
# Age Composition of Red Snapper Bycatch in the Gulf of Mexico Shrimp Fishery, 1997-2011

# Brian C. Linton

# SEDAR31-AW05

# 11 January 2013



This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

# Please cite as:

Linton, B.C. 2013. Age Composition of Red Snapper Bycatch in the Gulf of Mexico Shrimp Fishery, 1997-2011. SEDAR31-AW05. SEDAR, North Charleston, SC. 14 pp.

### Age Composition of Red Snapper Bycatch in the Gulf of Mexico Shrimp Fishery, 1997-2011

#### Brian Linton NOAA Southeast Fisheries Science Center Miami, FL

#### Sustainable Fisheries Division Contribution SFD-2013-001

Estimates of the age composition of red snapper bycatch in the shrimp fishery were obtained using the methods developed by Kate Andrews and John Walter for the 2009 Gulf of Mexico red snapper assessment update (SEDAR 2009).

The data are from the shrimp fishery observer program (housed at the NMFS laboratory in Galveston, TX). These data are sample lengths (mm) from the bycatch of young red snapper and are available for years 1997 through 2011. For this analysis, the length data were partitioned into 'cells' using the following associated strata: year, trimester, and zone (East or West). The data are recorded as fork lengths, standard lengths, and total lengths, and we chose to use fork lengths arbitrarily. As proportions are being examined, the type of length measurement used will not matter quantitatively. The separation of seasons into trimesters and the areas into zone is consistent with the manner in which shrimp bycatch is estimated (Linton 2012).

The observer data comes from both experimental tows—shrimp tows with BRDs—and control tows—shrimp tows without BRDs. There were some observed differences between the experimental and control length frequencies in some years. However, for consistency with bycatch age composition obtained by Scott Nichols for use in SEDAR 7 (Nichols 2004) and by Andrews and Walter for use in the 2009 assessment update (SEDAR 2009), both sets of data were used.

The observer length frequencies were split into ages 0, 1 and 2+ based upon visual observation of modes similar to the method employed by Nichols (2004) (Figure 1). Modes were clearly identifiable in some trimesters and years. When a break point between age classes was not clear, the decision to break the distribution of lengths into age classes was often based upon an inspection of adjacent years. When a cell had no observed length frequencies, the cut points were filled with values from either the former or the subsequent year values from the same zone and trimester combination, with preference given to the former year value (Tables 1-2). The annual proportions at age were computed using the median bycatch estimates by trimester. The proportion per "cell" is multiplied by the catch in that cell divided by the sum of the bycatch in that year across all strata. The resulting fractions at ages 0, 1 and 2+ indicate that most bycatch is on age 0's, with some variability from year to year (Table 3 and Figures 2-3).

#### References

- Linton, B. 2012. Shrimp fishery bycatch estimates for Gulf of Mexico red snapper, 1972-2011. NOAA Southeast Fisheries Science Center, Miami Laboratory. SEDAR31-DW-30.
- Nichols, S. 2004. Estimating catch at age for red snapper in the shrimp fleet bycatch. NOAA Southeast Fisheries Science Center, Pascagoula Laboratory. SEDAR7-AW-20.
- Southeast Data, Assessment, and Review (SEDAR). 2009. Stock assessment of red snapper in the Gulf of Mexico: SEDAR update assessment. Southeast Data, Assessment, and Review, Charleston, SC.

Table 1. List of break point calculations and the corresponding proportions at age for the eastern Gulf. Age 0 and Age 1 terminal size columns are the cutoffs used for the length distribution to differentiate Age 0's, Age 1's, and Age 2+'s. The Fill? column indicates whether the terminal size was determined from the data in that cell or borrowed from a neighboring cell based on the criteria defined in the text. The sample sizes are the number of fish measured in that stratum.

|      |      |           | Termin | al sizes |               |       | Sample | e sizes |       | P      | roportion | ns     |
|------|------|-----------|--------|----------|---------------|-------|--------|---------|-------|--------|-----------|--------|
| Year | Zone | Trimester | Age 0  | Age 1    | Fill?         | Age 0 | Age 1  | Age 2   | Total | Age 0  | Age 1     | Age 2  |
| 1997 | East | 1         | 150    | 250      | yes with 2000 | 0     | 0      | 0       | 0     | 0.6182 | 0.3455    | 0.0364 |
| 1997 | East | 2         | 150    | 250      | yes with 1999 | 0     | 1      | 0       | 1     | 0.0000 | 1.0000    | 0.0000 |
| 1997 | East | 3         | 150    | 250      | yes with 1999 | 0     | 0      | 0       | 0     | 1.0000 | 0.0000    | 0.0000 |
| 1998 | East | 1         | 150    | 250      | yes with 2000 | 0     | 0      | 0       | 0     | 0.6182 | 0.3455    | 0.0364 |
| 1998 | East | 2         | 150    | 250      | yes with 1999 | 0     | 0      | 0       | 0     | 0.8676 | 0.1176    | 0.0147 |
| 1998 | East | 3         | 150    | 250      | yes with 1999 | 0     | 0      | 0       | 0     | 1.0000 | 0.0000    | 0.0000 |
| 1999 | East | 1         | 150    | 250      | yes with 2000 | 0     | 0      | 0       | 0     | 0.6182 | 0.3455    | 0.0364 |
| 1999 | East | 2         | 150    | 250      | no            | 59    | 8      | 1       | 68    | 0.8676 | 0.1176    | 0.0147 |
| 1999 | East | 3         | 150    | 250      | no            | 20    | 0      | 0       | 20    | 1.0000 | 0.0000    | 0.0000 |
| 2000 | East | 1         | 150    | 250      | no            | 34    | 19     | 2       | 55    | 0.6182 | 0.3455    | 0.0364 |
| 2000 | East | 2         | 100    | 250      | no            | 688   | 1,972  | 21      | 2,681 | 0.2566 | 0.7355    | 0.0078 |
| 2000 | East | 3         | 180    | 250      | no            | 1,523 | 59     | 25      | 1,607 | 0.9477 | 0.0367    | 0.0156 |
| 2001 | East | 1         | 150    | 250      | yes with 2000 | 0     | 0      | 0       | 0     | 0.6182 | 0.3455    | 0.0364 |
| 2001 | East | 2         | 100    | 250      | no            | 695   | 680    | 5       | 1,380 | 0.5036 | 0.4928    | 0.0036 |
| 2001 | East | 3         | 100    | 250      | no            | 1,811 | 431    | 11      | 2,253 | 0.8038 | 0.1913    | 0.0049 |
| 2002 | East | 1         | 200    | 250      | no            | 705   | 19     | 117     | 841   | 0.8383 | 0.0226    | 0.1391 |
| 2002 | East | 2         | 200    | 250      | no            | 3,892 | 132    | 94      | 4,118 | 0.9451 | 0.0321    | 0.0228 |
| 2002 | East | 3         | 180    | 250      | no            | 5,417 | 140    | 54      | 5,611 | 0.9654 | 0.0250    | 0.0096 |
| 2003 | East | 1         | 130    | 250      | no            | 444   | 202    | 80      | 726   | 0.6116 | 0.2782    | 0.1102 |
| 2003 | East | 2         | 150    | 250      | no            | 1,757 | 679    | 93      | 2,529 | 0.6947 | 0.2685    | 0.0368 |
| 2003 | East | 3         | 150    | 250      | no            | 1,702 | 220    | 37      | 1,959 | 0.8688 | 0.1123    | 0.0189 |
| 2004 | East | 1         | 160    | 250      | no            | 2,063 | 247    | 66      | 2,376 | 0.8683 | 0.1040    | 0.0278 |
| 2004 | East | 2         | 160    | 250      | no            | 874   | 163    | 16      | 1,053 | 0.8300 | 0.1548    | 0.0152 |

| 2004 | East | 3 | 180 | 250 | no | 2,918 | 100 | 13 | 3,031 | 0.9627 | 0.0330 | 0.0043 |
|------|------|---|-----|-----|----|-------|-----|----|-------|--------|--------|--------|
| 2005 | East | 1 | 160 | 250 | no | 468   | 58  | 16 | 542   | 0.8635 | 0.1070 | 0.0295 |
| 2005 | East | 2 | 170 | 250 | no | 108   | 81  | 2  | 191   | 0.5654 | 0.4241 | 0.0105 |
| 2005 | East | 3 | 175 | 250 | no | 262   | 198 | 13 | 473   | 0.5539 | 0.4186 | 0.0275 |
| 2006 | East | 1 | 130 | 250 | no | 106   | 37  | 6  | 149   | 0.7114 | 0.2483 | 0.0403 |
| 2006 | East | 2 | 200 | 250 | no | 150   | 6   | 0  | 156   | 0.9615 | 0.0385 | 0.0000 |
| 2006 | East | 3 | 175 | 250 | no | 2,347 | 78  | 4  | 2,429 | 0.9662 | 0.0321 | 0.0016 |
| 2007 | East | 1 | 200 | 250 | no | 268   | 11  | 20 | 299   | 0.8963 | 0.0368 | 0.0669 |
| 2007 | East | 2 | 120 | 250 | no | 875   | 88  | 18 | 981   | 0.8919 | 0.0897 | 0.0183 |
| 2007 | East | 3 | 180 | 250 | no | 217   | 25  | 32 | 274   | 0.7920 | 0.0912 | 0.1168 |
| 2008 | East | 1 | 150 | 250 | no | 542   | 31  | 1  | 574   | 0.9443 | 0.0540 | 0.0017 |
| 2008 | East | 2 | 215 | 250 | no | 131   | 5   | 2  | 138   | 0.9493 | 0.0362 | 0.0145 |
| 2008 | East | 3 | 150 | 250 | no | 240   | 163 | 70 | 473   | 0.5074 | 0.3446 | 0.1480 |
| 2009 | East | 1 | 150 | 250 | no | 66    | 15  | 0  | 81    | 0.8148 | 0.1852 | 0.0000 |
| 2009 | East | 2 | 160 | 250 | no | 103   | 29  | 6  | 138   | 0.7464 | 0.2101 | 0.0435 |
| 2009 | East | 3 | 170 | 250 | no | 441   | 6   | 2  | 449   | 0.9822 | 0.0134 | 0.0045 |
| 2010 | East | 1 | 115 | 250 | no | 407   | 691 | 4  | 1,102 | 0.3693 | 0.6270 | 0.0036 |
| 2010 | East | 2 | 180 | 250 | no | 13    | 0   | 2  | 15    | 0.8667 | 0.0000 | 0.1333 |
| 2010 | East | 3 | 145 | 250 | no | 351   | 45  | 6  | 402   | 0.8731 | 0.1119 | 0.0149 |
| 2011 | East | 1 | 165 | 250 | no | 1,096 | 2   | 0  | 1,098 | 0.9982 | 0.0018 | 0.0000 |
| 2011 | East | 2 | 215 | 250 | no | 117   | 16  | 7  | 140   | 0.8357 | 0.1143 | 0.0500 |
| 2011 | East | 3 | 95  | 250 | no | 44    | 111 | 1  | 156   | 0.2821 | 0.7115 | 0.0064 |

Table 2. List of break point calculations and the corresponding proportions at age for the western Gulf. Age 0 and Age 1 terminal size columns are the cutoffs used for the length distribution to differentiate Age 0's, Age 1's, and Age 2+'s. The Fill? column indicates whether the terminal size was determined from the data in that cell or borrowed from a neighboring cell based on the criteria defined in the text. The sample sizes are the number of fish measured in that stratum.

|      | Terminal sizes |           |       | Sample sizes |               |        |       | P     | Proportions |        |        |        |
|------|----------------|-----------|-------|--------------|---------------|--------|-------|-------|-------------|--------|--------|--------|
| Year | Zone           | Trimester | Age 0 | Age 1        | Fill?         | Age 0  | Age 1 | Age 2 | Total       | Age 0  | Age 1  | Age 2  |
| 1997 | West           | 1         | 160   | 250          | yes with 1998 | 0      | 0     | 0     | 0           | 0.7283 | 0.2661 | 0.0056 |
| 1997 | West           | 2         | 170   | 250          | no            | 38     | 15    | 0     | 53          | 0.7170 | 0.2830 | 0.0000 |
| 1997 | West           | 3         | 120   | 250          | no            | 179    | 29    | 0     | 208         | 0.8606 | 0.1394 | 0.0000 |
| 1998 | West           | 1         | 160   | 250          | no            | 654    | 239   | 5     | 898         | 0.7283 | 0.2661 | 0.0056 |
| 1998 | West           | 2         | 130   | 250          | yes with 1999 | 0      | 0     | 0     | 0           | 0.8509 | 0.1456 | 0.0035 |
| 1998 | West           | 3         | 170   | 250          | yes with 1999 | 0      | 0     | 0     | 0           | 0.9418 | 0.0538 | 0.0043 |
| 1999 | West           | 1         | 160   | 250          | yes with 1998 | 0      | 0     | 0     | 0           | 0.7283 | 0.2661 | 0.0056 |
| 1999 | West           | 2         | 130   | 250          | no            | 12,976 | 2,221 | 53    | 15,250      | 0.8509 | 0.1456 | 0.0035 |
| 1999 | West           | 3         | 170   | 250          | no            | 24,521 | 1,402 | 113   | 26,036      | 0.9418 | 0.0538 | 0.0043 |
| 2000 | West           | 1         | 180   | 250          | no            | 3,320  | 358   | 13    | 3,691       | 0.8995 | 0.0970 | 0.0035 |
| 2000 | West           | 2         | 125   | 250          | no            | 5,053  | 2,122 | 51    | 7,226       | 0.6993 | 0.2937 | 0.0071 |
| 2000 | West           | 3         | 150   | 250          | no            | 26,158 | 5,880 | 288   | 32,326      | 0.8092 | 0.1819 | 0.0089 |
| 2001 | West           | 1         | 160   | 250          | no            | 541    | 112   | 4     | 657         | 0.8234 | 0.1705 | 0.0061 |
| 2001 | West           | 2         | 100   | 250          | no            | 1,834  | 7,689 | 341   | 9,864       | 0.1859 | 0.7795 | 0.0346 |
| 2001 | West           | 3         | 150   | 250          | no            | 14,287 | 2,868 | 305   | 17,460      | 0.8183 | 0.1643 | 0.0175 |
| 2002 | West           | 1         | 200   | 250          | no            | 1,649  | 155   | 91    | 1,895       | 0.8702 | 0.0818 | 0.0480 |
| 2002 | West           | 2         | 130   | 250          | no            | 6,450  | 7,926 | 668   | 15,044      | 0.4287 | 0.5269 | 0.0444 |
| 2002 | West           | 3         | 150   | 250          | no            | 29,531 | 4,011 | 623   | 34,165      | 0.8644 | 0.1174 | 0.0182 |
| 2003 | West           | 1         | 170   | 250          | no            | 473    | 78    | 31    | 582         | 0.8127 | 0.1340 | 0.0533 |
| 2003 | West           | 2         | 150   | 250          | no            | 789    | 1,090 | 128   | 2,007       | 0.3931 | 0.5431 | 0.0638 |
| 2003 | West           | 3         | 150   | 250          | no            | 13,800 | 2,764 | 270   | 16,834      | 0.8198 | 0.1642 | 0.0160 |
| 2004 | West           | 1         | 160   | 250          | no            | 3,761  | 467   | 65    | 4,293       | 0.8761 | 0.1088 | 0.0151 |
| 2004 | West           | 2         | 100   | 250          | no            | 616    | 9,006 | 96    | 9,718       | 0.0634 | 0.9267 | 0.0099 |

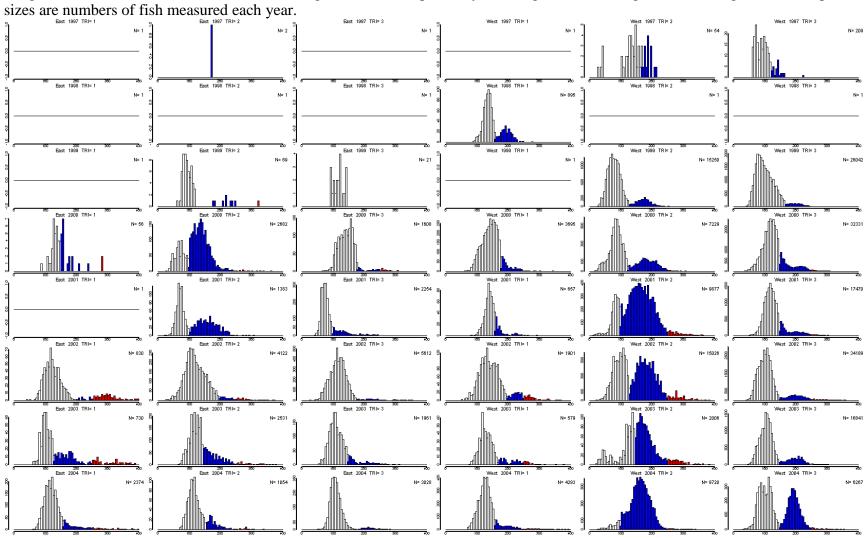

|      |      | _ |     |     |    |        |        |       |        |        |        |        |
|------|------|---|-----|-----|----|--------|--------|-------|--------|--------|--------|--------|
| 2004 | West | 3 | 150 | 250 | no | 3,609  | 2,596  | 62    | 6,267  | 0.5759 | 0.4142 | 0.0099 |
| 2005 | West | 1 | 150 | 250 | no | 487    | 454    | 32    | 973    | 0.5005 | 0.4666 | 0.0329 |
| 2005 | West | 2 | 100 | 250 | no | 273    | 10,302 | 276   | 10,851 | 0.0252 | 0.9494 | 0.0254 |
| 2005 | West | 3 | 140 | 250 | no | 5,816  | 2,194  | 145   | 8,155  | 0.7132 | 0.2690 | 0.0178 |
| 2006 | West | 1 | 160 | 250 | no | 646    | 325    | 27    | 998    | 0.6473 | 0.3257 | 0.0271 |
| 2006 | West | 2 | 120 | 250 | no | 964    | 4,490  | 213   | 5,667  | 0.1701 | 0.7923 | 0.0376 |
| 2006 | West | 3 | 160 | 250 | no | 15,961 | 1,248  | 56    | 17,265 | 0.9245 | 0.0723 | 0.0032 |
| 2007 | West | 1 | 175 | 250 | no | 955    | 79     | 3     | 1,037  | 0.9209 | 0.0762 | 0.0029 |
| 2007 | West | 2 | 100 | 250 | no | 1,153  | 2,950  | 79    | 4,182  | 0.2757 | 0.7054 | 0.0189 |
| 2007 | West | 3 | 150 | 250 | no | 30,824 | 7,292  | 1,219 | 39,335 | 0.7836 | 0.1854 | 0.0310 |
| 2008 | West | 1 | 185 | 250 | no | 8,209  | 565    | 321   | 9,095  | 0.9026 | 0.0621 | 0.0353 |
| 2008 | West | 2 | 135 | 250 | no | 3,464  | 5,108  | 387   | 8,959  | 0.3867 | 0.5702 | 0.0432 |
| 2008 | West | 3 | 150 | 250 | no | 8,134  | 4,536  | 676   | 13,346 | 0.6095 | 0.3399 | 0.0507 |
| 2009 | West | 1 | 200 | 250 | no | 8,593  | 853    | 475   | 9,921  | 0.8661 | 0.0860 | 0.0479 |
| 2009 | West | 2 | 120 | 250 | no | 1,919  | 1,525  | 219   | 3,663  | 0.5239 | 0.4163 | 0.0598 |
| 2009 | West | 3 | 210 | 250 | no | 26,193 | 251    | 102   | 26,546 | 0.9867 | 0.0095 | 0.0038 |
| 2010 | West | 1 | 205 | 250 | no | 6,836  | 74     | 44    | 6,954  | 0.9830 | 0.0106 | 0.0063 |
| 2010 | West | 2 | 85  | 250 | no | 14     | 2,987  | 114   | 3,115  | 0.0045 | 0.9589 | 0.0366 |
| 2010 | West | 3 | 150 | 250 | no | 23,093 | 5,959  | 325   | 29,377 | 0.7861 | 0.2028 | 0.0111 |
| 2011 | West | 1 | 140 | 250 | no | 3,930  | 3,750  | 172   | 7,852  | 0.5005 | 0.4776 | 0.0219 |
| 2011 | West | 2 | 75  | 250 | no | 415    | 3,092  | 175   | 3,682  | 0.1127 | 0.8398 | 0.0475 |
| 2011 | West | 3 | 160 | 250 | no | 13,332 | 2,108  | 220   | 15,660 | 0.8513 | 0.1346 | 0.0140 |

Table 3. Annual proportions at age for Gulf of Mexico red snapper bycatch in the shrimp fishery by zone (East and West).

|      |      | Proportions |        |        |  |  |  |  |  |
|------|------|-------------|--------|--------|--|--|--|--|--|
| Year | Zone | Age 0       | Age 1  | Age 2  |  |  |  |  |  |
| 1997 | East | 0.7410      | 0.2570 | 0.0019 |  |  |  |  |  |
| 1998 | East | 0.9354      | 0.0579 | 0.0066 |  |  |  |  |  |
| 1999 | East | 0.8950      | 0.0945 | 0.0105 |  |  |  |  |  |
| 2000 | East | 0.5754      | 0.4112 | 0.0134 |  |  |  |  |  |
| 2001 | East | 0.6529      | 0.3409 | 0.0062 |  |  |  |  |  |
| 2002 | East | 0.9565      | 0.0263 | 0.0172 |  |  |  |  |  |
| 2003 | East | 0.7838      | 0.1815 | 0.0348 |  |  |  |  |  |
| 2004 | East | 0.8932      | 0.0947 | 0.0121 |  |  |  |  |  |
| 2005 | East | 0.6059      | 0.3688 | 0.0253 |  |  |  |  |  |
| 2006 | East | 0.9510      | 0.0453 | 0.0036 |  |  |  |  |  |
| 2007 | East | 0.8715      | 0.0865 | 0.0419 |  |  |  |  |  |
| 2008 | East | 0.8402      | 0.1169 | 0.0429 |  |  |  |  |  |
| 2009 | East | 0.9681      | 0.0264 | 0.0055 |  |  |  |  |  |
| 2010 | East | 0.5312      | 0.4582 | 0.0106 |  |  |  |  |  |
| 2011 | East | 0.7511      | 0.2287 | 0.0202 |  |  |  |  |  |
| 1997 | West | 0.8120      | 0.1874 | 0.0005 |  |  |  |  |  |
| 1998 | West | 0.9187      | 0.0769 | 0.0043 |  |  |  |  |  |
| 1999 | West | 0.8936      | 0.1021 | 0.0043 |  |  |  |  |  |
| 2000 | West | 0.7899      | 0.2021 | 0.0080 |  |  |  |  |  |
| 2001 | West | 0.6436      | 0.3357 | 0.0208 |  |  |  |  |  |
| 2002 | West | 0.7788      | 0.1962 | 0.0250 |  |  |  |  |  |
| 2003 | West | 0.7717      | 0.2064 | 0.0220 |  |  |  |  |  |
| 2004 | West | 0.4397      | 0.5502 | 0.0101 |  |  |  |  |  |
| 2005 | West | 0.4829      | 0.4960 | 0.0211 |  |  |  |  |  |
| 2006 | West | 0.8069      | 0.1836 | 0.0095 |  |  |  |  |  |
| 2007 | West | 0.7218      | 0.2509 | 0.0273 |  |  |  |  |  |

| 2008 | West | 0.6128 | 0.3424 | 0.0449 |
|------|------|--------|--------|--------|
| 2009 | West | 0.8799 | 0.1008 | 0.0193 |
| 2010 | West | 0.7284 | 0.2580 | 0.0136 |
| 2011 | West | 0.6664 | 0.3118 | 0.0218 |

Figure 1. Length frequencies from shrimp trawl observer data (both experimental and control data) by year, zone and trimester. Lengths are in millimeters and bins are 5 mm. Age classes are depicted by color; age 0-no color, age 1-blue and age 2-red. Sample



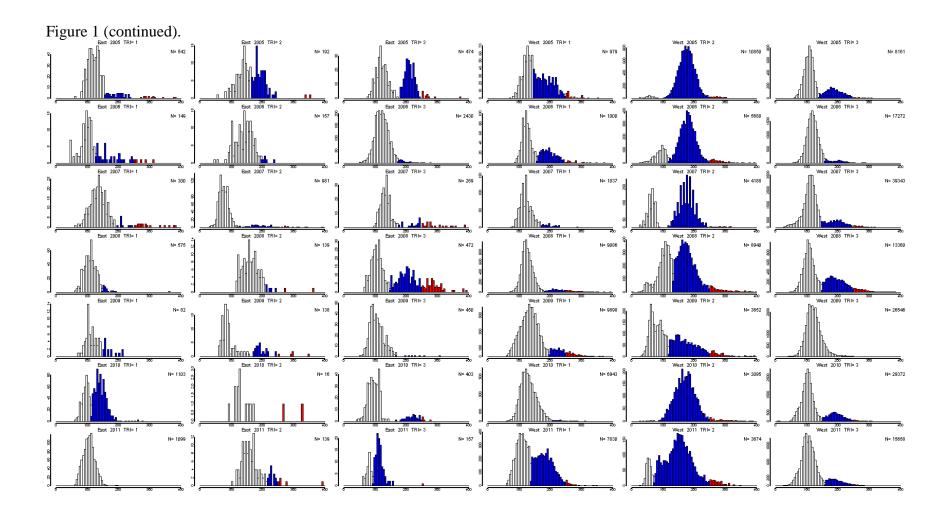



Figure 2. The proportions at age 0 and age 1 of red snapper bycatch from the shrimp trawl fishery in the western Gulf of Mexico by year.

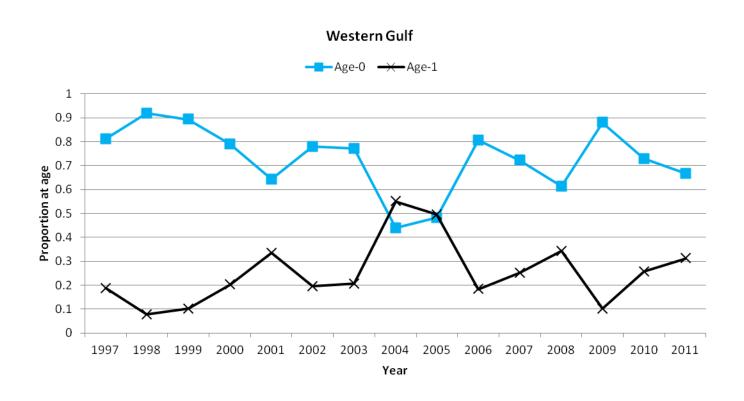
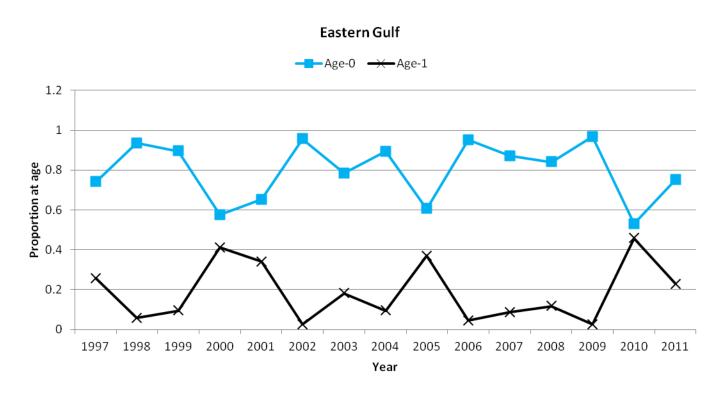




Figure 3. The proportions at age 0 and age 1 of red snapper bycatch from the shrimp trawl fishery in the eastern Gulf of Mexico by year.

