1984		82	82		82
1985	30	59	89		89
1986	21	19	40		40
1987	16	28	44		44
1988	8	28	36		36
1989		43	43		43
1990		52	52		52
1991		46	46		46
1992		33	33		33
1993		72	72		72
1994		50	50		50
1995		40	40		40
1996		45	45		45
1997		44	44		44
1998		44	44		44
1999		42	42		42
2000		43	43		43
2001		21	21		21
2002	1	51	52		52
2003	1	76	77		77
2004		43	43		43
2005		44	44		44
2006	1	47	48		48
2007		31	31		31
2008	4	35	39		39
2009	12	48	60		60
2010	14	16	30	12	42
2011	6	14	20		20
Total	272	2303	2575	12	2587

Table 3. Summary of backward selection procedure for building delta-lognormal submodels for red snapper (EGOM / Summer) index of relative abundance from 1982 to 2011.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 6635.2)						Lognormal Submodel Type 3 Tests (AIC 1066.8)			
Effect	$\begin{gathered} \text { Num } \\ \text { DF } \end{gathered}$	$\begin{gathered} D e n \\ D F \end{gathered}$	ChiSquare	F Value	Pr > ChiSq	Pr>F	Num DF	Den DF	F Value	Pr $>$ F
Year	29	416	75.31	2.49	<. 0001	$<.0001$	29	326	2.60	$<.0001$
Depth Zone	1	1195	6.24	6.24	0.0125	0.0126	1	326	13.34	0.0003
Time of Day	2	1160	31.99	15.99	<. 0001	<. 0001	2	326	4.15	0.0166
Survey	1	71.9	0.97	0.97	0.3237	0.3270	1	326	0.19	0.6667
Model Run \#2	Binomial Submodel Type 3 Tests (AIC 6633.9)						Lognormal Submodel Type 3 Tests (AIC 1067.1)			
Effect	$\begin{gathered} \text { Num } \\ D F \end{gathered}$	$\begin{gathered} \text { Den } \\ D F \end{gathered}$	Chi- Square	F Value	Pr $>$ ChiSq	Pr>F	Num DF	Den DF	F Value	Pr>F
Year	29	414	75.93	2.51	<. 0001	<. 0001	29	327	2.60	$<.0001$
Depth Zone	1	1203	5.99	5.99	0.0144	0.0145	1	327	13.18	0.0003
Time of Day	2	1163	32.64	16.32	<. 0001	$<.0001$	2	327	4.27	0.0147
Survey	dropped						dropped			

Table 4. Indices of red snapper (EGOM / Summer) abundance developed using the deltalognormal model for 1982-2011 for combined SEAMAP and DISL surveys. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1982	0.19444	36	3.5828	1.27947	0.60275	0.42023	3.89559
1983	0.28571	21	2.9352	1.04821	0.71166	0.29137	3.77103
1984	0.06897	29	0.1495	0.05338	0.96877	0.01049	0.27166
1985	0.27778	36	1.0919	0.38993	0.41543	0.17555	0.86608
1986	0.05714	35	0.1288	0.04600	1.15197	0.00732	0.28910
1987	0.21875	96	1.6382	0.58503	0.27915	0.33826	1.01185
1988	0.16176	68	1.9154	0.68402	0.49514	0.26813	1.74499
1989	0.26415	53	6.8573	2.44888	0.47669	0.99067	6.05349
1990	0.38235	68	3.0580	1.09206	0.27422	0.63733	1.87123
1991	0.34783	46	3.1846	1.13728	0.35009	0.57614	2.24497
1992	0.28261	46	8.6160	3.07693	0.44060	1.32515	7.14449
1993	0.20000	45	0.9848	0.35169	0.50567	0.13542	0.91334
1994	0.32787	61	2.6549	0.94812	0.32106	0.50677	1.77385
1995	0.18182	44	1.0061	0.35928	0.54013	0.13061	0.98832
1996	0.26087	46	1.5216	0.54340	0.36283	0.26894	1.09794
1997	0.34091	44	2.0731	0.74034	0.35627	0.37083	1.47804
1998	0.08571	35	0.8725	0.31160	1.02071	0.05751	1.68836
1999	0.11364	44	0.3877	0.13846	0.61191	0.04482	0.42773
2000	0.31111	45	1.7113	0.61112	0.34519	0.31239	1.19554
2001	0.13889	36	0.6520	0.23284	0.57557	0.07988	0.67872
2002	0.11364	44	0.5711	0.20396	0.55054	0.07288	0.57077
2003	0.20455	44	2.1328	0.76165	0.53066	0.28126	2.06256
2004	0.23077	39	1.9495	0.69620	0.47398	0.28295	1.71299
2005	0.28125	32	4.5529	1.62592	0.50540	0.62637	4.22051
2006	0.22222	45	0.9172	0.32753	0.38335	0.15618	0.68688
2007	0.56098	41	8.3094	2.96745	0.28602	1.69363	5.19937
2008	0.42593	54	10.6405	3.79993	0.27102	2.23114	6.47180
2009	0.27473	91	1.5407	0.55020	0.26528	0.32660	0.92691
2010	0.42857	42	6.9046	2.46576	0.37685	1.18968	5.11063
2011	0.27778	36	1.4654	0.52333	0.39956	0.24238	1.12996

Table 5. Summary of backward selection procedure for building delta-lognormal submodels for red snapper (EGOM / Fall) index of relative abundance from 1972 to 2011.

Model Run \#1	Binomial Submodel Type 3 Tests (AIC 11862.3)						Lognormal Submodel Type 3 Tests (AIC 4120.9)			
Effect	$\begin{gathered} \text { Num } \\ D F \end{gathered}$	$\begin{gathered} \text { Den } \\ D F \end{gathered}$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr $>F$
Year	39	659	220.64	5.45	<. 0001	<. 0001	39	1288	6.60	$<.0001$
Depth Zone	1	2444	23.04	23.04	<. 0001	<. 0001	1	1288	20.81	$<.0001$
Time of Day	2	2325	309.54	154.77	<. 0001	<. 0001	2	1288	41.85	<. 0001
Survey	1	40.1	0.74	0.74	0.3897	0.3948	1	1288	0.04	0.8392
Model Run \#2	Binomial Submodel Type 3 Tests (AIC 11864.3)						Lognormal Submodel Type 3 Tests (AIC 4121.8)			
Effect	$\begin{gathered} \text { Num } \\ D F \end{gathered}$	$\begin{gathered} D e n \\ D F \end{gathered}$	Chi- Square	F Value	Pr $>$ ChiSq	$\operatorname{Pr}>F$	Num DF	Den DF	F Value	Pr>F
Year	39	659	221.37	5.47	<. 0001	<. 0001	39	1289	6.61	<. 0001
Depth Zone	1	2449	23.58	23.58	<. 0001	<. 0001	1	1289	20.76	<. 0001
Time of Day	2	2325	309.35	154.67	<. 0001	<. 0001	2	1289	41.97	<. 0001
Survey	dropped						dropped			

Table 6. Indices of red snapper (EGOM / Fall) abundance developed using the delta-lognormal model for 1972-2011 for combined SEAMAP and DISL surveys. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed. With DISL

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1972	0.67692	65	43.3523	3.27897	0.23093	2.07851	5.17278
1973	0.51304	115	7.0478	0.53307	0.19107	0.36501	0.77850
1974	0.40385	104	8.1696	0.61791	0.24465	0.38151	1.00080
1975	0.44086	93	6.7982	0.51418	0.23532	0.32320	0.81803
1976	0.45370	108	8.2338	0.62277	0.21350	0.40827	0.94997
1977	0.43299	97	11.3475	0.85827	0.24609	0.52846	1.39393
1978	0.45985	137	5.1218	0.38739	0.19216	0.26470	0.56695
1979	0.39450	109	4.0739	0.30813	0.21378	0.20189	0.47027
1980	0.49541	109	7.6000	0.57483	0.19526	0.39041	0.84635
1981	0.59434	106	26.4207	1.99834	0.19802	1.34996	2.95814
1982	0.71545	123	29.7164	2.24761	0.15322	1.65733	3.04812
1983	0.50505	99	4.2067	0.31818	0.20415	0.21240	0.47664
1984	0.34146	82	3.4199	0.25867	0.29101	0.14625	0.45750
1985	0.21348	89	1.5642	0.11831	0.30863	0.06472	0.21628
1986	0.12500	40	1.4497	0.10965	0.63114	0.03444	0.34910
1987	0.25000	44	2.4484	0.18518	0.42288	0.08228	0.41678
1988	0.36111	36	3.2428	0.24527	0.36379	0.12118	0.49644
1989	0.67442	43	49.7588	3.76353	0.28811	2.13953	6.62023
1990	0.73077	52	28.3171	2.14178	0.25793	1.28925	3.55806
1991	0.76087	46	31.7676	2.40276	0.22098	1.55259	3.71847
1992	0.42424	33	2.5540	0.19317	0.36027	0.09605	0.38848
1993	0.50000	72	18.3964	1.39142	0.29236	0.78470	2.46725
1994	0.52000	50	4.5464	0.34387	0.24324	0.21289	0.55544
1995	0.62500	40	9.5341	0.72112	0.23486	0.45367	1.14623
1996	0.53333	45	7.3352	0.55480	0.29347	0.31223	0.98581
1997	0.50000	44	12.2921	0.92972	0.30562	0.51144	1.69007
1998	0.45455	44	2.9233	0.22110	0.31707	0.11906	0.41061
1999	0.54762	42	8.0347	0.60771	0.30472	0.33487	1.10287
2000	0.67442	43	22.1992	1.67905	0.24100	1.04395	2.70050
2001	0.61905	21	6.8943	0.52145	0.39074	0.24536	1.10822
2002	0.44231	52	5.4839	0.41478	0.30300	0.22929	0.75031

2003	0.64935	77	16.2343	1.22789	0.22031	0.79444	1.89782
2004	0.41860	43	4.3589	0.32969	0.33160	0.17281	0.62900
2005	0.68182	44	9.6825	0.73234	0.26418	0.43563	1.23117
2006	0.89583	48	37.9349	2.86922	0.18689	1.98075	4.15623
2007	0.77419	31	24.2815	1.83655	0.23559	1.15379	2.92333
2008	0.51282	39	4.9385	0.37353	0.30064	0.20740	0.67271
2009	0.80000	60	40.2090	3.04123	0.24815	1.86519	4.95879
2010	0.47619	42	4.2921	0.32464	0.36737	0.15935	0.66137
2011	0.40000	20	2.6697	0.20193	0.42128	0.08997	0.45318

Table 7. Indices of red snapper (EGOM / Summer) abundance developed using the deltalognormal model for 1982-2011 from the SEAMAP survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1982	0.19444	36	2.8888	1.09250	0.54008	0.39718	3.00503
1983	0.28571	21	2.1433	0.81056	0.58033	0.27594	2.38097
1984	0.06897	29	0.2171	0.08210	1.16402	0.01290	0.52262
1985	0.27778	36	1.4967	0.56601	0.46155	0.23503	1.36310
1986	0.05714	35	0.1757	0.06645	1.20597	0.00999	0.44213
1987	0.21875	96	2.0033	0.75761	0.31616	0.40865	1.40459
1988	0.16176	68	1.5787	0.59705	0.44054	0.25716	1.38619
1989	0.26415	53	4.1722	1.57783	0.37850	0.75899	3.28007
1990	0.38235	68	3.2224	1.21863	0.27355	0.71210	2.08546
1991	0.34783	46	3.3646	1.27244	0.34726	0.64797	2.49872
1992	0.28261	46	7.0297	2.65851	0.38679	1.25984	5.60995
1993	0.20000	45	1.1508	0.43519	0.48819	0.17262	1.09715
1994	0.32787	61	2.6490	1.00182	0.31533	0.54120	1.85445
1995	0.18182	44	1.0238	0.38718	0.51995	0.14555	1.02992
1996	0.26087	46	1.9485	0.73688	0.41160	0.33403	1.62560
1997	0.34091	44	2.0989	0.79375	0.36108	0.39411	1.59867
1998	0.08571	35	0.6920	0.26170	0.85004	0.05988	1.14377
1999	0.11364	44	0.5000	0.18907	0.68469	0.05471	0.65341
2000	0.31111	45	2.0417	0.77212	0.37570	0.37331	1.59700
2001	0.13889	36	0.8554	0.32350	0.65950	0.09725	1.07606
2002	0.11364	44	0.8130	0.30746	0.66342	0.09188	1.02885
2003	0.20455	44	1.8220	0.68906	0.47948	0.27742	1.71150
2004	0.23077	39	1.9260	0.72836	0.47421	0.29591	1.79280
2005	0.30303	33	4.5320	1.71392	0.43577	0.74441	3.94612
2006	0.22222	45	1.2538	0.47415	0.45943	0.19761	1.13769
2007	0.56098	41	7.5152	2.84208	0.26799	1.67837	4.81268
2008	0.42593	54	11.7878	4.45790	0.28388	2.55457	7.77933
2009	0.27473	91	1.8817	0.71162	0.28979	0.40327	1.25575
	0.37838	37	4.6645	1.76404	0.36729	0.86601	3.59328
24	24	1.8788	0.71051	0.52792	0.26357	1.91531	

Table 8. Indices of red snapper (EGOM / Fall) abundance developed using the delta-lognormal model for 1972-2011 from the SEAMAP survey. The nominal frequency of occurrence, the number of samples (N), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
1972	0.67692	65	43.6574	3.27439	0.22927	2.08227	5.14903
1973	0.51304	115	7.1767	0.53826	0.18783	0.37090	0.78114
1974	0.40385	104	8.4347	0.63262	0.24490	0.39040	1.02512
1975	0.44086	93	6.9768	0.52328	0.22225	0.33729	0.81181
1976	0.45370	108	8.4324	0.63245	0.20645	0.42032	0.95164
1977	0.43299	97	11.6354	0.87268	0.24406	0.53942	1.41182
1978	0.45985	137	5.2682	0.39512	0.18587	0.27331	0.57123
1979	0.39450	109	4.1681	0.31261	0.21558	0.20412	0.47878
1980	0.49541	109	7.7914	0.58437	0.19938	0.39373	0.86733
1981	0.59434	106	26.9305	2.01984	0.19221	1.38000	2.95634
1982	0.71545	123	29.9358	2.24525	0.15134	1.66170	3.03372
1983	0.50505	99	4.3068	0.32302	0.19694	0.21867	0.47716
1984	0.34146	82	3.5334	0.26501	0.29985	0.14737	0.47657
1985	0.21348	89	1.6241	0.12181	0.30546	0.06703	0.22137
1986	0.12500	40	1.5295	0.11472	0.66374	0.03427	0.38407
1987	0.25000	44	2.5507	0.19130	0.43068	0.08384	0.43653
1988	0.36111	36	3.3413	0.25060	0.37730	0.12081	0.51983
1989	0.67442	43	49.8205	3.73664	0.28304	2.14463	6.51041
1990	0.71698	53	27.7674	2.08261	0.26237	1.24307	3.48916
1991	0.76087	46	31.7855	2.38397	0.22842	1.51852	3.74269
1992	0.42424	33	2.5964	0.19473	0.33867	0.10074	0.37641
1993	0.50000	72	18.8373	1.41283	0.29898	0.78693	2.53656
1994	0.52000	50	4.6211	0.34659	0.24565	0.21358	0.56242
1995	0.62500	40	9.6240	0.72182	0.24339	0.44675	1.16627
1996	0.52174	46	7.3109	0.54834	0.28379	0.31427	0.95672
1997	0.48889	45	12.2807	0.92108	0.30546	0.50684	1.67387
1998	0.45455	44	2.9987	0.22491	0.30515	0.12383	0.40848
1999	0.53488	43	7.9702	0.59778	0.28922	0.33912	1.05372
2000	0.65909	44	21.8594	1.63950	0.23221	1.03672	2.59275
2001	0.61905	21	6.8914	0.51687	0.38283	0.24669	1.08292
2002	0.44231	52	5.6057	0.42044	0.30216	0.23279	0.75935
2003	0.64935	77	16.4241	1.23184	0.22272	0.79331	1.91280
2004	0.41860	43	4.4729	0.33548	0.31992	0.17969	0.62634
2005	0.68182	44	9.7321	0.72993	0.24780	0.44796	1.18938

2006	0.89583	48	37.8969	2.84234	0.18441	1.97167	4.09750
2007	0.77419	31	24.5363	1.84027	0.24935	1.12604	3.00753
2008	0.51282	39	4.9821	0.37367	0.27418	0.21809	0.64023
2009	0.80000	60	40.5835	3.04384	0.23536	1.91311	4.84287
2010	0.53333	30	4.7111	0.35335	0.36541	0.17406	0.71730
2011	0.40000	20	2.7178	0.20384	0.44724	0.08677	0.47884

Figure 1. Alabama Artificial Reef Permit Area (gray area) located off the coast of Alabama in relation to the rest of the area sampled under the SEAMAP summer and fall groundfish surveys (blue area). Note that the current SEAMAP universe excludes the Alabama Artificial Reef Permit Area from its sampling universe.

Figure 2. Spatial coverage and red snapper catch rates for the Summer and Fall SEAMAP Bottom Trawl Survey and the DISL Bottom Trawl Survey for 2010.

Figure 3. Spatial coverage and red snapper catch rates for the Summer and Fall SEAMAP Bottom Trawl Survey and the DISL Bottom Trawl Survey for 2011. Note that there were no stations from DISL in the fall.

Figure 4. Annual trends for red snapper (EGOM / Summer) captured during Summer SEAMAP Groundfish Surveys from 1982 to 2011 in A. nominal CPUE and B. proportion of positive stations.

Figure 5. Diagnostic plots for binomial component of the red snapper SEAMAP Groundfish Survey (EGOM / Summer) model: A. the Chi-Square residuals by year, B. the Chi-Square residuals by depth zone and \mathbf{C}. the Chi-Square residuals by time of day.

Figure 6. Diagnostic plots for lognormal component of the red snapper SEAMAP Groundfish Survey (EGOM / Summer) model: A. the frequency distribution of \log (CPUE) on positive stations and B. the cumulative normalized residuals (QQ plot).

Figure 7. Diagnostic plots for lognormal component of the red snapper SEAMAP Groundfish Survey (EGOM / Summer) model: A. the Chi-Square residuals by year, B. the Chi-Square residuals by depth zone and \mathbf{C}. the Chi-Square residuals by time of day.

SEAMAP/DISL Red Snapper Summer Eastern Gulf of Mexico 1982 to 2012 Observed and Standardized CPUE (95\% CI)

STDcpue

Figure 8. Annual index of abundance for red snapper (EGOM / Summer) from the SEAMAP Groundfish Survey from 1982-2011.

Figure 9. Annual trends for red snapper (EGOM / Fall) captured during Fall SEAMAP Groundfish Surveys from 1972 to 2011 in A. nominal CPUE and B. proportion of positive stations.

Figure 10. Diagnostic plots for binomial component of the red snapper SEAMAP Groundfish Survey (EGOM / Fall) model: A. the Chi-Square residuals by year, B. the Chi-Square residuals by depth zone and C. the Chi-Square residuals by time of day.

Figure 11. Diagnostic plots for lognormal component of the red snapper SEAMAP Groundfish Survey (EGOM / Fall) model: A. the frequency distribution of \log (CPUE) on positive stations and B. the cumulative normalized residuals (QQ plot).

Figure 12. Diagnostic plots for lognormal component of the red snapper SEAMAP Groundfish Survey (EGOM / Fall) model: A. the Chi-Square residuals by year, B. the Chi-Square residuals by depth zone and C. the Chi-Square residuals by time of day.

SEAMAP/DISL Red Snapper Fall Eastern Gulf of Mexico 1972 to 2012 Observed and Standardized CPUE (95\% CI)

Figure 13. Annual index of abundance for red snapper (EGOM / Fall) from the SEAMAP Groundfish Survey from 1972-2011.

Figure 14. Comparison of relative abundance indices for red snapper from the summer SEAMAP (solid line) and combined SEAMAP/DISL (dashed line) surveys.

Figure 15. Comparison of relative abundance indices for red snapper from the fall SEAMAP (solid line) and combined SEAMAP/DISL (dashed line) surveys.

