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Executive Summary 
Given the complexity of developing indices of abundance and determining which indices may be 
useful for use in stock assessments, and that SEDAR independent peer review panels have 
commented that objective and consistent criteria for evaluating indices are currently lacking, a 4 
day workshop was convened to gather key members of the SEDAR assessment community to 
prepare a guide to index development and evaluation. Over the course of developing stock 
assessments through the SEDAR process it was recognized that certain topics arose repeatedly in 
discussions.  Such topics typically involve well known areas of uncertainty in assessment 
methods and input data sources, and discussions related to these topics often occupy considerable 
time in data and assessment workshops as participants strive to come up with reasonable 
solutions.  One area where this became apparent was with regards to indices of relative 
abundance.  SEDAR independent peer review panels have commented that objective and 
consistent criteria for evaluating indices are currently lacking.  The criteria used to select 
particular indices for inclusion in a particular assessment have not been clearly documented, and 
those indices selected, along with the weighting scheme applied to them, for inclusion by the 
Data Workshop have been questioned.  The intent of this workshop was to fulfill the 
recommendations of several SEDAR independent peer review panels by developing and 
documenting selection criteria, and improve future SEDARs through increasing efficiency by 
providing code for developing indices and diagnostics as well as guidance regarding what 
information is expected to be available for review, and the quality of assessment products. 
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1. INTRODUCTION 

1.1. Workshop Time and Place 
 The SEDAR Procedural Workshop I entitled “Abundance Indices Workshop: Developing 
protocols for submission of abundance indices to the SEDAR process” was held October 14-17, 
2008, in Miami, Florida. 
 

1.2. Statement of Work 
Overview: 
Measures of population abundance are critical to developing adequate and reliable quantitative 
stock assessments.  Given the complexity of developing indices of abundance and determining 
which indices may be useful for use in stock assessments, and that SEDAR independent peer 
review panels have commented that objective and consistent criteria for evaluating indices are 
currently lacking, a 4 day workshop was convened to gather key members of the SEDAR 
assessment community to prepare a guide to index development and evaluation. Over the course 
of developing stock assessments through the SEDAR process it was recognized that certain 
topics arose repeatedly in discussions.  Such topics typically involve well known areas of 
uncertainty in assessment methods and input data sources, and discussions related to these topics 
often occupy considerable time in data and assessment workshops as participants strive to come 
up with reasonable solutions.  Because each workshop is composed of a slightly different mix of 
individuals, differing solutions are at times proposed for these common uncertainties.  While it is 
within the charge to each individual workshop to make the best decisions possible based on the 
information before them, the lack of a consistent approach for addressing common problems 
across stocks and assessments can contribute to unnecessary criticisms of the assessments and 
the assessment process itself.   
 
One area where this became apparent was with regards to indices of relative abundance.  SEDAR 
independent peer review panels have commented that objective and consistent criteria for 
evaluating indices are currently lacking.  The criteria used to select particular indices for 
inclusion in a particular assessment have not been clearly documented, and those indices 
selected, along with the weighting scheme applied to them, for inclusion by the Data Workshop 
have been questioned.  The Panels have questioned why indices of abundance displaying 
conflicting trends have been included in the base assessment and it has appeared to some 
Reviewers that little or no evaluation of the indices with respect to their relationship and/or 
ability to track overall abundance has been considered in the selection process.  Lack of clear 
documentation explaining why such choices had been made has left it to the lead analyst to try 
and explain the rationale, despite the fact that the analyst in question may not have participated 
in the Indices Working Group. 
 
The intent of this workshop was to fulfill the recommendations of several SEDAR independent 
peer review panels by developing and documenting selection criteria, and improve future 
SEDARs through increasing efficiency by providing code for developing indices and diagnostics 
as well as guidance regarding what information is expected to be available for review, and the 
quality of assessment products. 
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Scope of Work: 
Participants produced summaries or documents of various issues, which were discussed during 
the workshop. 
Objectives of the workshop: 

• Discuss and document factors that need to be addressed when developing indices of 
abundance, relative to their information source: 

o Fishery independent factors may include: survey objectives, sampling design, 
species targeted, life stage of target species at time of sampling, time of year of 
survey, areas where surveys are conducted, length of time series 

o Fishery dependent factors may include: species targeted (including data reduction 
techniques), life stage of target species at time of fishery prosecution, effects of 
data reporting errors, time of year of fishery prosecution, areas where fishery is 
prosecuted, length of time series, regulation and closure effects 

• Determine criteria for selecting indices for inclusion in the assessment model given that 
they meet the minimum requirements set forth by the group 

• Provide minimum requirements and an expected format for submission of SEDAR data 
workshop documents concerning development of abundance indices 

• Provide appendices containing generalized computer code for developing abundance 
indices. 
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1.3. List of Participants 
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Walter Ingram................................................................................ NMFS, SEFSC Pascagoula, MS 
Julie Neer............................................................... SEDAR Coordinator, SEDAR, Charleston, SC 
 
Craig Brown........................................................................................... NMFS, SEFSC Miami, FL 
John Carlson.................................................................................NMFS, SEFSC, Panama City, FL 
Shannon Cass-Calay.............................................................................. NMFS, SEFSC Miami, FL 
Paul Conn........................................................................................... NMFS, SEFSC Beaufort, SC 
Nancie Cummings.................................................................................. NMFS, SEFSC Miami, FL 
Todd Gedamke....................................................................................... NMFS, SEFSC Miami, FL 
Brian Linton........................................................................................... NMFS, SEFSC Miami, FL 
Camilla McCandless....................................................................NMFS, NEFSC, Narragansett, RI 
Kevin McCarthy.................................................................................... NMFS, SEFSC Miami, FL 
Joseph Munyandorero................................................................ Florida FWCC, St. Petersburg, FL 
Joe O’Hop.................................................................................. Florida FWCC, St. Petersburg, FL 
Mauricio Ortiz........................................................................................ NMFS, SEFSC Miami, FL 
Clay Porch.............................................................................................. NMFS, SEFSC Miami, FL 
Marcel Reichert..........................................................................................SCDNR, Charleston, SC 
Andi Stephens............................................................................................SAFMC, Charleston, SC 
Steve Turner........................................................................................... NMFS, SEFSC Miami, FL 
John Walter............................................................................................ NMFS, SEFSC Miami, FL 
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2. Fishery Independent Indices 

2.1. A Brief Overview of Large-Scale, Fishery-Independent Surveys of NOAA 
Fisheries, MS Labs – Walter Ingram 
 
The following is a brief overview of the large-scale, fishery-independent surveys of NOAA 
Fisheries, Mississippi Laboratories.  The surveys mentioned below generally contain useful 
information about time-series resource relative abundance levels, although of different species 
and ages/stages and over different lengths of time, depending on survey type. The following is a 
description of the survey-by-survey type of time-series information available for use in the 
SEDAR process. 
 
Plankton Surveys 
The plankton surveys in their present form started data collection in 1982. There are five general 
time frames where data were collected in the present format. These include spring plankton, 
summer ground fish, fall plankton, fall ground fish, and winter plankton. Plankton surveys are 
‘piggybacked’ on the summer and fall groundfish survey designs and are hence categorized as 
‘piggyback plankton surveys.’ The spring plankton and fall ground fish cruises have occurred 
each year since 1982. Some early plankton collection occurred in 1950-1976, but mainly for 
bluefin tuna. There were data in the spring survey time from 1977 through 1981, but the 
sampling design was different than the current version. Fall plankton started in 1986 and has 
occurred most every year since that time. The winter surveys have been conducted sporadically 
since 1992. Bongo and neuston nets are used during each of the surveys and use of MOCNESS 
(Multiple Opening/ Closing Net and Environmental Sampling System) and CUFES (Continuous 
Underway Fish Egg Sampler) applications are under consideration.  

 
Figure 1. Aerial coverage of plankton surveys. 
 
Several issues concerning plankton surveys were discussed. Almost all indices of abundance 
developed from these data have large CVs, which could result from insufficient sample sizes. 
The panel suggested that quadrupling current sample sizes would aid in lowering this variability. 
Next, since these data are primarily used to index spawning-stock biomass, the panel suggested 
that sampling eggs would be more beneficial, due to large changes in larval mortality both 
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temporally and spatially. Also, possible vessel effects were discussed, and proper recording of 
gear changes and changes in the spatial coverage of sampling was discussed. Finally, the sorting 
of the plankton samples was discussed, and it was suggested by the panel that a more molecular-
based approach should be pursued.  
 
Reef Fish Surveys 
After more than a decade of development, the reef fish survey design currently in place was 
instituted in 1992 using video/trap technology. The survey has been conducted most years since 
the initial cruise. Video gear has continued to be refined over the time frame, with stereoscopic 
imaging (for length/mass measures) the next step. The survey could be considerably improved by 
increasing the sampling frame, especially along the Florida shelf. This would require more 
detailed bathymetric information on reef structure than is currently available. This video 
technology is also being used at the Madison – Swanson marine management reserve. After 
several years of development testing appropriate methods, a randomized bandit reel survey at oil 
platforms was started in 2007. 

 
Figure 2. Areas sampled during the reef fish video survey. 
 
Several issues concerning reef fish video surveys were discussed. Almost all indices of 
abundance developed from these data have large CVs, which could result from insufficient 
sample sizes. The panel suggested that quadrupling current sample sizes would aid in lowering 
this variability. However, to accomplish this, the panel suggested that more habitat mapping 
would be needed, especially in those areas currently not mapped (Figure). Next, for many years 
the tail ends of the survey were missing due to time constraints or mechanical failures. Also, 
there are years where there were no data collected due to lack of funding. Finally, this survey is 
still has a relatively short times series and covers only shelf-edge banks. However, it is very 
valuable in that this survey constitutes one of the most efficient and non-destructive ways to 
sample this environment. 
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Trawl Surveys 
Ground Fish Trawl Surveys 
After several decades of development, the fall ground fish (aka “bottom fish”) survey using 
started in 1972 and the summer component of the ground fish survey started in 1981, with the 
same format as developed in the fall. A 40’ shrimp otter trawl is the gear used for these surveys. 
It should be noted that many fishery exploratory cruises were conducted on a variety of vessels 
and a multitude of seasons during the early years (1950 – 1971). Apparent change in resource 
abundance during this period was one driving force for instituting the statistically based 
sampling design for resource abundance monitoring. However, information from these early 
period surveys can prove to be highly valuable in stock assessments and data from these surveys 
need to be incorporated into the database, to the degree possible. 

 
 
Figure 3. Fall groundfish effort through 2007. Each cross represents a trawl station. 
 

 
Figure 4. Summer groundfish effort through 2007. Each cross represents a trawl station. 
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Small Pelagics Survey 
After a decade of development, the small pelagics survey began in 1988, and has been conducted 
intermittently since then due to vessel access limitations. The survey uses a 90’ high opening 
bottom trawl (HOBT) for data collection. While the time-series is relatively short (compared to 
groundfish), the species composition and age structure sampled provides valuable information 
for stock assessment of Federally managed species.  

 
Figure 5. Small pelagics effort through 2007. Each circle represents a trawl station. Black circles represent early 
surveys (i.e. before 1997), and the gray circle represent recent surveys (after 2001). 
 
Several issues concerning the groundfish and small pelagics surveys were discussed. Almost all 
indices of abundance developed from these data have large CVs, which could result from 
insufficient sample sizes. The panel suggested that quadrupling current sample sizes would aid in 
lowering this variability. Recently (i.e. FY2009), changes were made to the groundfish sampling 
protocol that allowed in increase in the number of trawling stations sampled per survey without 
changing the gear or the focus of the survey. Also, the panel discussed the changes in the small 
pelagics survey design that occurred during the hiatus in the survey during the late 1990s, and 
how this could affect development of abundance indices. Finally, the panel discussed how trawls 
collect fish during the surveys. This included discussions of how small pelagics may be primarily 
caught on ascent, of how the amount of biomass caught on long tows may change the way the 
gear fishes, and of how trawl cables may stretch and need to be monitored and documented.   
 
Longline Surveys 
Longline surveys were begun in 1995 with the bottom longline survey. A standard bottom 
longline gear is used during the data collection: one-mile main line with 100 hooks, soaked for 
one hour. There was a change from J-type hooks to circle-type hooks, which took place between 
1998 and 2001. These surveys have been used for HMS (particularly shark) stock assessments 
and have proved invaluable to these assessments. A pelagic longline survey was conducted in 
2004 -2006, and a regional inshore bottom longline program was conducted in the last two years.  



 12 

  
Figure 6. Bottom longline effort through 2007. 
 

 
Figure 7. Pelagic longline effort (black crosses) from 2004 – 2006. 
 
The bottom longline surveys are anticipated to be critical for reef fish assessments, but as the 
time-series remained short as of the most recent assessments for these species, the information 
has not yet been used in the reef fish stock assessments. The Panel recommends increasing 
sampling intensity and expansion (further inshore and further into Atlantic waters) of the bottom 
longline survey. Collaboration with the NEFSC Apex Predator Program which conducts shark 
longline surveys may be warranted. Almost all indices of abundance developed from these data 
have large CVs, which could result from insufficient sample sizes. The panel suggested that 
quadrupling current sample sizes would aid in lowering this variability. The panel recommends a 
model assisted survey and the use of satellite imagery to aid during future pelagic longline 
surveys. 
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2.2. Overview of small scale fishery independent surveys – Camilla McCandless and 
John K. Carlson 
Fishery independent surveys are primarily developed to monitor temporal and spatial changes in 
the relative or absolute abundance of a target fish population in a manner that is not subject to the 
biases inherent in data from commercial or recreational fisheries (NRC 1998).  Small scale 
fishery independent surveys allow for focus on a particular life stage and/or area of a target 
species overall distribution.  These surveys often use smaller vessels and reduced gear volume in 
comparison to large scale surveys.  This allows for sampling in shallow areas not accessible to 
large scale survey vessels.  In addition, visual surveys can be conducted in areas that are 
protected from survey gear such as reef environments.   
 
Access to shallower and protected environments is key for monitoring many juvenile populations 
of fish and therefore necessary to calculate recruitment indices for these species.  For all life 
stages of a fish population being targeted, the ideal survey should maintain the same gear, area of 
coverage, and time period throughout the time series of the survey.  It is generally assumed that 
keeping these factors constant over time allows for year-to-year changes in measured abundance 
to be directly related to true or relative changes in population size, given consistency in the area 
of coverage and time period that the targeted component of the population is available to the 
survey (NRC 1998).   
 
Fishery independent surveys are usually standardized to the fullest extent possible.  Stratified 
random designs are the most common designs used for fishery independent surveys (Gunderson 
1993).  These surveys often include stratification by depth and area but may also reflect 
management boundaries.  Another type of survey design used in fishery independent surveys is 
the fixed station or fixed transect design, which maintains the same stations or transects each 
year.  
 
Gear commonly used in small scale fishery independent surveys include trawls, longlines, 
gillnets, seines, traps, and hook and line as well as the use of visual surveys.  Target species for 
some recent and/or ongoing small scale surveys include sharks (Carlson and Brusher 1999, 
McCandless 2005), gag grouper (Koenig and Coleman 1998), red porgy (Devries 2006) and 
multiple reef fish (Gomez 2000, Tobias et al 2002 and Mateo 2002).  These surveys vary in 
geographic coverage from only one or a few small embayments to the majority of coastal waters 
of a single state. 
 
One common use of fishery independent survey data is to monitor fish populations not targeted 
by the survey because of lack of data on a particular species or a species life stage.  In addition, 
some surveys monitor multiple species and the survey design cannot be optimal for all species 
surveyed.  Lack of consistent funding for surveys can also cause problems leading to variable 
effort and discontinuous or short time series.  Other issues encountered in using small scale 
fishery independent data for both targeted and non targeted species monitoring is accounting for 
gear changes, inadequate spatial or temporal coverage, high proportions of zero catch sets, gear 
selectivity, and uncontrollable environmental factors.  The majority of these issues can be dealt 
with by using a general linear model (GLM) to reduce the variance in catch per unit effort 
(CPUE) data caused by these factors, producing indices much more suitable for use in stock 
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assessments.  Factors generally found to influence catch rates are area, season, depth and 
temperature (correlation).    
 
One of the major difficulties in modeling catch rates for fishery independent surveys is the high 
incidence of zeroes in the data.  Excess zeroes can make traditional approaches to modeling 
inappropriate, particularly because such models fail to deal with the high overdispersion that can 
be present.  A more direct way to deal with large numbers of zeroes is to model them explicitly, 
where the presence or absence of a given phenomenon is specified through a Bernoulli 
distribution and the number of occurrences - given its presence - is specified through some other 
distributional form – often as a Poisson (Hall 2000), binomial (MacKenzie et al. 2006), or 
negative binomial (Minami et al. 2007) model. Such models are often called “zero-inflated" or 
“mixture" models, highlighting the amalgamation of two distinct distributions to distinguish 
between the presence/absence and count processes that may generate a set of observed data.   
 
One of the more common approaches utilized in the SEDAR process for highly skewed survey 
data containing a large portion of zeros is based on a delta-lognormal model and is a two-step 
approach that models the zero catch separately from the positive catch.  This method was 
originally proposed by Lo et al. (1992) for use in analyzing fish spotter data for northern 
anchovy, Engraulis mordax, from the southern California purse-seine fishery.  The Lo et al. 
method for standardizing data can correct the bias that may be introduced into log-normal error 
models when a significant number of zero catches in the data may cause zero catches with low 
effort to appear higher.  An example of small scale fishery independent data modeled using the 
Lo et al. method is included for the NMFS survey of juvenile sandbar sharks in Delaware Bay 
(Table 1, taken from McCandless 2005).  By using the Lo et al. method to model the data from 
this survey it provides a reduction in variance associated with region, month and depth in the 
CPUE data in addition to limiting the effects of the abundant zero catches in this dataset.  In this 
example, standardization of the data explains between 10 and 20% of the deviance between the 
null and the final models with the spatial factor, region, explaining the majority of the deviance 
(Table 1).  All diagnostic plots met assumptions in this example, and supported an acceptable fit 
to the selected model.  However, catch rate indices developed for juvenile blacknose shark using 
the delta-lognormal approach resulted in a poor fit and the resulting model was not utilized 
(Carlson and Bethea 2007).   Thus, the necessity of alternate distributions needs to be explored 
more frequently when modeling fishery independent data.   
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Table 1.  Results of the stepwise procedure for development of the catch rate model for juvenile age 1+ sandbar sharks captured by longline 
in Delaware Bay.  %DIF is the percent difference in deviance/DF between each model and the null model.  Delta% is the difference in  
deviance/DF between the newly included factor and the previous entered factor in the model.  L is the log likelihood. 
         
PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION      
FACTOR DF DEVIANCE DEVIANCE/DF %DIFF DELTA% L CHISQ PR>CHI 
NULL 279 384.4973 1.3781      
REGION 271 318.0197 1.1735 14.8465 14.8465 -159.0099 66.48 <.0001 
YEAR 275 373.5627 1.3584 1.4295  -186.7813 10.93 0.0273 
MONTH 278 379.7936 1.3662 0.8635  -189.8968 4.70 0.0301 
DEPTH 246 381.0803 1.3807 -0.1887  -190.5401 3.42 0.3317 
         
REGION +         
YEAR 267 303.8540 1.1380 17.4225 2.5760 -151.9270 14.17 0.0068 
MONTH 270 311.9419 1.1553 16.1672  -155.9710 6.08 0.0137 
DEPTH 268 310.1205 1.1572 16.0293  -155.0603 7.90 0.0481 
         
REGION + YEAR +         
MONTH 266 297.4271 1.1181 18.8666 1.4440 -148.7135 6.43 0.0112 
DEPTH 264 295.4705 1.1192 18.7867  -147.7352 8.38 0.0387 
         
REGION + YEAR + MONTH +         
DEPTH 263 288.8211 1.0982 20.3106 1.4440 -144.4106 8.61 0.0350 
         
FINAL MODEL: REGION + YEAR + MONTH + DEPTH       
         
Akaike's information criterion -656.9        
         
Schwartz's Bayesian criterion -658.7        
         
(-2) Res Log likelihood 1311.8        
         
  Type 3 Test of Fixed Effects      
Significance (Pr>Chi) of Type 3 REGION YEAR MONTH DEPTH    
test of fixed effects for each factor <.0001 0.0098 0.0132 0.0485    
DF  8 4 1 3    
CHI SQUARE  53.62 13.32 6.14 7.88    
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Table 1. continued         
         
POSITIVE CATCHES-POISSON ERROR DISTRIBUTION       
FACTOR DF DEVIANCE DEVIANCE/DF %DIFF DELTA% L CHISQ PR>CHI 

NULL 155 1051.4106 6.7833      
REGION 147 961.8941 6.5435 3.5352 3.5352 1611.1794 89.52 <.0001 
MONTH 154 1017.9457 6.6100 2.5548  1583.1536 33.46 <.0001 
YEAR 151 1005.4245 6.6584 1.8413  1589.4142 45.99 <.0001 
DEPTH 152 1029.8094 6.7751 0.1209  1577.2218 21.60 <.0001 
         
REGION +         
MONTH 146 919.3252 6.2967 7.1735 3.6383 1632.4639 42.57 <.0001 
YEAR 143 915.6459 6.4031 5.6049  1634.3035 46.25 <.0001 
DEPTH 144 935.4449 6.4961 4.2339  1624.4040 26.45 <.0001 
         
REGION + MONTH +         
YEAR 142 867.3226 6.1079 9.9568 2.7833 1658.4652 52.00 <.0001 
DEPTH 143 895.5579 6.2626 7.6762  1644.3475 23.77 <.0001 
         
REGION + MONTH + YEAR +         
DEPTH 139 840.1780 6.0444 10.8929 0.9361 1672.0375 27.14 <.0001 
         
FINAL MODEL: REGION + MONTH + YEAR       
         
Akaike's information criterion -213.3        
         
Schwartz's Bayesian criterion -214.8        
         
(-2) Res Log likelihood 424.7        
         
  Type 3 Test of Fixed Effects      
Significance (Pr>Chi) of Type 3 REGION MONTH YEAR     
test of fixed effects for each factor 0.2120 0.0103 0.1392     
DF  8 1 4     
CHI SQUARE  10.82 6.58 6.94     
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2.3. Discussion and Determination of Main Issues of Fishery Independent Surveys 
 
Several issues were discussed concerning fishery-independent indices. One of the most discussed 
topics was of coefficients of variation (CVs).  Theoretical CVs and GLM estimated CVs as a 
function of the number of samples for selected species and surveys are shown in Figure 1, and 
indicate the need for an increase in sampling effort with all surveys. The theoretical and GLM 
estimates may differ in any particular year owing to the unbalanced sampling designs used for 
the various surveys.  

 
Figure 1. Theoretical CVs (lines) and GLM estimated CVs (points) as a function of the number of samples for 
selected species and surveys.  
 
Many other topics, related to fishery independent indices, were discussed and are outlined below. 
 
Large scale fishery independent surveys: Issues and Recommendations 

• There may be vessel effects and paired samples may be needed. 
• Need yearly maps of CPUE and sampling effort in submitted document. 
• Amount of the spatial distribution of species covered in survey needs to at least be 

roughly estimate documented in contributed paper. 
• When the SEDAR Indices Working Group has many options (i.e. many possible indices 

to choose from), we should look at length of time series to help pare down. 
• More fishery independent indices in the U.S. South Atlantic and Gulf of Mexico are 

needed, and there needs to be enhancements in current surveys or new surveys created. 
 
Small scale fishery independent surveys: Issues and Recommendations 

• Issues 
— gear changes 
— area coverage 
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— temporal coverage 
— selectivity 
— high proportion of zeros 
— uncontrollable environmental factors 
— missing years 
— short time series 
— variable effort 
— conflicting trends 

• Recommendations 
— There is a need for GLM standardization with most datasets. 
— Environmental factors need to be considered. 
— Researchers must be careful not to “go fishing” or include all factors just because 

they are recorded. 
— Researchers need to be careful of inaccurate correlations and 

overparameterization. 
— Some environmental factors need to be left in as year effects because want to see 

these decreases in the population for less mobile populations. This is not a 
problem for mobile or HMS populations. 

— Researchers need to consider type of error distribution for the model – lognormal, 
delta lognormal, Poisson, negative binomial, or zero-inflated distributions. 

— For conflicting trends, researchers need to look at reasons why the trends may 
conflict within sampling design. Often localized surveys have differing trends 
than those of larger-scaled surveys (e.g. red tides/high rainfall). Researchers need 
to look at the big picture to assess how index trends correspond. 
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3. Fishery Dependent Indices 

3.1. Fisheries dependent commercial data and its use in constructing indices of 
abundance – Kevin McCarthy 
For many species in the US south Atlantic, Gulf of Mexico, and Caribbean, fisheries independent 
data sets useful for the construction of indices of abundance may be few in number, of short time 
series, of limited spatial extent, or lacking altogether.  Fisheries dependent data, therefore, are 
frequently required for stock assessments.  A brief review of many of the commercial data sets 
and general characteristics of fisheries dependent commercial data, including advantages, 
disadvantages, known issues and possible solutions, is presented below.  This review also 
highlights areas of concern that have been addressed repeatedly during numerous SEDARs. 
 
Available Datasets 
 Two broad categories of fisheries dependent commercial data are available: data 
collected by trained observers or dockside interviewers and self-reported data.  While not meant 
to be a comprehensive accounting, many of the data sets listed below have consistently used 
during SEDAR or ICCAT assessments.  
Observer/interviewer data 
 Trip Interview Program (TIP) – dockside interviews 
 Pelagic longline – observers 
 Shark bottom longline (Gulf of Mexico and US south Atlantic) – observers 
 Shark gillnet – observers 
 Gulf of Mexico reef fish – observers 
 Shrimp observer program – observers 
Self-reported data 
 Trip ticket (programs run by individual states) 
 Coastal logbook (trip based form required of all vessels with Federal permits) 
 Pelagic logbook (required of all US flagged vessels with Highly Migratory Species 

permits) 
 Puerto Rico sales tickets 
 US Virgin Islands landings reports 
 Golden Crab logbook 
 Wreckfish logbook 
 Gulf shrimp statistics 
 South Atlantic shrimp statistics 
 
 Data collected by observers or samplers are usually more detailed than self-reported data.  
Accurate species identification may be assumed for observer/sampler collected data.  Such data 
sets will often include size information of the catch or landings.  Observers collected information 
on the total catch for a trip or set, unlike most self-reported or interview data that are usually 
limited to landings information.  Observer data provides fine scale spatial information, detailed 
effort information, detailed gear configuration information, as well as, additional details of 
fishing behavior and environmental conditions.  Observer data also provides discard information 
when total catch is recorded. 
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Self-reported data will be limited in reliability by the honesty and accuracy of the 
reporting fishers.  While completely dishonest reporting may be rare and limited to a few 
individuals, it is difficult to quantify.  More problematic is inaccurate reporting, which may be 
more widespread and is also difficult to quantify.  Species misidentification has occurred, e.g. 
systematic misreporting of gag and black grouper in the northern Gulf of Mexico because the 
local common name for gag grouper is black grouper.  Self-reported data is usually less detailed 
than is observer data, often because of the limitations of the reporting forms.  For example, in the 
US Virgin Islands data are reported by species group rather than by species.  In many cases, 
spatial information is reported as occurring within large, predefined areas and not to the fine 
scale available in observer data.  Self-reported data typically includes landings and not total 
catch.  There are some exceptions, e.g. those vessels the voluntarily report discards in addition to 
landings and effort to the pelagic logbook program.  Such discard information is limited, 
however, to voluntary reporting in the pelagic logbook program and to a 20% random selection 
of vessels reporting to the coastal logbook program.  Collection of accurate effort information 
has been problematic for some self-reported data collection programs.  The problem has been 
gear specific (e.g. traps, bottom longlines) in the coastal logbook program, but has been more 
widespread in the trip ticket, Puerto Rico, and US Virgin Islands data collection programs.  In 
those cases, hours fished and the amount of gear fished (e.g. number of lines and hooks) are 
often unknown or unreported.  Effort can only be defined as days at sea or per trip.  In most 
cases, self-reported data are trip based, however in the pelagic logbook, data are set based.  
Finally, size information of individual animals in the landings is usually lacking in the self-
reported data.  The pelagic logbook program, however, does have size information of individuals 
for some species. 
 The time series for most of the fishery dependent commercial data sets listed above 
include more than 10 years of data (Figure 1).  Often the initial years of data collection involved 
standardizing data collection procedures and changes in the universe of sampled vessels.  For 
example the coastal logbook program began in the Gulf of Mexico in 1990, but, beginning in 
1992 vessels fishing in the US south Atlantic were required to report.  In addition, prior to 1993 
only a 20% subsample of Florida vessels were required to report to the coastal logbook program, 
however all vessels with Federal permits were required to report beginning in 1993.  The useful 
time series for some data sets may be less than the total time series contained within the data set. 
 The spatial range of data included in fishery dependent commercial data sets is usually 
extensive (Figure 2).  Spatial resolution may be coarse in the case of self-reported data, however, 
pelagic logbook data are an exception to this generalization.  Observer data are usually of finer 
spatial resolution.  Additional spatial limitations are often associated with particular data sets.  
Most of the data sets listed above contain data from fishing trips in Federal waters, although 
individual states may have commercial data available from state waters, e.g. trip ticket data.  
Similarly, some gears are spatially restricted.  Longlines in the eastern Gulf of Mexico are 
restricted to depths greater than 20 fathoms and in the western Gulf of Mexico a restriction limits 
longlines to depths greater than 50 fathoms.  Fish traps have been banned from the Gulf of 
Mexico entirely.  The pelagic logbook and observer data sets include data from all US flagged 
vessels landing Highly Migratory Species regardless of where the fishing occurred.  All fisheries 
dependent data collection will be affected by closed areas, both seasonal and year-round 
closures.  Some of the data sets (trip ticket and Puerto Rico sales ticket) do not record area fished 
information, but record the port and county landed.  Depth fished is available in most of the data 
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sets listed at least for a portion of the time series, however, depth information is not available in 
the trip ticket data or the US Virgin Islands landings reports. 
 Fishery dependent commercial data may contain catch and effort information from a 
variety of fishing gears, all of which may be used to prosecute the same fishery.  Those different 
fishing gears may harvest animals from different parts of the species range, e.g. bottom longlines 
in the Gulf of Mexico are limited to particular depths and may result in fishing farther offshore 
than vessels using other gears.  Multiple gear specific indices of abundance may be constructed 
from those commercial data sets.  In some cases, however, data are reported for only one or a 
few fishing gears, e.g. the pelagic longline observer data set. 
 Effort measures vary widely among commercial data sets.  Hook hour fished may usually 
be determined from the available data in observer/interviewer and logbook data sets.  Equally 
fine scale effort measures may be obtained for other gears where hook hour is not appropriate, 
e.g. gillnets.  Some data sets, however, either do not record or are frequently missing data 
necessary fine scale effort measures.  Trip ticket, Puerto Rico, and US Virgin Islands effort 
measures are often limited to days at sea or trip.   
 Many types of commercial fishing gears are likely poor methods of sampling the smallest 
individuals in a population.  The size composition of the population will, therefore, not be 
reflected fisheries dependent data sets even in cases where total catch is known.  Landings data 
will not include any size information of sub-legal sized individuals.  Size of individuals in the 
catch/landings is typically not available in self-reported data.  The size composition of the catch 
is, obviously, unknown other than the assumption that all individuals are of legal size.  Even the 
number of individuals is unknown for most self-reported logbook data sets; landings are 
typically reported in weight.  The pelagic logbook is again an exception.  Individual weight of 
some species (e.g. swordfish, some tunas) is reported to the pelagic logbook.  Unlike most self-
reported data, observer/interviewer collected data does include size composition of the catch or 
landings. 
 Data availability for characterizing gears, vessels, areas fished, fishing behavior, etc. is 
highly variable among data sets.  Observer collected data sets usually contain more detailed 
information than do self-reported data sets.  The level of detail in self-reported data sets varies 
from no information (e.g. trip ticket data sets have no information regarding gear configuration) 
to the highly detailed information available in the pelagic logbook data set which includes hook 
size, type, and offset data, for example.  Vessel information is frequently not available in self-
reported data, but may be obtained from other sources such as permit records.  Those records 
often contain vessel length and horsepower and may contain additional information such has 
hold capacity.  Frequently, however, permit records lack vessel information.  Information about 
the vessel captain’s years of fishing experience for example, is generally not available in self-
reported data and may not be directly available in any data set. 
 
Prior SEDAR commercial data issues 
 Species misidentification/misreporting was recognized as a problem at the SEDAR 10 
data workshop (Chih and Turner, SEDAR10-DW24).  Gag grouper was frequently misreported 
as black grouper in the northern Gulf of Mexico primarily because black grouper was the local 
common name for gag grouper.  The problem was addressed by determining area specific 
gag:black grouper landings ratios from TIP data.  The observed TIP ratios were then applied to 
the combined gag and black grouper landings for each area to obtain more accurate landings 
totals.  For CPUE calculations, the TIP ratio was applied to landings reported for individual trips. 
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 A fundamental issue for index of abundance utility in stock assessments is the 
assumption that CPUE is correlated with abundance.  This issue is especially problematic for 
fisheries dependent commercial indices given that knowledgeable fishers may maintain high 
CPUE even during declining stock size.  One component of effort, search time, is usually not 
measured accurately, if at all.  Total effort is, therefore, not included in most indices of 
abundance constructed using commercial fisheries data, rather effort spent actually fishing is 
included in index construction.  An apparent lack of correlation between CPUE and abundance 
was a significant problem during the SEDAR 14 queen conch assessment.  Conch yearly mean 
CPUE remained relatively constant over the period 1992-2006, however, landings increased 
approximately eight-fold during the same period.  A combination of conch life history 
characteristics, trip limit regulations, and the unavailability of fine scale effort data including 
search time contributed to the construction of an index of abundance that was not correlated with 
conch stock abundance (Diaz, SEDAR14-AW-04).  No assessment of queen conch was possible 
using a production model dependent upon indices of abundance and fisheries independent 
methods were recommended for future queen conch assessments. 
 Changing catchability may also affect indices of abundance constructed from fisheries 
dependent commercial data.  Improvements in technology (e.g. GPS), gear changes (e.g. hook 
design), environmental conditions (e.g. red tides), and fisher experience will all potentially affect 
CPUE.  Observer data sets are most likely to include some data relevant to a few potential causes 
of changing catchability.  Other potential sources of changing catchability, such as fisher 
experience, are usually not recorded.  Self-reported data frequently do not have the detail to 
examine possible sources of changing catchability.  Many potential sources of changes in 
catchability are not measured at all in the available commercial data sets.  As noted in the queen 
conch example above, a further limitation of fisheries dependent data is that search time, likely 
affected by technology and fisher experience, is frequently not recorded. 
 Among the more difficult tasks associated with constructing indices of abundance is 
identifying fishing effort that had targeted, but not caught, the species of interest.  This issue is 
critical to the construction of indices of abundance.  Targeting information may be available in 
observer collected data sets and, presumably, in species specific self-reported logbook data such 
as the golden crab logbook data set.  Other self-reported data sets, including those that are 
frequently used in the SEDAR process, do not include targeting information, therefore, targeting 
must be determined by other methods.  Most frequently in recent SEDARs, targeted effort has 
been identified using the Stephens and MacCall (2004) method.  An alternative approach to 
identify targeted effort involves determining particular gear configurations that were used to 
catch the species of interest.  This method is limited by the detail of the available data.  More 
detailed data will potentially allow for identifying gear configurations specific to the species of 
interest, while less detailed information will likely result in identifying gear configurations that 
may be used when targeting a variety of species.  Observer data has both the most detailed data 
and is most likely to have targeting information.  Self-reported data usually has the least detailed 
data and has no specific targeting information.  
 Regulatory measures may directly affect CPUE and must be accounted for when 
construction indices of abundance from fisheries dependent data.  The regulatory measures of 
concern include: regulatory geographic boundaries, minimum size limits, fishery closures, and 
bag/trip limits.  Among species assessed under the SEDAR process, king mackerel was perhaps 
the species with the most numerous regulatory changes and will be used as an example of how 
regulatory measures may be accommodated when constructing indices of abundance. 
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Geographic boundaries may define regions with differing fishery regulations and those 
boundaries may have changed over time, may have been temporary or permanent, or may have 
changed seasonally.  In the case of king mackerel, regulatory boundaries changed over time (the 
eastern Gulf of Mexico was subdivided into two zones in 2000) and also changed seasonally 
(regulatory jurisdiction of most of the east coast of Florida and Monroe County changes 
seasonally).  If the area fished was known, the regulations appropriate to particular fishing trips 
will also be known.  Some data sets contain only county or port where the catch was landed and 
identifying regulations applicable for some trips may be problematic. 

Minimum size limits have been in place for most, if not all, species assessed under the 
SEDAR process.  In the case of king mackerel, three minimum size limits had been implemented 
over a nine year period.  Specific dates of implementation differed among regulatory region.  
Several approaches have been used to address changes in minimum size of landed fish when 
constructing indices of abundance.  Separate indices may be constructed for the periods before 
and after change in a minimum size limit.  Such an approach may result in indices with short 
time series.  Multiple size limit changes, as with king mackerel, will result in the construction of 
multiple short time series indices.  A second approach to the minimum size limit issue uses 
observer or TIP data to determine if size composition of landed animals changed after the 
implementation of or change to a size limit.  If the size of landed individuals did not change after 
the size limit began, it may be assumed that the size limit had no affect on fishing behavior and 
indices need not be split at the time the size limit became effective.  An “informed judgment” 
approach, using fisher observation and knowledge of the length composition of landings before 
and after size limit implementation, is another possible method for determining whether indices 
of abundance should be split before and after size limit regulations were imposed.  Finally, some 
population models (e.g. Stock Synthesis 3) can account for changes in minimum size and the 
SEDAR 16 king mackerel data workshop recommended allowing the population model to 
address the minimum size issue. 

 The third regulatory measure, fishery closures, includes regular seasonal closures and 
closures due to quota limits.  Regional closures are somewhat similar and may be addressed in a 
similar fashion.  This type of regulation has been common among SEDAR assessed species.  In 
the western Gulf of Mexico, the king mackerel fishery was closed on 24 separate occasions 
between 1983 and 2006.  In the US south Atlantic, the king mackerel fishery was closed only 
twice during that period.  In some regions and years, the king mackerel fishery was closed twice 
in a single year.  The approach used in the construction of fisheries dependent commercial 
indices of abundance has been to exclude data from periods of fishery closures.  So doing 
ensures that yearly mean CPUE was not lowered by erroneously including effort which, due to 
the closure, resulted in no landings. 

A trip limit is the final regulatory measure which has presented problems during the 
construction of fisheries dependent indices of abundance.  This regulation becomes a matter of 
concern when using data from self-reported data sets that are trip based.  If vessels reach the trip 
or bag limit and then target other species on the same trip, effort cannot be apportioned 
unambiguously due to the nature of reporting effort in those data sets.  Indices of abundance 
constructed from those data will be affected.  King mackerel trip limits varied from 25 fish to 
3,500 pounds of fish depending upon the management region and date of the trip.  Within single 
regions, trip limits varied both among and within years.  That complicated array of differing trip 
limits made index construction more difficult than usual.  Since 1995, all regulatory regions had 



 25 

king mackerel trip limits in effect; therefore, regions with trip limits could not simply be 
excluded from analyses.   

A lengthy effort was made to determine the extent to which trip limits may have affected 
king mackerel fishing effort (McCarthy et. al, SEDAR16-AW-02).  Similar data exploration 
should be repeated for other species before constructing fisheries dependent indices if trip limits 
were in place.  Trip limits in effect for the date and region in which a trip occurred were 
identified.  All trips reporting king mackerel landings were classified by the appropriate trip limit 
and by the percentage of king mackerel to total landings: <25% king mackerel, 25-50%, 50-75%, 
and >75%.  The landings categories served as an approximation of king mackerel targeting.  
Potential trip limit effects were examined for each trip limit – targeting category. 

For each trip limit – targeting category combination, scatter plots of trip specific landings 
were plotted by year to provide an overview of the range of landings among trips.  Frequency 
histograms of trips by pounds landed were constructed to determine the frequency of trips that 
reported reaching or exceeding the trip limit.  Plots of the distribution of trips across reported 
landings for the south Atlantic under a 3,500 pound trip limit are provided in Figure 3.  The 
south Atlantic trip limit appeared to have had no effect on fishing effort.  Vessels rarely if ever 
reached or exceeded the trip limit, regardless of the targeting category of the trip.  Figure 4 
contains plots of trip specific landings for the Florida Keys under a 500 pound trip limit.  A large 
number of the >75% king mackerel landings trips reached or exceeded the trip limit.  Trips 
classified in the other three targeting categories rarely reached the trip limit and the trip limit 
likely did not affect fishing effort for those trips.  Including those data, therefore, will not 
adversely affect index construction.  Those trips that fell within the >75% targeting category 
were assumed to catch king mackerel until the trip limit was reached and then returned to port 
with little or no additional fishing effort directed at other species.  The recommendation 
following the examination of those data was that all trips in the Keys zone under a 500 pound 
trip limit may be included for index construction. 

 
If trips reporting primarily king mackerel landings (>75%) reach or exceed the trip limit, 

a meaningful index may still be constructed provided hours fished was reported, as in the Keys 
example above. If effort is measured only by day or days, as is sometimes the case in the trip 
ticket data, then indices so constructed will be biased when trip limits are reached.  For trips that 
report less than 75% king mackerel in the landings and also reach the trip limit, appropriately 
determining king mackerel effort is problematic with the available commercial data. Total hours 
fished is reported to the coastal logbook program (hours fished or days at sea are reported on trip 
tickets) and cannot be divided among the species landed. If, however, trips with landings 
containing less than 75% king mackerel do not reach the trip limit (as in the above examples) 
then those trips are presumed to have had a consistent effort across species.  Data from particular 
targeting categories in which effort may have been affected by trip limits could be excluded from 
index construction.  Indices could be constructed using data from trips in those targeting 
categories in which effort was not affected by trip limits. 
 
Elements for SEDAR documents   

Suggested elements for any SEDAR document describing the construction of a fisheries 
dependent commercial index include the following: 

 
Identify the data set 
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Temporal and spatial range of the data 
Identify the measure of effort (hook hours, set, day at sea, trip, etc.) 
Describe how targeted trips (sets, trawls, etc.) were identified 
Describe age/size structure of the catch, if know 
Identify whether data landings or total catch 
Include a table of factors/variable considered in the analysis (e.g. season, hook size, 
vessel length, etc.) 
Include final model(s) used in the analysis 
Describe methods used to address fishing regulations 
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4. Analytical Approaches and Issues 

4.1. Spatial considerations for catch per unit effort standardization – John Walter 
 
Incorporating spatial considerations into CPUE standardization presents an imperative to provide 
spatially-explicit indicators of population status as well as a challenge to avoid the pitfalls of 
improperly accounting for spatial changes in either the fishery or the resource (Walters 2003). 
The first task represents a higher order task necessary for spatial management that is more 
important for Tier II or III stock assessments under the Stock Assessment Improvement Panel 
hierarchy of assessment needs (NMFS 2001). The second task represents probably the greatest 
present challenge for SEDAR assessments because it directly affects the defensibility of current 
assessments. In this document we address the first task briefly but refer the reader to other 
references for greater details regarding obtaining spatially-explicit indices. We treat the second 
task in more detail by defining the problems of improperly accounting for space in CPUE 
standardization and providing a series of recommendations to minimize the potential for these 
problems to occur in SEDAR assessments. Concurrent with this meeting, the Interamerican 
Tropical Tuna Commission (IATTC) conducted a similar workshop dealing with spatial issues in 
CPUE standardization and the reader is referred to the workshop website for further details 
(http://www.fisheriesstockassessment.com/TikiWiki/tiki-index.php?page=IATTC+October+Stock+Assessment+Methodology+Workshops).  
 
Task I Spatial index development 
 
As stock assessment becomes increasingly spatially-explicit to meet management objectives or 
to account for stock structure, greater spatial definition of both fishery-dependent and 
independent indices will be required. Methods to obtain spatially-explicit indices range from 
simple post-stratification of available data to obtain regional indices to more elaborate spatial 
generalized linear models (GLMs), generalized additive models (GAMs), neural networks to full 
geostatistical models (Venables & Dichmont 2004, Maunder & Punt 2004). For fishery-
independent data collection programs, construction of spatial indices will be rather 
straightforward as this data is generally collected according to a design-based sampling regime. 
For fishery data which lacks a sampling design, often possesses substantial and unknown sets of 
selection biases or lacks spatially-explicit catch and effort data, construction of spatial indices 
will be more difficult and limited to the spatial precision of the data.  
 
For most species assessed by SEDAR, catch and effort data does not exist at the finest scale of 
spatial resolution, i.e., the tow, net haul or line drop location and is aggregated to the coarser 
resolution of shrimp grid, statistical area or county. Vessel monitoring system data, electronic 
logbooks and observer coverage data will likely improve the spatial resolution of catch and effort 
data, vastly increasing the quality and quantity of data for developing spatial indices. 
 
The creation of spatially-explicit indices implies that this structure affects the population and 
should be accounted for within the modeling context. This can be performed either by 
constructing separate population models or by modeling movement or exchange between 
subpopulations (Punt et al. 2000).  Increasing the spatial structure of assessment models will 
require extensive model development to handle this structure as well as data collection and 
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analysis to parameterize spatial biological parameters (growth, mortality, etc), and tagging, 
tracking and stock composition analysis to determine connectivity between subpopulations 
(Sibert et al. 2000, Cadrin et al. 2004). 
  
Task II Properly considering spatial issues in SEDAR assessment: definition of the problem: 
 
Walters (2003) details the problems associated with improperly accounting for changes in the 
spatial extent of the fishery which can produce incorrect CPUE trends and in constructing indices 
based upon the simple ratio estimator of total catch/total effort.  Incorrect CPUE trends can occur 
as hyperdepletion, where the index declines faster than the overall population or hyperinflation, 
where the index remains high while the population declines. Both scenarios are dangerous for 
assessments as CPUE does not reflect population abundance, and both are often a result of 
spatial variation in the fishery. Walters (2003) recommends that analysts define the fishery as a 
series of spatial cells and calculate CPUE as a stratified mean of the spatial cells according 
stratified random sampling (StRS) theory (Cochran 1963). This follows from the 
recommendation of DeLury (1951) that while fishery-dependent data will never be random, it 
may be possible through stratification to create sub-populations that, though not strictly random, 
are reasonably representative to be treated as such. We second this recommendation; however, 
the spatial resolution of much fishery-dependent data presents a limitation for many SEDAR-
assessed species. 
 
The ratio estimator, the StRS estimator and most GLM-based CPUE standardization methods 
assume that catch and effort is essentially random within any spatial cell so that observations are 
independent and identically (iid) distributed. Non-random changes in fishing location within a 
cell, or over the entire area to target areas of high abundance or to avoid undesirable locations 
represents the most common violation of the assumption of iid observations. The violation of the 
iid requirement generally manifests itself as lower variances than if the samples had been 
collected according to a design-based survey. Such variances do not greatly diminish the utility 
of the indices when used in a relative capacity, assuming that the biases are the same from year 
to year.  
 
However, the targeting of specific locations can impart a more problematic bias when different 
locations are fished in different years, and particularly when these changes in fishing location are 
due to sequential depletion of certain areas, avoidance of non-target or bycatch species or other 
factors that are not due to random movement of fish. Certain spatial cells may not be fished in all 
years and CPUE will solely be a function of the fished cells (Walters 2003). This may require 
either back-filling unfished cells with some value representing catch rates if the cells were fished 
or some making assumption that these changes in fishing location have no impact upon the 
abundance (Walters 2003).  
 
Few definitive solutions to the non-random sample selection exist with the current CPUE 
standardization methods. For most SEDAR-assessed species no clear solution to these problems 
exists because so the most prudent solution for analysts is to understand the limitations of 
fishery-dependent CPUE data and to be cautious against the pitfalls of spatial changes in the fish 
or the fishery that may bias CPUE indices.  Rather the workshop participants provide a series of 
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recommendations that can best ward against improperly accounting for spatial variation in the 
fish or the fishery. 
 
Recommendations 
 
1. Tables of sample sizes/percent positive by year and area  
These provide a simple tabular representation of changes in fishing catch, effort and probability 
of success. They are particularly useful for observing imbalanced designs that may produce 
spurious space*time interactions or which may require decisions about backfilling missing 
observations, removing spatial cells from analysis or splitting up spatial regions. These tables 
can be simply constructed in R using either the table() or tapply() functions or with SAS with 
proc freq.  
 
Table 1. Recorded sample sizes in each year for US Pelagic longline logbook data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caribbean
Florida 
East

Gulf of 
Mexico

Mid-Atl. 
Bight NE Coast NE Distant

Sargasso 
Sea

South Atl. 
Bight

1986 76 379 448 239 209 51 2 93
1987 1605 3141 3003 1429 946 760 41 414
1988 2081 3340 2215 1282 957 1464 27 820
1989 1519 4142 2703 2069 1026 1577 186 970
1990 1391 3299 2672 2147 1617 1072 210 1386
1991 1043 2922 3145 2302 1794 1062 232 1152
1992 912 2539 3888 2456 1410 1189 385 1068
1993 1128 1962 3345 2476 1217 1067 606 1630
1994 1414 2108 3333 2821 1027 1007 642 1788
1995 1336 1963 3689 3061 1270 927 1191 1544
1996 1219 1830 4929 1429 1320 688 690 2729
1997 878 2254 5005 1719 1464 728 378 1706
1998 559 1785 3799 1741 1058 619 335 1411
1999 294 2097 4521 1814 757 430 194 1486
2000 420 1982 4432 1545 752 602 118 1325
2001 314 991 4459 1506 1003 332 172 1301
2002 288 934 4461 1283 681 493 206 834
2003 242 898 4425 903 556 534 297 948
2004 352 598 4542 958 547 456 156 1054
2005 201 569 3250 956 421 463 189 722
2006 84 578 2685 1088 456 383 209 760
2007 41 719 3078 1175 361 348 148 983
2008 51 156 285 17 NA NA 44 123
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2. Maps of catch observations for each year   
Maps of individual catch/effort observations, to the finest spatial scale possible should be 
produced for every index for each year to explore for the potential that fishing catch and effort 
may show shifts that might be indicative in serial depletions, different abundance trends in 
different regions in different years or changes in the distribution of the species.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Map of catch rates and effort in US pelagic longline logbook. Shaded colors are effort in log(# of hooks). 
Diamonds represent catch of yellowfin tuna per 1000 hooks. 
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3. Plot the data  
Plots of the nominal data, by factor level combinations, with standardized values, if possible, 
should be produced. These plots are critical to exploring and explaining space-time interactions 
as well as fishery dynamics and should be produced for each index. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. CPUE of yellowfin tuna from US pelagic longline logbook program. 
 
4. Evaluate how representative the index is of population of interest  
This evaluation is likely to be semi-quantitative and can be something as simple as summing up 
the number of spatial cells that the index covers in each year.  
 
 
 
 
 
 
 
 
 
 
Figure 3. Map of shrimp grids showing sample coverage calculation for hypothetical survey covering 50% of the 
grid cells. 
 
5. Test for and model space*time interaction in model standardization.  
 
Significant fixed space*time interactions indicate that the resulting year effect differs in different 
areas and is no longer unique. Figure 2 illustrates a potential space*time interaction where the 
trend in CPUE differs between the Florida East Coast and the Gulf of Mexico. In a situation such 
as this the main effect of year is not the same in all locations. In general, space*time interactions 

10/20 ~ 50%
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are modeled as random factors, usually with SAS Proc Mixed or the SAS glimmix macro. 
Similar mixed effect packages exist in R. Maunder et al (2008, pers comm.) has detailed four 
approaches to dealing with these interactions which the workshop participants also recommend: 
 

a. Explicitly ignore the interaction 
 
Significant space*time random interactions can often occur with unbalanced sampling 
designs and are often observed with very large datasets. In certain cases it may be possible to 
argue that these interactions can be ignored, however this decision should be explicit and the 
interactions tested rather then implicitly ignoring them by not testing the interactions. 
 

b. Average the year effects for each area 
 
Construct a weighted average of the year*area effects. Assuming that each area provides 
some information on the overall trend, and that some weighting method (area, catch, etc) can 
be reasonably applied, then the year*area effects can be weighted to obtain an overall index 
(Punt et al. 2000).  
  

c. Treat the interaction as a random effect 
 
Include year*area interactions as random effects in the standardization model (Cooke 2007). 
This operates upon the assumption that the interaction is a product of random changes in the 
distribution of the fish. This approach is likely to be safer for pelagic resources rather then 
for benthic or structure-oriented fish. The result of including the year*area as a random 
effect is generally wider confidence intervals, however it can have an effect upon the overall 
CPUE trend. Interpretation of the main effect in the presence of random year*area effects 
remains problematic. 
 

d. Model separate populations 
 
If significant interactions do occur and different regions clearly have different trends that are 
likely a result of relatively independent processes, then indices can be constructed separately. 
If the processes are completely independent, then separate models can be constructed, 
however if linkages exist between regions it will be necessary to parameterize the exchange 
between regions.  

 
Concluding remarks 
 
This document is meant to serve primarily as a set of guidelines for the development and analysis 
of CPUE indices. Most recommendations are also formally included in the CPUE report card.  
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4.2. Methods for combining multiple indices into one – Paul Conn 
 
P. Conn presented methods for combining multiple indices via Bayesian hierarchical analysis, 
with the goal of estimating a single time series of relative abundance. 
In order to do so, he assumed that each index was attempting to measure the same quantity 
(relative abundance), but was subject to process and sampling errors.  Although sampling errors 
can typically be approximated (as outputs of delta-GLM analyses or from knowledge of the 
sampling design), it is often the case that indices exhibit additional variation that cannot be 
explained by sampling errors alone.  With one index alone, it is impossible to infer the 
appropriate level of process error.  However, with multiple indices, there is some level of 
replication, and process errors become estimable – at least when conditioned on a particular error 
structure.   
 
The particular approach that Conn advocated at the workshop involved gradient matching (i.e., 
modeling relative changes in abundance rather than absolute values).  In this manner, one can 
ignore the possible differences in scale of each of the indices, an advantage that becomes 
apparent when trying to combine indices that don’t all overlap at a single time point.  These 
methods are presented in a SEDAR working paper (SEDAR17-AW06, available online at 
http://www.sefsc.noaa.gov/sedar) so are not reproduced here.   
 
The presentation and subsequent discussion emphasized that the method appears promising, in 
that one time series can be generated from multiple, conflicting indices.  On the other hand, 
consideration should be given to making sure selectivities are similar for the indices being 
combined, and that each index is truly reflective of abundance.  Workshop participants also felt 
that extensive simulation testing was necessary to ensure that the method was producing 
reasonable results in typical fisheries scenarios.  
 
P. Conn suggests that any prospective users of this approach contact him first.  In particular, he 
has recently implemented some improvements to methods that do not appear in the SEDAR 
working paper.  These improvements, together with simulation studies and an application to 
Spanish mackerel, are included in a manuscript that has been submitted for publication. 
 
 
 
 
 

http://www.sefsc.noaa.gov/sedar
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4.3. Notes on the Use of the Multispecies Regression in Subsetting Effort Data – 
Andi Stephens 
 
Many statistical methods can be straightforward to use, but difficult to interpret.   I present here 
some rules of thumb for using a multispecies logistic regression to predict habitat (Stephens and 
MacCall, 2004) with the goal of subsetting effort data.   
 
It is very important to be able to relate the results of the method to a biological situation.  First, 
the physical habitat must be one that lends itself to this type of analysis.  The system should be 
one in which different species adhere to different habitats, and the target species in particular 
must exhibit a fair amount of habitat fidelity.  Analyses should be confined to periods in which 
these conditions hold true. 
 
Second, when we understand the response of regression metrics to physical parameters, then 
even if the regression fails it can provide information about the system that might otherwise be 
difficult to observe.  I have highlighted here several effective performance measures, and 
described their behavior in the light of different plausible ecological conditions.  These are the 
results of simulation analyses (not presented here). 
 
My simulation study provided insight into the limitations of the method: it fails to perform well 
when data are too limited, when either the target species or the regressor species does not 
practice site fidelity, or when the regressors are predominantly negative or predominantly 
positive predictors of the target species.  On the positive side, the regression is relatively robust 
to changes in regressor populations. 
 
Note that the multispecies regression is not intended to inflate catch data. 
 
 
Rules-of-thumb for regression diagnostics 
The results of simulation experiments lend themselves to developing rules-of-thumb for 
interpreting regression diagnostics.  First, note that one well-known rule of thumb, the metric 
that suggests regression deviance should be less than Pearson’s  χ2 test for the significance of a 
proportion, is an indicator only that the model used is a good model for the data, but it doesn’t 
correlate well with model performance. 
 
Data: 

• The data suited to this type of analysis must be presence/absence data, and should 
present more than a few regressor species.  Species with positive and negative co-
occurrence with the target must be represented.     
• A classic problem in regressions of this type is colinearity among the regressors.  In a 
logistic regression, this occurs when two regressors have the same pattern of occurrence.  
Data should be checked for colinearity, however many software packages such as R will 
report colinearity in the data. 
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• Related to colinearity is the problem that may occur if there are few species that co-
occur with the target species, or if there are few patterns of co occurrence. In this case, 
the model may overfit the data, and reducing the number of parameters used may 
improve model performance. 

 
Probabilities: 

• The highest probability predicted by the model is a measure of how much faith we can 
put in the model’s positive predictions.  The lowest probability predicted is a measure of 
the certainty we have in predictions of absence of the target. 
 
• The number of indeterminate probabilities is a measure of how well the model is able to 
distinguish the target’s habitat. 
 
• A lack of intermediate probabilities is a signal that either the regression is optimally 
segregating positive and negative predictions, or that the data may be too sparse, leading 
to overfitting the model.  Other indicators of this type of failure are low numbers of 
significant regressors, and extreme values of regression coefficients. 

 
Regressors: 

• As the number of significant regressors increases, the accuracy of predictions increases, 
however the regression may still perform well with few regressors. 
 
• A preponderance of either positive or negative regressors will tend to bias the model 
towards over- or under-predicting the target. 
 
• The range of regression coefficients should be greater than one, but not extremely large.  
For this data, poor regressions had coefficient ranges either less than one, or greater than 
a hundred. 
 
• Species that exhibit low habitat fidelity are poor regressors.  Coefficients for these 
species will be close to zero. 
 

Predictions: 
• A regression that predicts all-negatives or all-positives is failing to predict the less-
common case – the occurrence of a rare species or absence of an abundant one. 
 
• The numbers of false positive and false negative predictions should be roughly the 
same.  A predominance of either one indicates bias, and suggests that the predictive 
species are largely ones that co-occur with the target, or species that are seldom found 
with it.  Removal of some regressors may balance the predictions. 

 
Target characteristics: 

• Species that exhibit low habitat fidelity or are migratory under different environmental 
regimes are poor targets. 
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Finally, when the data are collected over a period of time long enough for habitat associations to 
change, or when habitat use is not well understood, it is important to examine regression 
performance in temporal subsets of the data, especially with respect to change in sign or 
magnitude of the regression coefficients. 
 

Conclusions 
The species-based regression is quite robust except when the main assumption is violated:  that 
species remain true to habitat.  Thus the regression fails when habitats are indistinct, when either 
the target species or the regressor species use all habitats equally, and when the species change 
habitat use patterns, which is typical of many marine species under changing environmental 
regimes. 
 
Regression deviance < χ2 indicates only that the model used is a good model for the data, and 
doesn’t correlate well with model performance.  While this is useful for catching extreme misfits, 
model performance is best judged using the criteria listed in the previous section, based on the 
probabilities and coefficients generated by the regression. 
 
Regression coefficients should reflect biological facts in the fishery: species found rarely with 
the target species should have negative coefficients, and species often found with it should have 
positive ones.  Ideally, one would prefer a variety of significant regressors, both positive and 
negative.  Coefficients falling in the range[1..25] seem to be associated with good regressions, 
those much larger or smaller signify problems. 
 
Probabilities should not be narrowly distributed, nor should they all be close to 0.5.  Although it 
is intuitively satisfying to desire a probability distribution that perfectly distinguishes presence 
and absence of the target, this may indicate that the model is over fitting the data.  False 
predictions should be examined for hints of bias in the regression.  An unbiased regression will 
have approximately equal numbers of false positives and false negatives. 
Although the basic assumptions underlying the use of CPUE as an abundance index are often 
questioned (e.g., Peterman and Steer, 1981; Swain and Sinclair, 1994; Harley, Myers, and Dunn, 
2005), it continues to be widely used.  Other methods of subsetting exist, but have their own 
shortcomings, including dependence on assumptions that may not hold. 
 
The most commonly used method of subsetting data historically has been to include only those 
catches that contain the target; however this misses the empty catches in habitat, and it is 
changes in the proportion of these that reflect abundance changes.  A common work-around for 
this has been to assume that the catch represents a constant proportion of the population, which 
doesn’t take changes in fishing trends into account.  However, fishing practices do change in 
ways that impact individual species (see, for example, Stephens and MacCall, 2004).  Another 
historically employed method for subsetting recreational data relies on what the captain or fisher 
reports as the “target” species, but often this is the species most-frequently caught, designated in 
retrospect as the target. 
 
In subsetting commercial data, some have suggested using only records from fishers whose data 
implies a reliable targeting of the species.  However, the criteria for defining what this means is 
evolved ad-hoc (Taylor, 2003; Punt et al., 2001b).  Commercial data are often subset based on 
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vessel-type (Jimenez, et al., 2004); Bishop, et al offer an interesting comparison of several of 
these in subsetting data in the Australian Northern Prawn fishing industry, using vessel and gear 
types (which are assumed constant in the recreational fishery) (Bishop, et al., 2004). 
 
Other GLM-based methods have involved the use of zero-inflated distributions, such as the zero-
inflated Poisson (ZIP) that rely on a mixed probability distribution that accounts for zero-catches 
based on some presumption of a systematic reason for zeros, one that can be modeled with a 
known probability distribution (Maunder and Punt, 2004).  Related to this is the concept of the 
delta-GLM, modeling the probability of obtaining a zero catch binomially, and the catch-rate for 
positive catches (of numbers or biomass of fish) separately, often using a log-normal distribution 
(Stefansson, 1996).  These are sometimes called “hurdle models”. 
 
There are computationally intensive approaches such as Bayesian hierarchical analysis (another 
mixed-probability technique) (c.f.  Argaez, et al., 2005).   These methods may not be well-suited 
to recreational datasets, either because of underlying assumptions or because they may be 
difficult to implement properly.  For these reasons, the logistic regression will be the analytical 
tool of choice for many fisheries researchers. 
Finally, it is important to note that the multispecies regression is not intended to inflate catch 
data.  Using the regression to select relevant data and then also including the deselected positive 
catch is an inappropriate use of the method and provides biased results. 
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4.4. CPUE Model Diagnostics – Mauricio Ortiz 
 The common practice of model fitting involves the selection of a model class appropriate 
to the data, fitting and results presentation.     Comparisons between alternative models are 
normally related to “goodness” of fit to the data, and the selected model is commonly ‘the best 
fit’ according to some specific criteria, such as log likelihood, AIC or similar statistics.  
However, seldom there is a report of the model diagnostics and evaluation of “appropriateness” 
of the model implicit assumptions to the data structure.   Selection of the model class is usually 
the first step and decisions should take into account the nature of the data and objective(s) of the 
analysis mainly.   But, even after a “proper” selection of the class model, the data themselves 
may show inconsistencies in the fitting process.  These inconsistencies can arise from: a) the data 
as whole show systematic departures of the model assumptions, and or b) that a subset of 
observations shows discrepant from the rest of the data.   
 Therefore model checking should be an integral part of the model fitting.   Based on 
diagnostics the modeler will introduce a verification step in the process assuring that the selected 
model is the appropriate one given the data analyzed.  McCullagh and Nelder (1989) classified 
the model checking techniques into two groups: a) informal, those that relay on subjective 
human decision to determine patterns or better, departure from expected patterns.  And b) formal 
techniques that imply a wider model (where the “selected current model” is a subset) with higher 
number of parameters.  In this case, the current model passes the check if it can demonstrate that 
the extra parameter(s) in the wider model did not improve the fitting of the data. 
  
Model checking elements 
 Model checking was originally developed for classical linear models, then McCullagh 
and Nelder (1989) extended it to Generalized Linear Models (GLMs).    Analysis of residuals are 
the primarily element for model checking, however other components in model checking include 
the fitted values, the linear predictors, the residual variance, the dispersion parameter and the 
elements of the projection (‘hat’) matrix.      
 The classical residual definition; r = y – µ is often called “response residual” in GLMs 
(R, S-Plus, SAS) and is simply the difference between the observed value and the corresponding 
predicted by the model.   Depending upon the GLM error model distribution, residuals are often 
transformed such its variance is constant and have a “normal like” behavior for model checking 
purposes, these residuals are called “standardized residuals” and include: i) the “Pearson 
residuals”, where response residuals are scaled by the estimated standard deviation of the 
response variable  𝑟p = 𝑦 − 𝜇

�𝑉(𝜇)�   .  ii) The ‘studentized’ standardized residuals, where 

response residuals are scaled by the corresponding element of the “hat” matrix   
. 

𝑟s =  𝑦𝑖 −  𝜇𝑖
�1 − 𝒉𝒊�  

  iii) And, the Anscombe residual, where the residual is replaced by a function A(y) that makes 
A(Y) “as normal as possible”, where A is a transformation function specific for each type of 
error distribution.  For example for the Poisson distribution the Anscombe residual is estimated 
as  
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Other types of residuals are available from GLMs, including: iv) Deviance residuals, where each 
residual reflects the contribution to the total Deviance of the GLM fit, 𝑟𝐷 = 𝑠𝑖𝑔𝑛(𝑦 − 𝜇)�𝑑𝑖 , 
such  

�𝑟𝐷 
2 = 𝐷 

 .  Of course, for each error distribution the Deviance formulation varies (pp 34 McCullagh and 
Nelder 1989).  In the case of the Poisson distribution, the deviance residuals are  𝑟𝐷 =

𝑠𝑖𝑔𝑛(𝑦 − 𝜇) �2 �𝑦 log �𝑦
𝜇
� − 𝑦 + 𝜇��

1
2 .   Both the Pearson and Deviance residuals can be 

“studentized” scaling them by the variance and/or dispersion parameter, and the corresponding 
“hat” element, such  

𝑟𝑝′ =
𝑦 − �̂�

�𝜙�𝑉(�̂�)(1− ℎ)
 

 
   for the standardized Pearson residual, and 

𝑟𝐷′ =
𝑟𝐷

�𝜙�(1 − ℎ)
 

  for the standardized deviance residual.    v) Working residuals, these residuals correspond to the 
“linear” last step of the iterative fit solution of the GLM, where the y values are in the scale of 
the link function and the µ represent the linear predictors of the GLM model component.  
According to McCullagh and Nelder (1989) in general deviance residuals are preferred for model 
checking procedures because of its distributional properties are more similar to the linear 
regression models.  
 
Systematic departures from model assumptions 
 The following diagnostics try identifying inconsistencies between the ‘model selected’ 
and the data structure as a whole.  We want to confirm the assumptions regarding a) the error or 
variance function, b) the link function selection, and c) possible omitted linear factors.    
Residual Plots 

 Residual plots generally include plots of standardized deviance residuals against the linear 
predictors (�̂�)of the model, or if not available, the fitted values transformed to the constant 
information scale of the error distribution assumed.   In the later case, the transform values are 
estimated as 

•  �̂� for Normal error distribution (Gaussian) 
•  ��̂�2  for Poisson error distribution 
•  2 sin−1 ��̂� for Binomial error distribution 
•  2 log �̂� for gamma error distribution 
•  −2�̂�−

1
2for inverse Gaussian error distribution. 
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The expected pattern of this plot is a distribution of residuals with constant range and with mean 
of zero.   If there is large number of observations, it is recommended to use smoother functions 
to facilitate the interpretation of patterns.   Departures of the expected pattern, for example 
curvature of the mean , may indicate incorrect choice of the link function, wrong scale of one or 
more covariates (linear components in model), or omission of higher order terms in the model.   
A non-constant range of residual indicates an incorrect variance function assumption in the 
model.   This plot is not informative for binary data (0, 1). 
 A plot for checking the variance function assumption is the absolute residuals against 
fitted values in a constant-information scale.  The expected pattern is no trend with constant 
distribution on the horizontal scale.  A positive trend indicates that the variance function 
increases too slowly compare to the mean values of the data, in contrast a negative trend 
indicates that the variance function increases much faster that the mean values of the data.   
 A plot for checking the link function assumption is the adjusted dependent variable (y) 
against the linear predictor of the GLM model (�̂�).   The expected pattern in a straight line, 
curvatures in the plot indicate a low or high power in the exponential link assumption.  This plot 
is not informative for binary data.  
A plot for checking the scale of factors/covariates is the standardized residuals against an 
explanatory variable(s) of the linear predictor formula.  The expected pattern is also a constant 
range distribution with a mean distribution about zero.   Departures indicate possible missing 
interactions or quadratic terms in some factor(s), incorrect scale for the explanatory variable or 
improper link function.  An alternative plot is also the partial residual plot for each 
factor/covariate.   Where the partial residual is estimated as 𝑢 = 𝑦 − �̂� + 𝛾�𝑥  where y is the 
adjusted dependent variable, η� the linear predictor, and γ� is the parameter estimate for the 
explanatory variable x.  The expected pattern is a linear trend, departures may indicate the wrong 
scale of the factor, however it may also be due to wrong scale of another correlated factor, in this 
case multiple residual plots may help to identify common issues. 
 
Isolated departures from the model 
 The prior section addressed mainly overall data inconsistencies with the selected model 
assumptions, once a final model can be confirm the next step is to evaluate particular points in 
the data especially those that appear in difference with the remain bulk of the observations.  In 
this regard, residual analysis focus on the influence and/or “leverage” of a given observation, or 
their inconsistency with the general trend and the effect(s) on the parameters estimated by the 
model. 
 
Leverage 
 For linear models the measure of leverage is given by the diagonal elements of the ‘hat’ 
matrix that project the data onto the fitted values.  The leverages  represent the influence of a 
given point in the fit.  In classical linear models they are a function of X only, but in GLM, they 
also depend on the weights assigned by the Iterative Re-weigthing Least Square (IRWLS) 
algorithms for solving the GLM models.   Large value of hi indicates that the fit may be sensitive 
to the response observation i.  A plot of leverage values indicating those values of   

hi >
2p
n

 
, or approximately  
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ℎ𝑖′ > 2,𝑤ℎ𝑒𝑟𝑒 ℎ𝑖′ = 𝑛ℎ𝑖 𝑝
 

  is an informative tool. 
 
Influence 
 Influence is normally measure as weighted combination of the changes of estimates with 
and without a given extreme point.  Cooke (1977) introduce an statistic, ‘Cooks distances’ that 
approximates the residual scaled difference between the model fit with observation response for 
case i and the model fit without the observation i.   The approximation by Williams (1987) is 
 (𝑦 − �̂�)�(1 − ℎ𝑖)𝑟𝐷𝑠2 + ℎ𝑖𝑟𝑃𝑠2  
where rDs is the studentized deviance residual, and rPs is the studentized Pearson residual.  
 
A plot of Cook’s distances will show the most influential observation(s) in the model fit.   Q-Q 
plots of residuals are standard plots for checking linear models or GLM with normal error 
assumptions; however for other error distributions it should not expect a normal distributed 
residual pattern, particularly of the response residuals.  For outlier detection or influential 
observations, half-normal plots are also informative.  This type of plot will identify in one tail of 
the distribution those observations with large influence or leverage.   Half normal plots of the 
leverages, Cook’s distances and studentized residuals provide an informal check for observations 
diagnostics.  
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4.5. Review of Index Weighting Schemes for Stock Assessments – Clay Porch 
 
Stock assessment algorithms typically incorporate data on stock structure and mortality from a 
variety of sources, including landings, length or age composition, and indices of relative 
abundance derived from fishery catches or fishery-independent surveys. Usually some data sets 
are less informative (more uncertain) than others and an important part of the stock assessment 
process is to determine how to take these differences into account. For example, one may wish to 
place greater emphasis on a large sample from the entire study population than on a small sample 
from a fraction of the study population. The challenge, of course, lies in objectively determining 
the degree to which each data source should be emphasized (weighted). At present, there is no 
universally accepted method for meeting this challenge, with the predictable result that the 
choice of weighting schemes often depends as much on who is participating in the assessment as 
it does on the types of data involved. As this has long been a contentious issue in many forums 
(Schnute and Hilborn 1993; ICCAT 1999), it is important for SEDAR participants to understand 
the strengths and weaknesses of the various weighting schemes before adopting one for a 
particular assessment. To that end, the chapter reviews the weighting schemes that have been 
developed specifically for indices of abundance and suggests criteria for selecting between those 
schemes during SEDAR data and assessment workshops. 
 
Measuring uncertainty 
 

Uncertainty can be thought of as a function of observation errors (degree to which the 
observed value of an index differs from its true value) and process errors (degree to which the 
true value of an index differs from that of the study population). Observation errors typically 
depend on factors such as sample size or randomness. Process errors arise, for example, when the 
fraction of the study population that occupies the area sampled for the index varies through time. 
If these errors are effectively random over the study period, then one may consider them to be 
unbiased representations of the study population (although they may still be highly imprecise). In 
that case it is advantageous to have multiple indices representing the same quantity or, when 
possible, to combine several uncertain indices into one (see Conn’s chapter). Systematic 
observation or process errors, of course, can lead to bias.  

Known biases of a substantive nature should obviously be corrected during the index 
standardization process or else the index should be discarded. The relevant question here is what 
to do with indices that are suspected of some unknown bias. In many assessments the available 
data are too sparse to afford the luxury of simply discarding suspicious indices. For such cases, 
we maintain that unknown biases among multiple independent data sets may be regarded 
(hopefully) as canceling out on average and therefore may be treated as another degree of 
imprecision. It is therefore appropriate simply to deemphasize such data during the fitting 
process in some proportion to the degree to which bias is suspected (more on this later). Given 
these caveats, the next order of business is to select a common metric for measuring the 
uncertainty of each candidate index of abundance.  

Most modern stock assessment models are cast in a probabilistic framework, in which 
case the most natural measure of the uncertainty in an index is its variance. For example, 
consider two independent normally distributed indices X1 and X2 with the same expectation μ but 
different variances (σ

2 and σ
2). The probability of observing two given values x1 and x2 is 
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The maximum likelihood estimator for μ is the value that maximizes equation 1, or equivalently, 
minimizes its negative logarithm:  
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The solution when σ1 and σ2 are known is easily obtained by simple calculus: 
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As can be seen, the influence of each index series on the final estimate of μ is directly 
proportional to the variance associated with that index. 
 

Some authors have adopted somewhat simpler notation where weight coefficients (w) are 
specified directly in the likelihood function, e.g., 
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In this example it is easy to see that the w’s are merely the reciprocals of the variances and that 
minimizing (4) or (2) will yield identical results as long as the variances (and w’s) are constant. 
In keeping with most statistical texts, we find the variance notation to be more intuitive, 
particularly when different error structures are mixed such that the relative values of the w 
coefficients are no longer comparable. Moreover, the weighting coefficient formulation is 
impractical when the values of the weights are to be estimated internally in the model.  
 
Review of index weighting schemes 
  
The weights applied to the indices of abundance used can have a profound effect on the outcome 
of an assessment. To illustrate this, consider the following simple model: 
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where x1,t and x2,t are independent indices of an underlying population that is growing linearly 
with time t from a known starting abundance N). If the errors ε1 and ε2 are approximately 
normal-distributed with equal variances, then maximum likelihood estimates for q1, q2, and G 
may be obtained by minimizing  
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Otherwise, the appropriate likelihood function for unequal variances is 
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In both (6) and (7) the over-arrow denotes the vector of time series observations for each index. 
It is easy to show that the estimates for q1, q2, and G obtained from the equal variance 
formulation (6) will be the same whether σ2 is estimated or fixed to an arbitrary constant (which 
is the least squares solution). It is also generally true that the equal-variance (6) and bi-variance 
(7) estimators will perform similarly when applied to situations where the true variances of each 
index are the same (and the underlying model is correct). However, if the true variances are 
substantially different, the assumption of equal variances (application of 6) can lead to biased 
estimates.  

Figure 1a and Table 1 compare the results when the equal-variance (6) and bi-variance 
(7) estimators were applied to simulated indices generated according to (5) when the true values 
of σ

2  and σ2
2 were 64 and 13, respectively. The bi-variance estimator performed best, 

producing slightly better parameter estimates and a much lower value for the likelihood function. 
This would seem to confirm that there is some advantage to estimating separate variances for 
each index rather than assuming they are the same, however the experiment was predicated on 
having the correct underlying model. Consider now the same set of experiments when the indices 
of abundance were equally biased, but in opposite directions such that the annual rate of increase 
for index 1 is 0.2 and the annual rate for index 2 is 1.8 (compared to the true rate of 1.0). In that 
case the bi-variance estimator again produced a significantly lower likelihood function value 
than the equal-variance estimator (82.6 versus 96.6), and on that basis an investigator might be 
tempted to prefer it. However, closer inspection reveals that the bi-variance estimator produced 
this low likelihood value by severely down-weighting the less precise index 1 and focusing on 
the more precise index 2 (Figure 1b). As a result, the MLEs for q2 and σ2

2 were very close to the 
true values and the predicted values for index 2 matched the observations very well, whereas the 
MLE for σ

2 was double the true value and the predicted values for index 1 did not match the 
observations at all. Hence, the estimate of the primary parameter of interest (G) was 1.8; 
matching the true slope of index 2, but much higher than the underlying population.  In contrast, 
the equal variance estimator gave equal credence to the two biased indicators and essentially 
averaged them, in this case resulting in a much less biased estimate of G.   

 
Table 1. Parameter estimates from the equal-variance and bi-variance estimators applied to data generated from 

model 5. 
  Unbiased indices Conflicting indices 

Parameter TRUE Equal-var. Bi-variance Equal-var. Bi-variance 
G 1 0.98 1.01 1.11 1.81 
q1 2 2.04 1.99 0.57 0.37 
q2 1 1.02 0.99 1.54 1 
σ1

2 64 46 64 76 111 
σ2

2 13 46 13 76 13 
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The above example above was contrived to make the points that (1) weighting matters 

and (2) the estimation of variances is inextricably linked to the assumption that the model 
underlying the estimator is correct. While one variance scheme may appear better on the basis of 
the values of the likelihood function or other metric, it may in fact exacerbate potential biases by 
favoring solutions which disregard indices that are difficult to reconcile with the model but 
nevertheless accurate. For this, and other reasons that will become apparent, there is no widely 
accepted protocol for choosing a weighting scheme. Therefore it behooves the analyst to be 
familiar with both the indices being used and with the strengths and weaknesses of the various 
weighting options. The remaining discussion presents six basic approaches to index weighting. 
Most of the weighting schemes developed to date are essentially special cases of these six 
categories. The implementation of each scheme depends, of course, on the type of error structure 
assumed. The normal and lognormal error structures seem to be the most common choices in the 
literature; the latter in particular because it places less weight on outliers and because the 
variance of many indices tends to increase with the mean. Other error structures (e.g., gamma, 
Poisson, negative binomial) have also been considered, but the basic principles are the same.  For 
the sake of brevity, equations are shown only for the normal and lognormal cases.    

  
 
Equal Weighting.- The simplest weighting scheme is the so-called “equal weighting” option, 
where all observations are essentially assigned the same variance (i.e., all indices j in all years y) 
so that the likelihood function has the form: 
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Note that μ is the expectation in the case of the normal distribution and the median in the case of 
the lognormal distribution. Also, the variance term in the normal case is on an arithmetic scale 
whereas in the lognormal case it is on a logarithmic scale (i.e., the variance of ln x ). Hence, the 
implications of equal weighting are somewhat different between the two error structures; 
constant variance in the normal case and constant coefficient of variation (CV) in the lognormal 
case (recall 2

ln xσ = ln(1+CV2) ). It is also important to note that in the case of a normal 
distribution, the annual values for each index should be rescaled so that their means are similar 
(e.g., by dividing the original series by their respective means), otherwise series with larger 
absolute values will receive more weight in the fitting process than series with low values. In the 
lognormal case the scaling is implicit and the results will be the same whether the series is 
rescaled or not. In equal-weighting models where the uncertainty is limited to the indices of 
abundance (e.g., catch is assumed known without error), the estimates of μ will not depend on 
the value of the variance parameter (or whether it is estimated or not), but will depend on the 
choice between lognormal and normal errors. 
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Simple maximum likelihood weighting.- A simple extension of the equal weighting procedure is 
to assume the variance parameter for a given index is constant from year to year, but may differ 
among indices:  
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In this case the variance parameters may be fixed to some externally derived values (a special 
case of input variance weighting discussed below) or estimated internally in the model.  
Maximum likelihood estimates of the variances have been derived in three common ways. An 
early method was referred to as iterative re-weighting because it consisted of a two step process 
where the likelihood was minimized using fixed values for each variance parameter, after which 
the variances were recomputed using the standard MLEs.  

(10) 
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The new estimates of variance would be substituted back into the likelihood and the 
minimization procedure reinitiated until the estimates of variance converged (essentially an 
application of the EM algorithm). Subsequently, it was realized that the concentrated likelihood 
approach, whereby the formulas in (10) are directly substituted into (9), was more efficient and 
yielded the same results. Alternatively, equivalent MLEs may be obtained by use of the search 
algorithm (minimizing 9) in the same manner as for the other estimated parameters (Porch 2002). 
Note that annual variances cannot be estimated using these techniques because the number of 
index parameters would exceed the number of index data points.  
 One potential pitfall of simple maximum likelihood weighting is that some index series 
may be severely down-weighted, as illustrated in the example. This is especially problematic if 
the assessment model is mis-specified and happens to match up (incorrectly) with some indices 
more than others. Simulations by Legault and Porch (2001) that were conditioned on data for 
Atlantic bluefin tuna (with various minor model mis-specifications) indicated no clear pattern in 
the bias or uncertainty of estimates between the equal weighting and maximum likelihood 
schemes.  
 
Input-variance weighting.- This common alternative to equal weighting simply involves 
specifying the variance parameters based on considerations external to the stock assessment 
model. For example, estimates of the variance of an index may be derived for each year during 
the standardization process (e.g., by application of a general linear model). To the extent that 
they are reasonable estimates of year to year changes in index uncertainty, incorporating such 
externally derived variances can lead to more accurate assessments (Maunder and Starr 2003).   
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Note that, in principle, it is possible to estimate the annual variance parameters for each index if 
the standardization procedure is conducted simultaneously with the stock assessment (Maunder 
2001). In practice, however, the process is prohibitively time consuming. 
 Some scientists have advocated developing input weights based entirely on expert 
opinion, arguing that issues such as spatial coverage and potential for bias outweigh 
consideration of observation error. For example, Suzuki (2001) presented a framework where 
indices for bluefin tuna would be graded (on a scale of 1 to 5) on each of three factors: spatial 
coverage, temporal coverage, and the likely importance of changes in the operational 
characteristics of the index over time that are not accounted for during the index standardization 
process. Each index would then be weighted in accordance with the sum of those three scores 
(i.e., the variances would be set equal to the reciprocal of those scores).  
 
Additional-variance weighting.- This alternative is based on the premise that the variance of an 
index may be decomposed into a component reflecting observation errors, such as might be 
obtained from the GLM standardization, and an additional component characterizing the 
uncertainty in the index as a reflection of the true abundance trends, as might occur when the 
proportion of the stock sampled by the index varies from year to year (Wade 1996, Punt et al. 
1997, Geromont and Butterworth 2001). To the extent that these two error sources are 
independent, one might expect their variances to be additive:  
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where χj

2 is the additional variance term which may vary among indices and can be estimated by 
maximum likelihood methods analogous to those discussed in connection with simple maximum 
likelihood weighting (equations 9 and 10). This method mitigates the pitfalls of equal weighting 
(e.g., giving equal credence to observations based on little data) and simple maximum likelihood 
weighting (e.g., all of the weight going to a few series), but still depends on the relative 
consistency of each series with the underlying model structure. The approach would be 
undesirable if there were strong a priori reasons for weighting one series more highly than 
another and there was uncertainty about model structure. 
 
Multiplicative-variance weighting.- This approach is similar to the additional variance approach 
above except that the scaling parameter is multiplied by the year-specific input values rather than 
added to it: 
. 
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(13) 
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In many applications the year-specific variances are initially determined by GLM and then the 
multiplicative parameters cj are adjusted to account for expert judgments on key factors not 
accounted for in the GLM (see Quinn and Deriso 1999; Sullivan et al. 1999; Parma 2000). In the 
most recent assessment of Atlantic and Gulf king mackerel, for example, the cj values were 
adjusted such that the average coefficient of variation (CV) attributed to each index was the 
same, but the relative year to year changes in CV from the GLM were preserved (Cass-Calay et 
al., 2008).    
 The multiplicative-variance weighting approach is perhaps less intuitive than the 
additional variance approach in terms of distinguishing process and observation errors. It is 
useful, however, for cases where the available estimates of observation variance (σj,y) are trusted 
as measures of relative precision from one year to the next, but not as measures of the 
uncertainty across indices. It is of course also possible to estimate the cj values analogous to the 
simple maximum likelihood method, subject to the same limitations (most notably that some 
indices may be severely down-weighted, particularly if the assessment model is mis-specified).  
 
Variance as a function of the mean.- This last approach is based on the premise that the variance 
of catch per unit effort (or survey counts) tends to be correlated with the mean  
. 
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where f is some arbitrary function such as Taylor’s power law: f = axj,y

b. In the trivial case where 
x follows a lognormal process with constant CV, the power function reduces to b = 0 and a = 
ln(1+CV2).  More generally, the relationship (parameters a and b) could be established outside 
the stock assessment model by regressions of variance against the mean. However, it has been 
shown that such correlations tend to be spurious (see Porch 1998). Another possibility is to 
estimate the parameters internally, in which case one may expect similar issues to the 
multiplicative variance case. Regardless of whether the parameters of the mean-variance 
relationship are estimated internal or external to the assessment model, further bias may occur by 
overemphasizing observations xj,y that happen to be very low and it may be prudent to make the 
procedure more robust by adding a small constant. 
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Criteria for choosing between index schemes 
 

There are no firm criteria for determining when to use one weighting scheme over 
another (but see McAllister et al. 2001 for a useful review). While several simulation studies 
have been conducted, they have all been rather limited in scope and tend to focus on comparing a 
few special cases of the weighting schemes discussed above. Nevertheless, there are several 
guidelines that can be posited. 

 
A priori criteria 

 
It is important for the choice of weighting schemes to be rooted in arguments that are 

based on the nature of the data at hand rather than how they affect the outcome of the 
assessment. Otherwise, the working group may be accused of succumbing to divisive arguments 
predicated on producing a desired stock status rather than the best available science. To this end, 
the working groups should discuss the following points: 

 
1. Are year to year variations in uncertainty likely to be substantial and 

measurable for a given index? If so: 
• Are they reliable only in a relative sense (as is sometimes the case with 

model-based estimators such as GLM standardizations)?  
• Are they also reliable in terms of absolute magnitude (e.g., a designed-

based estimate from a survey that covers the entire range of the stock)? 
 
2. Does the level of uncertainty likely vary substantially among indices? If so:  

• Is the available expertise sufficient and able to reach consensus ranking?   
• Is the candidate index-weighting estimation method well-understood 

(widely-practiced, simulation-tested, and easily applied in the current 
assessment framework)? 

 
 

A posteriori criteria 
 

While it is important that the initial choice of a weighting method be made before running the 
stock assessment model, it is also important to ensure that the weighting method behaves 
sensibly once applied. In particular, the working group should ask the following questions once 
the method has been applied: 
 

1. Does the method accord unrealistically high or low variance to some indices? 
• What level should be deemed unrealistic? 
• Do the estimates of variance strongly disagree with expert judgment on the 

relative reliability of each series as an index of abundance 
2. Are estimates statistically defensible? 

• Examine goodness of fit statistics (e.g., Chi-square deviance statistic)  
• Examine model selection criteria (e.g., AICc) 
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A flow chart is offered in Figure 2 to help facilitate discussions relating to the above criteria. Of 
course in any given application there may be gray areas. Accordingly, the recommendations 
offered in the flow chart are intended to be viewed as guidance rather than hard and fast rules. 
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Figure 1. Predicted trends in population growth using the equal-variance (red) and bi-variance estimators (blue) 
compared to the true values (diamonds) and ‘observed’ values for index 1 (circles) and index 2 (triangles). The top 
and bottom panels refer to the cases when the ‘observed’ values are generated without bias (Fig. 1a) or generated 
with equal but opposite biases (Fig. 1b). 
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Index weighting key 
 
Estimates of variance reliable for all years ……………………….….……………………………….(11) input variance weighting 
 
Estimates of variance not available or do not fully represent primary sources of uncertainty 
 

Overall uncertainty levels deemed similar for all indices used in the assessment model 
 

Uncertainty levels similar for all years…………………………………..….………………………(8) equal weighting1 
 

Uncertainty levels differ among years  
 

Annual variance estimates reliably measure relative uncertainty between years…….(13) multiplicative variance1,2 
 

Annual variance estimates reliably measure observation errors only.…………………...(12) additional variance1,2 

 
Annual variance estimates unavailable or uninformative………………………………………(8) equal weighting1 

 
Overall uncertainty levels differ between indices used in the assessment model 

 
Expert consensus reached concerning relative weights to be assigned for each index 

 
   Annual variance estimates reliably measure relative uncertainty between years....(13) multiplicative variance3 
 

Annual variance estimates reliably measure observation errors only.………….……(12) additional variance3 

 
Annual variance estimates unavailable or uninformative……………………….(11) input variance weighting 
 

Expert consensus not reached (or not preferred) concerning relative weights to be assigned for each index 
 
   Annual variance estimates reliably measure relative uncertainty between years....(13) multiplicative variance4 
 

Annual variance estimates reliably measure observation errors only.……………..…(12) additional variance4 

 
Annual variance estimates unavailable or uninformative 

 
Relationship between variance and mean is well defined5…..…………(14) variance as function of mean 

 
Relationship between variance and mean is unclear………..….(9) simple maximum likelihood weighting 

 
 

Figure 2. Key depicting the recommended chain of decisions with various levels of information on the uncertainty 
in the candidate indices of abundance. Numbers in parentheses represent the equations associated with each method 
in the text above. Note that the key is intended for general guidance towards developing initial weighting schemes. 
Assessment scientists should also consider a posteriori diagnostics (as discussed earlier) as well as the interactions 
between selected index weighting schemes and the weighting schemes applied to other types of data used in the 
assessment model (e.g., total catch or age composition).  
 
 

                                                 
1 The single variance parameter representing all indices may be estimated or fixed based on expert consensus. 
2 Scaled so that the mean variance is the same for all index series. 
3 Scaled so that the mean variance of each index is consistent with expert opinion. 
4 Mean variance of each index estimated by maximum likelihood. 
5 In the trivial case of a lognormal process with constant CV, this option is equivalent to a lognormal model with 
simple maximum likelihood weighting. 
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5. Minimum Requirements for Submission of Indices of Abundance to 
SEDAR Workshop Meetings – SEDAR Procedures Workshop 1 Panel – 
Shannon Cass-Calay 
 
This worksheet is intended to inform authors of SEDAR indices of abundance of the minimum 
requirements for submission recommended by the SEDAR CPUE workshop panel (Miami, FL 
October, 2008). The SEDAR CPUE Workshop Panel encourages the development of improved 
techniques for the construction of CPUE series and attempts to construct indices for data-poor 
species. We acknowledge that this worksheet may not be appropriate for such indices, and 
request that CPUE working group panels use this worksheet and expert judgment to determine 
the acceptability of each CPUE series. 
 
The spreadsheet is intended to be used as follows: 
 

1) No less than 2 months prior to a SEDAR data workshop, the SEDAR coordinator and the CPUE working 
group rapporteur will insure that all participants who plan to submit an index of abundance receive this 
worksheet. The CPUE working group rapporteur will communicate with all CPUE authors to ensure that 
they are aware of the new recommendations. 

 
2) CPUE authors will attempt to meet the minimum requirements outlined in the worksheet. When these 

cannot be met, the author will submit a written justification to the CPUE working group. CPUE indices will 
not be rejected solely due to a failure to meet all minimum requirements.  

 
3) The CPUE Series Worksheet is intended to be filled out by the CPUE working group at the SEDAR Data 

Workshop. Any missing data requirements will be noted and explained in the column “Working Group 
Comments”. If the working group determines that an index cannot be recommended for use because the 
minimum requirements have not been met, the working group rapporteur will communicate with the author 
and determine a schedule for the submission of a revised document. Failure to submit a revised document 
before the negotiated deadline may result in rejection of the CPUE series. 

 
CPUE Series Worksheets will be included in the SEDAR Data Workshop report and will 
therefore become a permanent, reviewable record. 
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DESCRIPTION OF THE DATA SOURCE  
 

1. Fishery Independent Indices N
ot
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Working Group 
Comments: 

 

 

A. Describe the survey design (e.g. fixed sampling sites, 
random stratified sampling), location, seasons/months and 
years of sampling.          

  

 

 

B. Describe sampling methodology (e.g. gear, vessel, soak 
time etc.)          

  

 

 

C. Describe any changes in sampling methodology (e.g. 
gear, vessel, sample design etc.)          

  

 

 

D. Describe the variables reported in the data set (e.g. 
location, time, temperature, catch, effort etc.).     

  

 

 

E. What species or species assemblages are targeted by this 
survey (e.g. red snapper, reef fish, pelagic).     

  

 

 

F. Describe the size/age range that the index applies to. 
Include supporting figures (e.g. size comp) if available.     

  

 
             

  

2. Fishery Dependent Indices           

 

 

A. Describe the data source and type of fishery (e.g. 
commercial handline, commercial longline, recreational 
hook and line etc.).     

  

 

 

B. Describe any changes to reporting requirements, 
variables reported, etc.     

  

 

 

C. Describe the variables reported in the data set (e.g. 
location, time, temperature, catch, effort etc.).     

  

 

 

D Describe the size/age range that the index applies to. 
Include supporting figures (e.g. size comp) if available.         

  

 
 
METHODS         

  

 

1. Data Reduction and Exclusions           

 

 

A. Describe any data exclusions (e.g. gears, fishing modes, 
sampling areas etc.). Report the number of records 
removed and justify removal.          

  

 

 

B. Describe data reduction techniques (if any) used to 
address targeting (e.g. Stephens and MacCall, 2004; gear 
configuration, species assemblage etc).          

  

 

 

C. Discuss procedures used to identify outliers. How many 
were identified? Were they excluded?     
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2. Management Regulations (for FD Indices) N
ot
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Working Group 
Comments: 

 

 

A. Provide (or cite) history of management regulations 
(e.g. bag limits, size limits, trip limits, closures etc.). 

      

 

 

B. Describe the effects (if any) of management regulations 
on CPUE 

      

 

 

C. Discuss methods used (if any) to minimize the effects of 
management measures on the CPUE series.  

      

            
3. Describe Analysis Dataset (after exclusions and other treatments) 
  

  

 

 

A. Provide tables and/or figures of number of observations 
by factors (including year, area, etc.) and interaction terms.         

  

 

 

B. Include tables and/or figures of number of positive 
observations by factors and interaction terms.     

  

 

 

C. Include tables and/or figures of the proportion positive 
observations by factors and interaction terms.     

  

 

 

D. Include tables and/or figures of average 
(unstandardized) CPUE by factors and interaction terms.     

  

 

 

E. Include annual maps of locations of survey sites (or 
fishing trips) and associated catch rates OR supply the raw 
data needed to construct these maps (Observation, Year, 
Latitude, Longitude (or statistical grid, area), Catch, 
Effort).      

  

 

 

F. Describe the effort variable and the units. If more than 
one effort variable is present in the dataset, justify 
selection.     

  

 

 

G. What are the units of catch (e.g. numbers or biomass, 
whole weight, gutted weight, kilograms, pounds).     

  

 
4. Model Standardization     

  

 A. Describe model structure (e.g. delta-lognormal)       

 

 

B. Describe construction of GLM components (e.g. 
forward selection from null etc.)     

  

 

 

C. Describe inclusion criteria for factors and interactions 
terms.      

  

 

 

D. Were YEAR*FACTOR interactions included in the 
model? If so, how (e.g. fixed effect, random effect)? Were 
random effects tested for significance using a likelihood 
ratio test?     

  

 

 

E. Provide a table summarizing the construction of the 
GLM components.     

  

 

 

F. Summarize model statistics of the mixed model 
formulation(s) (e.g. log likelihood, AIC, BIC etc.)     

  

 
 

G. Report convergence statistics.       
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MODEL DIAGNOSTICS 
 
Comment: Other model structures are possible and acceptable. Please provide 
appropriate diagnostics to the CPUE indices working group. 
 
1. Binomial Component N

ot
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Working 
Group 

Comments: 

 
 

A. Include plots of the chi-square residuals by factor.       

 

 

B. Include plots of predicted and observed proportion of 
positive trips by year and factor (e.g. year*area)     

  

 

 

C. Report overdispersion parameter and other fit statistics 
(e.g. chi-square / degrees of freedom). 
     

  

2. Lognormal/Gamma Component       
        

 

A. Include histogram of log(CPUE) or a histogram of the 
residuals of the model on CPUE. Overlay the expected 
distribution.     

  

 

 

B. Include plots describing error distribution (e.g. 
Studentized residuals vs. linear predictor.     

  

 

 

C. Include QQ-plot – (e.g. Student deviance residuals vs. 
theoretical quantiles), Overlay expected distribution.       

  

 

 

D. Include diagnostic plot for variance function (e.g. 
square root of std residuals vs. fitted values). Overlay 
expected distribution.     

  

 

 

E. Include diagnostic plot for link function (e.g. linear 
response variable vs. linear predictor). Overlay expected 
distribution.     

  

 
 

F. Include plots of the residuals by factor       
        
3. Poisson Component 
       

 
A. Report overdispersion parameter and other fit statistics 
(e.g. chi-square / degrees of freedom).     

  

 

 

B. Include plots describing error distribution (e.g. 
Studentized residuals vs. linear predictor.     

  

 

 

C. Include QQ-plot – (e.g. Student deviance residuals vs. 
theoretical quantiles), Overlay expected distribution.       

  

 

 

D. Include diagnostic plot for variance function (e.g. 
square root of std residuals vs. fitted values). Overlay 
expected distribution.     

  

 

 

E. Include diagnostic plot for link function (e.g. linear 
response variable vs. linear predictor). Overlay expected 
distribution.      

 The feasibility of this 
diagnostic is still under 
review. 

 

4. Zero-inflated model       

 
 

A. Include ROC curve to quantify goodness of fit.       

 

 

B. Include plots describing error distribution (e.g. 
Studentized residuals vs. linear predictor).     

  

 

 

C. Include QQ-plot (e.g. Student dev. residuals vs. 
theoretical quantiles), Overlay expected distribution.     

  

        

MODEL DIAGNOSTICS (CONT.) 

N
ot
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Working 
Group 

Comments: 
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D. Include diagnostic plot for variance function (e.g. 
square root of std residuals vs. fitted values). Overlay 
expected distribution.     

  

 

 

E. Include diagnostic plot for link function (e.g. linear 
response variable vs. linear predictor). Overlay expected 
distribution.  
     

  

        
        
MODEL RESULTS  
 
     

  

A. Tables of Nominal CPUE, Standardized CPUE, 
Observations, Positive Observations, Proportion Positive 
Observations and Coefficients of Variation (CVs). Other 
statistics may also be appropriate to report 

     

  

B. Figure of Nominal and Standardized Indices with 
measure of variance (i.e. CVs).     

  

       
IF MULTIPLE MODEL STRUCTURES WERE CONSIDERED:  
 

(Note: this is always recommended but required when model diagnostics are poor.) 
 

  

1. Plot of resulting indices and estimates of variance 
       
2. Table of model statistics (e.g. AIC criteria) 
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Date Received Workshop 
Recommendation 

Revision Deadline 
*** 

Author and 
Rapporteur 
Signatures 

First 
Submission     

Revision   

 
The revision deadline is negotiated by the author, the SEDAR coordinator and the CPUE rapporteur. The 
author DOES NOT commit to any LEGAL OBLIGATION by agreeing to submit a manuscript before 
this deadline. The maximum penalty for failure to submit a revised document prior to the submission 
deadline is rejection of the CPUE series.  
 
Justification of Working Group Recommendation 
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6. SEDAR Data Workshop Report Requirements for the Indices Working 
Group 
Documentation of Working Group decisions is critical to the SEDAR process.  It provides a 
record of the discussions and recommendations of each group not just to the Assessment 
Workshop Panel, but also to the Review Workshop panel, the Councils, and individual 
stakeholders as the assessment moves from the scientific phase to management action based on 
that science. 
Terms of Reference are provided at each SEDAR workshop to provide information regarding 
what tasks are expected by the individual working groups and the Workshop Panel as a whole.  
The general Terms of Reference which pertain to the Indices Working Group are listed below: 
 
General Indices Working Group Terms of Reference: 
Provide measures of population abundance that are appropriate for stock assessment.  
 
Consider all available and relevant fishery dependent and independent data sources. 
 
Document all programs evaluated, addressing program objectives, methods, coverage, sampling 
intensity, and other relevant characteristics. 
 
Provide maps of survey coverage. 
 
Develop CPUE and index values by appropriate strata (e.g., age, size, area, and fishery); 
provide measures of precision and accuracy.  
 
Evaluate the degree to which available indices adequately represent fishery and population 
conditions. 
 
Recommend which data sources are considered adequate and reliable for use in assessment 
modeling. 
 
The final two tasks highlighted in the above Term of Reference for the Indices Working Group 
as they (or the content they request) have been commented on by past SEDAR independent peer 
review panels, and were one of the primary driving forces for conducting this workshop.   

SEDAR independent peer review panels have commented that objective and consistent criteria 
for evaluating indices are currently lacking.  The criteria used to select particular indices for 
inclusion in a particular assessment have not been clearly documented, and those indices 
selected, along with the weighting scheme applied to them, for inclusion by the Data Workshop 
have been questioned.  The Panels have questioned why indices of abundance displaying 
conflicting trends have been included in the base assessment and it has appeared to some 
Reviewers that little or no evaluation of the indices with respect to their relationship and/or 
ability to track overall abundance has been considered in the selection process.  Lack of clear 
documentation explaining why such choices had been made has left it to the lead analyst to try 
and explain the rationale, despite the fact that the analyst in question may not have participated 
in the Indices Working Group. 
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Acknowledging that these are difficult tasks to complete, these issues need to be discussed by the 
Indices Working group at the Data Workshop, and index recommendations, along with their 
reasoning, need to be documented.  The Index Checklist developed by this workshop will serve 
two purposes.  First, it will provide a clear record of the issues discussed and the criteria used in 
recommending or rejecting particular indices and 2) it should provide the working group more 
time to focus and document their discussions regarding the somewhat less objective aspects of 
the indices being reviewed, such as how well the index may track abundance.   
 
 
Summary Tables 
Summary tables are useful for providing many details about the individual indices in a 
consolidated form.  Although various table formulations have been used in SEDAR reports in the 
past, SEDAR is continually striving towards consistency in report elements when practicable and 
thus request that at least the following two tables be present in the Indices Working Group report 
section:  Indices Description Summary Table and Indices Recommendation Summary Table.  
Examples of these tables can be seen in Table 1 and 2. 
 
 
Suggested Fields for Indices Description Summary Table: 
 
Series Name  Document #  Data Source (e.g. longline obs; angler interview) 
Area   Years    Season  
Biomass/number Units   Sampling Design 
Fishery Type (FI, FD-R, FD-C) Standardization Method (e.g. GLM; Lo method; none) 
Selectivity info  Age range  Size range 
 
 
Suggested Fields for Indices Recommendations Summary Table: 
 
Series Name  Document # 
Positive Aspects Negative Aspects 
Issues Addressed Utility for Assessment (Base, sensitivity, not) 
 
 
Index Values Summary Table: 
 
As the Data Workshop report is supposed to document all of the data reviewed, not just those 
recommended for use in the assessment, SEDAR requests a table containing information on all 
of the indices reviewed during the workshop.  This table will serve as a summary of the indices 
reviewed, and will provide all of the values of all indices in one location, should the decision to 
include or exclude an index change during the process.  An example of an Index Values 
Summary Table can be seen in Table 3. 
 
 
Summary Figures 
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Index Coverage Maps 
 
Summary maps displaying the area/survey coverage of the indices being considered are already 
required by the Terms of Reference but have often been overlooked.  These maps do not need to 
be highly accurate but are provided to provide a quick overview of the areas being covered by 
the data presented.  They allow for discussions regarding coverage over the species range, and 
may provide insight into possible concerns regarding limited spatial coverage or whether a 
particular index may need to be included since it covers a portion of the range missed by others 
indices.  Additionally, it is important to remember that most CIE reviewers are international 
assessment biologists and not familiar with the geographic coverage of the surveys they are 
reviewing.  An example can be seen in Figure 1. 
 
 
Index Summary plots 
 
Providing summary plots of the indices being considered for an assessment is an effective way of 
displaying multiple sources of information in one plot.  Plotting multiple indices on the same 
figure requires that the individual series be scaled in some manner so that they may appear on a 
common scale.  Series can be scaled by dividing each series by the mean of the years within that 
series which overlap between all series.  Plotting similar indices (fishery-dependent, fishery 
independent, juvenile indices, etc) in a common figure allows for examination of the overall 
trends, along with the potential outliners or conflicting trends which may require further 
discussion and documentation.  Examples of summary indices plots can be found in Figures 2 
and 3. 
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Table 1:  Example of an Indices Description Summary Table.  Information extracted from SEDAR 11 when available. 

Series Reference 
Data 

Source Area Years Season 
Biomass/ 
Number 

Units Fishery 
Type 

Sampling 
Design 

Standardization 
Method 

Selectivity 
Info Age Range 

Size 
Range 

NC # LCS05/06- 
DW-01 

6 Directed 
longline 
boats 

North 
Carolina 

1988-
1992 

All Biomass/Number  Commercial  GLM None None  

LPS LCS05/06-
DW-09 

Angler 
interviews 
 

Virginia-
Mass. 

1986-
2004 

June-
October 

Number  Recreational  Lo method Length 
frequency 

None  

Gillnet 
Observer 

LCS05/06- 
DW-11 

Shark drift 
gillnet fishery 

Florida, 
Georgia 

1993-
1995, 
1998-
2004 

All Number  Commercial  Lo method Length by mesh 
size (based on 
fishery 
independent 
study) 

None  

Gillnet 
Observer 

LCS05/06- 
DW-11 

Shark drift 
gillnet fishery 

Florida, 
Georgia 
(Atl) 

1993-
1995, 
1998-
2004 

All Number  Commercial  Lo method Length by mesh 
size (based on 
fishery 
independent 
study) 

None  

PC LL LCS05/06- 
DW-12 

PC NMFS 
Longline 
Survey 
 

NW Florida 1993-
2000 

Spring, 
Summer, 
Fall 

Number  Independent  Lo method Length 
frequency 

None  

NC # LCS05/06- 
DW-01 

6 Directed 
longline 
boats 

North 
Carolina 

1988-
1992 

All Biomass/Number  Commercial  GLM None None  

Gillnet 
Observer 

LCS05/06- 
DW-11 

Shark drift 
gillnet fishery 

Florida, 
Georgia 

1993-
1995, 
1998-
2004 

All Number  Commercial  Lo method Length by mesh 
size (based on 
fishery 
independent 
study) 

None  

              

 
  



 67 

 
Table 2:  Example of an Indices Recommendation Summary Table.  Information extracted from SEDAR 11 when available. 

Series Reference 
Positive 
Aspects Negative Aspects 

Issues addressed 
Utility for Assessment 

NC # LCS05/06- DW-01 Historic Not species specific, 
low sample sizes, 
possible changes in 
fishing methodology 
not accounted for 

 Not recommended 

LPS LCS05/06-DW-09   revisit cv calculation Usable 
Gillnet 
Observer 

LCS05/06- DW-11 standardized  Rerun with new effort calculation, need to attempt calcs for all LCS 
scenarios 

 

Gillnet 
Observer 

LCS05/06- DW-11 standardized  Rerun with new effort calculation, restricted to Atlantic only  

PC LL LCS05/06- DW-12   need to attempt calcs for all LCS scenarios Recommended 
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Table 3:  Example of an Index Values Summary Table.  Information extracted from SEDAR 11. 
 
Table 3.2  Available catch rates series for the large coastal shark complex. The index is the 
relative (divided by the overall mean) estimated mean CPUE and the CV is the estimated 
precision of the mean value.  Type refers to whether the index is fishery – independent (FI) or 
fishery-dependent (FD), recreational (R) or commercial (C).  Observations with a CV of 1.0 are 
nominal data for which no measure of the precision of the estimate was available.  
Recommendation refers to the recommendation by the Indices Working Group to include the 
particular index as a base index (Base), use it for sensitivity runs (Sensitivity) or not 
recommended for use in the assessment (NR). 
 
Document Number Series Name Type Recommendation Year Index CV 
       
LCS05/06-DW-01 NC # FD - C NR 1988 0.758 0.422 
    1989 1.242 0.232 
       
LCS05/06-DW-11 Gillnet Observer FD - C Base 1993 0.338 1.026 
    1994 1.050 0.132 
    1995 0.299 0.779 
    1998 1.088 0.177 
    1999 1.336 0.079 
    2000 1.239 0.073 
    2001 1.179 0.070 
    2002 1.077 0.116 
    2003 1.112 0.150 
    2004 1.281 0.082 
       
LCS05/06-DW-12 PC Longline FI Sensitivity 1993 0.816 0.730 
    1994 0.386 0.894 
    1995 1.272 0.610 
    1996 0.858 0.583 
    1997 0.926 0.539 
    1998 0.725 0.967 
    1999 1.174 0.564 
    2000 1.844 0.508 
       
LCS05/06-DW-12 PC Gillnet FI Base 1996 0.511 0.241 
    1997 1.637 0.132 
    1998 0.607 0.310 
    1999 0.969 0.297 
    2000 0.811 0.326 
    2001 1.549 0.211 
    2002 0.936 0.201 
    2003 1.072 0.186 
    2004 0.908 0.220 
       
 
  



 69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Example of the “General geographic coverage of relative abundance indices reviewed 
at the Data Workshop.” (SEDAR 13) 
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Figure 3.9.  Fishery-independent catch rate series for blacknose sharks.  Solid lines indicate base case indices while dashed lines are 
for series to be used in sensitivity analysis.  Series are scaled (each series is divided by the mean of the years within that series which 
overlap between all series) to appear on a common scale. 
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Figure 3.10.  Fishery-dependent catch rate series for blacknose sharks.  Solid lines indicate base case indices while dashed lines are 
for series to be used in sensitivity analysis.  Series are scaled (each series is divided by the mean of the years within that series which 
overlap between all series) to appear on a common scale. 
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Appendix: Computer Code for Analyses Commonly Used In the SEDAR 
Process 
 
The following appendix consists of a compilation of computer code, applicable to numerous 
software types (e.g. SAS, R, etc.) for analyses, which are commonly used to develop abundance 
indices for the SEDAR process. Each section of code will be labeled by the type of analysis that 
it represents. Also, this part of the document will be periodically updated with new code. 
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Title: Steps-Macro 
Software required: SAS 
Application: 
 
 
 
/***************************\ 
* Define the macro 'steps'  * 
\***************************/ 
 
%MACRO  steps ; 
 
 
/**********************************************************************************\ 
* STEP 1: Run the base model against which all subsequent models will be compared  * 
\**********************************************************************************/ 
 
 
  /* Run the model */ 
 
  PROC GENMOD  DATA=analysis &procopts ; 
    CLASS  &cbase ; 
    MODEL  &response = &mbase / &modopts ; 
    MAKE  'MODELFIT'  OUT = modelfit  ; 
    MAKE  'TYPE3'     OUT = type3fit  ; 
  RUN ; 
 
 
  /* Strip the required statistics (degrees of freedom, deviance, 
     deviance-per-degree-of-freedom, and log-likelihood value) from the GenMod 
     output tables MODELFIT and TYPE3; RETAIN and a sub-setting IF are used to 
     combine the output on different lines into a single obs, and only one obs 
     is created in the corresponding output data set (mfstats or t3fstats) when 
     all the stats have been stripped. Finally, merge the statistics into a 
     single file and append it to the cumulative output file 'outstats'. */ 
 
  DATA  mfstats ; 
    SET  modelfit ; 
    RETAIN  degf deviance devpdf loglike ; 
    IF criterion = 'Deviance' THEN 
      DO ; 
        degf     = df ; 
        deviance = value ; 
        devpdf   = valuedf ; 
      END ; 
    ELSE  IF  criterion = 'Log Likelihood' THEN 
      loglike = value ; 
    ELSE 
      DELETE ; 
    factor = TRIM(UPCASE(SYMGET('mbase'))) ; 
put 'factor=[' factor ']' ; 
    IF  ( factor = "" )  THEN  factor = "NULL" ; 
    IF  loglike NE . ; 
    KEEP  degf deviance devpdf loglike factor ; 
  RUN ; 
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%put &mbase ; 
  %IF  &mbase = %STR()  %THEN  %DO ; 
      DATA  outstats ; 
        SET  outstats mfstats ; 
      RUN; 
    %END ; 
  %ELSE  %DO ; 
      DATA  t3fstats ; 
        SET  type3fit ; 
put 'source=[' source ']' ; 
%put &mbase ; 
        IF  TRIM(UPCASE(source)) = TRIM(UPCASE(SYMGET('mbase'))) ; 
        KEEP  chisq ProbChiSq ; 
      RUN ; 
      DATA  stpstats; 
        MERGE  mfstats t3fstats ; 
      RUN ; 
      DATA  outstats ; 
        SET  outstats stpstats ; 
      RUN; 
    %END ; 
 
 
 
/*****************************************************************\ 
* STEPS 1, 2, ..., i, ... N: Run the models with one factor each  * 
*   added to the base model run in step 0                         * 
\*****************************************************************/ 
 
/* Step through the factors one at a time using the do-loop index 
   'i', which runs from 1 to the number of potential factors 'nsteps'. */ 
 
%DO  i = 1 %TO &nsteps ; 
 
  /* Check to see if the flag for the ith factor is on or off. 
     If it is on the execute the following code, otherwise jump 
     to the end of the loop */ 
 
  %IF  (&&flag&i = on)  %THEN  %DO ; 
 
 
  /* FIRST TASK: run the model */ 
 
  PROC GENMOD  DATA=analysis &procopts ; 
    CLASS  &cbase &&cfactor&i ; 
    MODEL  &response = &mbase &&mfactor&i / &modopts ; 
    MAKE  'MODELFIT'  OUT = modelfit  ; 
    MAKE  'TYPE3'     OUT = type3fit  ; 
  RUN ; 
 
 
  /* SECOND TASK: strip the required statistics (degrees of freedom, deviance, 
     deviance-per-degree-of-freedom, and log-likelihood value) from the GenMod 
     output tables; RETAIN and a sub-setting IF are used to combine the output 
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     on different lines into a single obs, and only one obs is created in the 
     output data set 'out1' when all the stats have been stripped */ 
 
  DATA  mfstats ; 
    SET  modelfit ; 
*   ATTRIB  factor LENGTH=$80 ; 
    RETAIN  degf deviance devpdf loglike ; 
    IF criterion = 'Deviance' THEN 
      DO ; 
        degf     = df ; 
        deviance = value ; 
        devpdf   = valuedf ; 
      END ; 
    ELSE  IF  criterion = 'Log Likelihood' THEN 
      loglike = value ; 
    ELSE 
      DELETE ; 
    factor = UPCASE(SYMGET('mfactor' || LEFT(&i))) ; 
    IF  loglike NE . ; 
    KEEP  degf deviance devpdf loglike factor ; 
  RUN ; 
proc summary data=type3fit; 
var chisq; 
output out=last n=lasts; 
run; 
data type3fit;set type3fit;merg=1;run; 
data last;set last;merg=1;drop _freq_ _type_;run; 
data type3fit;merge type3fit last;by merg;run; 
  
 
  DATA  t3fstats ; 
    SET  type3fit ; 
 last+1; 
  if last=lasts; 
    *IF  UPCASE(source) = UPCASE(SYMGET('mfactor' || LEFT(&i))) ; 
    KEEP  chisq ProbChiSq ; 
  RUN ; 
 
 
  DATA  stpstats; 
    MERGE  mfstats t3fstats ; 
  RUN ; 
 
  DATA  outstats ; 
    SET  outstats stpstats ; 
  RUN; 
 
  %END ; 
 
%END ; 
 
 
%MEND  steps ; 
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End: Steps-Macro 
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Title: GLIMMIX-Macro 
Software required: SAS 
Application: a SAS macro for fitting generalized linear mixed models using Proc Mixed 
and the Output Delivery System (ODS). This macro requires SAS/STAT Version 8 or 
greater. 
 
 
/*----------------------------------------------------------- 
 TITLE                                                         
 -----                                                         
 GLIMMIX: a SAS macro for fitting generalized linear mixed     
 models using Proc Mixed and the Output Delivery System (ODS). 
 Requires SAS/STAT Version 8.                      
                                                               
 SUPPORT                                                       
 -------                                                       
 Russ Wolfinger, SAS Institute Inc.  The original version was  
 written by Jason Brown, formerly of SAS Institute Inc.        
 Please send email to russ.wolfinger@sas.com with any suggestions  
 or corrections.                                               
                                                               
 HISTORY                                                       
 -------                                                       
 initial coding                                 01Jun92   jbb  
 a few changes and additions                    09Oct92   rdw  
 corrections from Dale McLerran, FHCRC          16Feb94   rdw  
 suggestions from David Murray, U. Minnesota    21Sep95   rdw  
 suggestions from Ken Goldberg, Wyeth-Ayerst    27Oct95   rdw  
 various minor updates                          06Apr96   rdw 
 per suggestions from Ken Goldberg, INITIAL  
    option changed, INTERCEPT= option dropped, 
    and FITTING, NOPREV, and NOTEST options  
    added.                                      12Mar97   rdw 
 more Goldberg ideas: NOTES option added,  
    PARMS specification is only used in the  
    first iteration unless you also specify  
    NOPREV, some clean up                       19May97   rdw 
 7.01 conversion                                01Jul97   rdw 
 switched XBETA= and PRED=                      14Nov97   rdw  
 save spatial coordinates as suggested by 
    Michael O'Kelly, Quintiles Dublin           01Dec97   rdw 
 eliminated LSMEANS / OM check                  05Dec97   rdw 
 titling code from Dale McLerran, FHCRC         20Feb98   rdw  
 made PRINTLAST and FITTING the default         25Mar98   rdw 
 fixed problem with TYPE=SP(EXP)                30Apr98   rdw 
 allowed METHOD=MIVQUE0 to persist as 
    suggested by Svetlana Rudnaya, Ford         14Aug98   rdw 
 changed output data set as suggested 
    by Carol Gotway-Crawford, CDC               25Sep98   rdw 
 Mauricio Ortiz Oct-2000 CHANGES IN OUTPUT LSMEASN TO 
 GIVE SE FOR MU  
 
                                                              
 DESCRIPTION                                                   
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 -----------                                                   
 The macro uses iteratively reweighted likelihoods to fit the  
 model; refer to Wolfinger, R. and O'Connell, M., 1993,        
 ``Generalized Linear Mixed Models:  A Pseudo-Likelihood       
 Approach,'' Journal of Statistical Computation and            
 Simulation, 48.                                               
                                                               
 By default, GLIMMIX uses restricted/residual psuedo           
 likelihood (REPL) to find the parameter estimates of the      
 generalized linear mixed model you specify.  The macro calls  
 Proc Mixed iteratively until convergence, which is decided    
 using the relative deviation of the variance/covariance       
 parameter estimates. An extra-dispersion scale parameter is   
 estimated by default.                                         
 
 There are a few macros at the beginning; all are used in the  
 main macro, GLIMMIX.  This macro will work on any type of     
 model with the error distributions and link functions given   
 in the ERRLINK macro.  In addition, you can specify your      
 own error and/or link functions.  In order to do this, you    
 must specify error=user and/or link=user in conjunction with  
 the errvar=, errdev=, linku=, linkud=, linkui=, and linkuid= 
 options.   
                                                               
 The relevant information is saved using the MAKE statement    
 of Proc Mixed, which is a part of ODS.                         
                                                               
 The following are reserved variable names and should not be   
 used in your input SAS data set:                              
                                                               
    col, deta, dmu, eta, lowereta, lowermu, mu, pred, resraw, 
    reschi, stderreta, stderrmu, uppereta, uppermu, var, _offset,  
    _orig, _w, _wght, _y, _z     
 
 The following data sets are created by the macro and exist 
 after completion unless certain options exclude them: 
 
    _class, _con, _cov, _diff, _dim, _ds, _est, _fitstats, _lsm,  
    _model, _pred, _predm, _slice, _soln, _solnr, _tests3 
 
 To see how each of these data sets are created, search the macro 
 code below.  If the data set you want is not one of these, add 
 an appropriate MAKE statement to your STMTS= specification. 
                                                               
 CAUTION:  This macro can produce biased results for repeated 
 binary data with few repeats on each subject.  Refer to 
 Breslow and Clayton (1993, JASA, 9-25).  
                                                               
 
 SYNTAX                                                        
 ------                                                        
 Syntax for the macro is similar to that of Proc Mixed.        
 There are other options that are macro-specific, however.     
                                                               
 %glimmix(data=,                                               
    procopt=,                                                  
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    stmts=,                                                    
    weight=,                                                   
    freq=,                                                     
    error=,                                                    
    errvar=,                                                   
    errdev=,  
    link=,                                                     
    linkn=,                                                    
    linknd=,                                                   
    linkni=,                                                   
    linku=,                                                    
    linkud=,                                                   
    linkui=,                                                   
    linkuid=,                                                   
    numder=,                                                   
    cf=,                                                       
    converge=,                                                       
    maxit=,                                                       
    offset=,                                                   
    out=, 
    outalpha=, 
    options=                                                   
 )                                                             
                                                               
 where                                                         
                                                               
  data     specifies the data set you are using.  It can either 
           be a regular input data set or the _DS data set 
           from a previous call to GLIMMIX.  The latter is used 
           to specify starting values for GLIMMIX and should be 
           accompanied by the INITIAL option described below. 
                                                               
  procopt  specifies options appropriate for a PROC            
           MIXED statement.  Refer to the Proc Mixed           
           documentation for more information.                 
                                                               
  stmts    specifies Proc Mixed statements for the analysis,   
           separated by semicolons and listed as a single      
           argument to the %str() macro function.  Statements  
           may include any of the following:  CLASS, MODEL,    
           RANDOM, REPEATED, PARMS, ID, CONTRAST, ESTIMATE,    
           and LSMEANS.  Syntax and options for each           
           statement are exactly as in the Proc Mixed          
           documentation.  If you wish to use the OM option 
           with the LSMEANS statement, you should specify 
           OM=dataset to avoid conflicts with weights. 
                                                               
  weight   specifies a weighting variable for the analysis     
           This allows you to construct your own weights       
           which can modify or replace the ones constructed    
           by GLIMMIX.                                         
                                                               
  freq     specifies a frequency variable for the analysis.    
           It replicates observations with the number of       
           replicates being equal to the value of the FREQ     
           variable.                                           



 80 

                                                               
  error    specifies the error distribution. Valid types are:  
                                                               
              binomial|b, normal|n, poisson|p, gamma|g,        
              invgaussian|ig, and user|u                       
                                                               
           When you specify error=user, you must also provide  
           the errvar= and errdev= options.  The default       
           error distribution is binomial.                     
                                                               
  errvar   specifies the user-defined variance function.  It   
           must be expressed as a function the argument "mu"   
           (see examples).                                     
                                                               
  errdev   specifies the user-defined deviance function.  It   
           must be expressed as a function the arguments       
           "_y", which is the response variable, and "mu",     
           which is the mean.  You are allowed to use "_wght"  
           also, which corresponds to the denominator of a     
           binomial response.  Typical deviance functions are  
           as follows:                                         
                                                               
                normal           (_y-mu)**2                    
                poisson          2*_y*log(_y/mu);              
                binomial         2*_wght*(_y*log(_y/mu)+       
                                  (1-_y)*log((1-_y)/(1-mu)))   
                gamma            -2*log(_y/mu)                 
                invgaussian      (((_y-mu)**2)/(_y*mu*mu))     
                                                               
           The default deviance is binomial.                   
 
  link     specifies the link function. Valid types are        
                                                               
              logit, probit, cloglog, loglog, identity,        
              power(), log, exp, reciprocal, nlin, and user.   
              (warning: nlin has not been tested, and it currently 
              uses an MQL-type estimation scheme.)              
                                                               
           When you specify link=nlin, you must also provide   
           the linkn=, linknd=, and linkni= options.  When     
           you specify link=user, you must also provide the    
           ulink=, dulink=, and iulink= options.  The default  
           link is different for each error distribution and   
           is as follows:                                      
                                                               
                  Distribution          Default Link           
                  ------------          ------------           
                  Binomial              Logit                  
                  Poisson               Log                    
                  Normal                Identity               
                  Gamma                 Reciprocal             
                  Invgaussian           Power(-2)              
                                                               
  linkn    specifies a nonlinear link function.  It must be  
           enclosed in %str() and assign a value to "mu" by    
           using parameters "b1" - "bk".        
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  linknd   specifies the derivative of the nonlinear link      
           function.                                           
                                                               
  linkni   specifies the initial values for the nonlinear      
           link function. 
 
  linku    specifies a user-defined link function.  It must  
           be expressed as a function with the argument "mu".  
                                                               
  linkud   specifies the derivative of the user-defined link   
           function with respect to mu.  It must be expressed  
           as a function with argument "mu".  For an           
           approximation, use the formula                      
                                                               
                    (u(mu+h)-u(mu-h))/(2*h)                    
                                                               
           where u() is the link and h is a small number.      
                                                               
  linkui   specifies the inverse of the user-defined link.     
           It must be expressed as a function with argument    
           "eta".                                              
                                                               
  linkuid  specifies the derivative of the inverse of the  
           user-defined link.  It must be expressed as a function  
           with argument "eta".  
                                                               
  numder   specifies the tolerance used to numerically differentiate 
           certain link functions (e.g. probit and power).  It has 
           a default value of 1e-5.  
                                                               
  cf       specifies the correction factor added to the data   
           in order to avoid singularities in the initial 
           iteration.  It has a default value of 0.5.          
                                                               
  converge sets the convergence criterion for the GLIMMIX      
           macro.  This is not the convergence criteria used   
           for each internal Proc Mixed call, but rather the   
           criterion used to assess convergence of the entire  
           macro algorithm.  It has a default value of 1e-8.   
                                                               
  maxit    specifies the maximum number of iterations for the  
           GLIMMIX macro to converge.  It has a default value of 
           20.                                              
                                                               
  offset   specifies the offset variable.  By default no offset 
           is used. 
                                                               
  out      specifies a name for an output data set.  This data 
           set is the predicted value data set from Proc Mixed with 
           the following additional variables:   
 
           eta       = linear predictor (xbeta) + offset 
           stderreta = approximate std err of eta 
           lowereta  = lower confidence limit for eta 
           uppereta  = upper confidence limit for eta 



 82 

           mu        = inverse link transform of eta 
           dmu       = derivative of mu with respect to eta 
           stderrmu  = approx std err of mu via delta method 
           lowermu   = lower cl for mu, inv link transform of lowereta 
           uppermu   = upper cl for mu, inv link transform of uppereta 
           var       = variance  
           resraw    = raw residual, y - mu 
           reschi    = scaled residual, (y-mu)/sqrt(phi*var)      
           deta      = derivative of eta with respect to mu 
           _w        = weight used in final Proc Mixed call 
           _z        = dependent variable used in final Proc Mixed call    
 
                      If none is given, then a default name    
                      of _OUTFILE is used.                     
                                                               
  outalpha specifies an alpha level for the confidence limits 
           in the out= data set.               
                                                               
  options  specifies GLIMMIX macro options separated by        
           spaces:      
 
     INITIAL         specifes that the input data set is actually 
                     the _DS data set from a previous call to  
                     GLIMMIX.   This allows you to restart a 
                     problem that stopped or to specify starting 
                     values. 
                                                               
     MQL             computes MQL estimates (see Breslow and   
                     Clayton, 1993, JASA, 9-25).  The default  
                     is PQL with an extra-dispersion           
                     parameter.  
                                                               
     NOPREV          prevents use of previous covariance parameter 
                     estimates as starting values for the next  
                     iteration. 
 
     NOPRINT         suppresses all printing.                  
                                                               
     NOITPRINT       suppresses printing of the iteration      
                     history.   
 
     NOTES           requests printing of SAS notes, date, and page 
                     numbers during macro execution.  By default,  
                     the notes, date, and numbers are turned off 
                     during macro execution and turned back on after 
                     completion. 
                                                               
     PRINTALL        prints all Proc Mixed runs.               
                                                               
     PRINTDATA       prints the pseudo data after each         
                     iteration.                                
 
                                                         
 OUTPUT                                                        
 ------                                                        
 The output from this macro is a printout of selected tables   
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 from the final iteration of Proc Mixed.  All of these tables  
 are stored in data sets whose names begin with an             
 underscore; you can scan the macro code to find the name of   
 the data set you wish to use.                                 
                                                               
                                                               
 EXAMPLE SYNTAX                                                
 --------------                                                
 1) Both of the following examples specifiy the same           
    analysis:  logistic regression, no random effects          
                                                               
    %glimmix(data=ingots,                                      
       stmts=%str(                                             
          class soak;                                          
          model nready/ntotal=soak heat;                       
       )                                                       
    )                                                          
                                                               
    %glimmix(data=ingots,                                      
       stmts=%str(                                             
          class soak;                                          
          model nready/ntotal=soak heat;                       
       ),                                                      
       error=user,errvar=mu*(1-mu),                            
       errdev=2*_wght*(_y*log(_y/mu) +                         
              (1-_y)*log((1-_y)/(1-mu))),                      
       link=user, 
       linku=log(mu/(1-mu)),                         
       linkud=1/(mu*(1-mu)), 
       linkui=exp(eta)/(1+exp(eta)), 
       linkuid=-exp(eta)/(1+exp(eta))**2;      
    )                                                          
                                                               
    Here _wght corresponds to ntotal and _y to nready/ntotal.  
                                                               
 2) This example uses the random, lsmeans, and options         
    arguments:                                                 
                                                               
    %glimmix(data=salaman1,                                    
       stmts=%str(                                             
          class fpop fnum mpop mnum;                           
          model y = fpop|mpop;                                 
          random fpop*fnum mpop*mnum;                          
          lsmeans fpop|mpop / cl;                              
       ) 
       options=noitprint                                                     
    )                                                          
                                                               
 3) This example uses the procopt, random, and offset          
    arguments:                                                 
                                                               
    %glimmix(data=ship,                                        
       procopt=order=data,                                     
       stmts=%str(                                             
          class type year period;                              
          model y=type;                                        
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          random year period;                                  
       ),                                                      
       error=poisson,link=log,offset=service                   
    )                                                          
                                                               
 4) This example uses the repeated argument:                   
                                                               
    %glimmix(data=salaman1,                                    
       stmts=%str(                                             
          class fpop fnum mpop mnum;                           
          model y = fpop|mpop;                                 
          repeated / type=ar(1) sub=fpop*fnum;                 
          lsmeans fpop|mpop / cl;                              
       )                                                       
    )                                                          
                                                               
 DISCLAIMER                                                    
 -----------                                                   
                                                               
 THIS INFORMATION IS PROVIDED BY SAS INSTITUTE INC. AS A       
 SERVICE TO ITS USERS.  IT IS PROVIDED "AS IS".  THERE ARE NO  
 WARRANTIES, EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY OR    
 FITNESS FOR A PARTICULAR PURPOSE REGARDING THE ACCURACY OF    
 THE MATERIALS OR CODE CONTAINED HEREIN.                       
                                                               
 -------------------------------------------------------------*/ 
 
  
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %mvarlst                                                  */ 
 /*    Make a variable list from the class list, model           */ 
 /*    specification, and random specification.                  */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro mvarlst; 
 %let varlst =; 
 %let mdllst = &mdlspec; 
  
 /*---get response variable---*/ 
 %if %index(&response,/) %then  
    %let varlst = %scan(&response,1,/) %scan(&response,2,/) &varlst;  
 %else %let varlst = &response &varlst;  
  
 /*---get fixed effects---*/ 
 %if %index(&mdllst,@) %then %do; 
    %let j = 1; 
    %let mdl = &mdllst; 
    %let mdllst=; 
    %do %while(%length(%scan(&mdl,&j,' '))); 
       %let var=%scan(&mdl,&j,' '); 
       %if %index(&var,@) %then %do; 
          %let b = %eval(%index(&var,@)-1); 
          %let mdllst = &mdllst %substr(%quote(&var),1,&b); 
       %end; 
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       %else %let mdllst = &mdllst &var; 
       %let j = %eval(&j+1); 
    %end; 
 %end; 
 
 %let iv = 1; 
 %do %while (%length(%scan(&mdllst,&iv))); 
    %let varlst = &varlst %scan(&mdllst,&iv); 
    %let iv = %eval(&iv + 1); 
 %end; 
  
 /*---get random effects---*/ 
 %let iv = 1; 
 %do %while (%length(%scan(&rndlst,&iv))); 
    %let temp = %scan(&rndlst,&iv); 
    %if &temp ne INT and &temp ne INTERCEPT %then 
       %let varlst = &varlst &temp; 
    %let iv = %eval(&iv + 1); 
 %end;   
 
 /*---get repeated effects---*/ 
 %let iv = 1; 
 %do %while (%length(%scan(&replst,&iv))); 
    %let temp = %scan(&replst,&iv); 
    %if &temp ne DIAG %then %let varlst = &varlst &temp; 
    %let iv = %eval(&iv + 1); 
 %end;   
   
 %let varlst = &varlst &class &id &freq &weight; 
%mend mvarlst; 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %trimlst                                                  */ 
 /*    Get rid of repetitions in a list                          */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro trimlst(name,lst); 
 %let i1 = 1; 
 %let tname =; 
 %do %while (%length(%scan(&lst,&i1,%str( )))); 
    %let first = %scan(&lst,&i1,%str( )); 
    %let i2 = %eval(&i1 + 1); 
    %do %while (%length(%scan(&lst,&i2,%str( )))); 
       %let next = %scan(&lst,&i2,%str( )); 
       %if %quote(&first) = %quote(&next) %then %let i2=10000; 
       %else %let i2 = %eval(&i2 + 1); 
    %end; 
    %if (&i2<10000) %then %let tname = &tname &first; 
    %let i1 = %eval(&i1 + 1); 
 %end; 
 %let &name = &tname; 
%mend trimlst; 
 
 /*--------------------------------------------------------------*/ 
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 /*                                                              */ 
 /*    %remove                                                   */ 
 /*    Remove a word from a string                               */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro remove(sntnc,wrd); 
 %let sentence=%str( )%nrbquote(&sntnc);  
 %if &sentence^=%str( ) %then %do; 
    %let word=%str( )%nrbquote(&wrd); 
    %let answer=; 
    %let i=%index(&sentence,&word); 
    %if &i and &word^=%str( ) %then %do; 
       %if &i>1 %then %let answer=%qsubstr(&sentence,1,&i-1); 
       %let j=%eval(&i+%index(%qsubstr(&sentence,&i+1),%str( ))); 
       %if &j>&i %then 
       %let answer=&answer%qsubstr(&sentence,&j); 
    %end; 
    %else %let answer=&sentence; 
    %unquote(&answer) 
 %end; 
%mend remove; 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %errlink                                                  */ 
 /*    Create macro variables that contain the link, invlink,    */ 
 /*    derivative, and the variance funtion for the following    */ 
 /*    error distributions and link functions:                   */ 
 /*                                                              */ 
 /*    error distn: normal, binomial, poisson, gamma, and        */ 
 /*                 inverse gaussian                             */ 
 /*    link func:   logit, probit, complementary log-log,        */ 
 /*                 log-log, identity, power(), log, exp, and    */ 
 /*                 reciprocal.                                  */ 
 /*                                                              */ 
 /*    The user-defined specification is given by leaving the    */ 
 /*    error distribution field blank and then giving the link,  */ 
 /*    the derivative of the link, the inverse link, and the     */ 
 /*     variance function.  The parameters for each are:         */ 
 /*                                                              */ 
 /*          mu:   variance function, link, and the derivative   */ 
 /*                of the link                                   */ 
 /*         eta:   inverse link;                                 */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro errlink; 
 
 /*---error distributions: set variance and deviance functions---*/ 
 %let exiterr = 0; 
 %if %length(&error)=0 %then %do; 
    %if %length(&errvar) and %length(&errdev) %then %let error=USER; 
    %else %let error=BINOMIAL; 
 %end;  
 %if %length(&linkn) and %length(&link)=0 %then %let link=NLIN; 
 %if %length(&linku) and %length(&link)=0 %then %let link=USER; 
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 %if &error=BINOMIAL or &error=B %then %do; 
    %let errorfn=BINOMIAL; 
    %let varform=mu*(1-mu); 
    %let devform=_wght*2*(_y*log(_y/mu) + (1-_y)*log((1-_y)/(1-mu))); 
    %if %length(&link)=0 %then %let link=LOGIT; 
 %end; 
 %else %if &error=POISSON or &error=P %then %do; 
    %let errorfn=POISSON; 
    %let varform=mu; 
    %let devform=_wght*2*_y*log(_y/mu); 
    %if %length(&link)=0 %then %let link=LOG; 
 %end; 
 %else %if &error=NORMAL or &error=N %then %do; 
    %let errorfn=NORMAL; 
    %let varform=1; 
    %let devform=_wght*(_y-mu)**2; 
    %if %length(&link)=0 %then %let link=IDENTITY; 
 %end; 
 %else %if &error=GAMMA or &error=G %then %do; 
    %let errorfn=GAMMA; 
    %let varform=mu**2; 
    %let devform=_wght*-2*log(_y/mu); 
    %if %length(&link)=0 %then %let link=RECIPROCAL; 
 %end; 
 %else %if &error=INVGAUSSIAN or &error=IG %then %do; 
    %let errorfn=INVGAUSSIAN; 
    %let varform=mu**3; 
    %let devform=_wght*(((_y-mu)**2)/(_y*mu*mu)); 
    %if %length(&link)=0 %then %let link=INVGAUSSIAN; 
 %end; 
 %else %if &error=USER or &error=U %then %do; 
    %let errorfn=USER; 
    %if %length(&errvar) %then %let varform=&errvar; 
    %else %let exiterr = 1; 
    %if %length(&errdev) %then %let devform=&errdev; 
    %else %let exiterr = 1; 
    %if %length(&link)=0 %then %let link=LOGIT; 
 %end; 
 
 /*---truncate link function, so we can match if a power link---*/ 
 %if %length(&link)>5 %then %let trlink=%substr(&link,1,5);  
 %else %let trlink=&link;  
 
 /*---link functions; set eta, mu, and derivative formulas---*/ 
 %if &trlink=LOGIT %then %do; 
    %let linkfn=LOGIT; 
    %let etaform=log(mu/(1-mu)); 
    %let detaform=1/(mu*(1-mu)); 
    %let muform=exp(eta)/(1+exp(eta)); 
    %let dmuform=exp(eta)/(1+exp(eta))**2; 
 %end; 
 %else %if &trlink=PROBI %then %do; 
    %let linkfn=PROBIT; 
    %let etaform=probit(mu); 
    %let detaform=(probit(mu+&numder)-probit(mu-&numder))/ 
       (2*&numder); 
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    /* 
    %let detaform=(probit(min(1,mu+&numder*(1+abs(mu)))) -  
       probit(max(1,mu-&numder*(1+abs(mu))))) / 
       (2*&numder*(1+abs(mu))); 
    */ 
    %let muform=probnorm(eta); 
    %let dmuform=(probnorm(eta+&numder)-probnorm(eta-&numder))/ 
       (2*&numder); 
 %end; 
 %else %if &trlink=CLOGL %then %do; 
    %let linkfn=COMPLEMENTARY LOG LOG; 
    %let etaform=log(-log(1-mu)); 
    %let detaform=-1/((1-mu)*log(1-mu)); 
    %let muform=1-exp(-exp(eta)); 
    %let dmuform=exp(-exp(eta))*exp(eta); 
 %end; 
 %else %if &trlink=LOGLO %then %do; 
    %let linkfn=LOG LOG; 
    %let etaform=-log(-log(mu)); 
    %let detaform=-1/(mu*log(mu)); 
    %let muform=exp(-exp(-eta)); 
    %let dmuform=exp(-exp(-eta))*exp(-eta); 
 %end; 
 %else %if &trlink=IDENT %then %do; 
    %let linkfn=IDENTITY; 
    %let etaform=mu; 
    %let detaform=1; 
    %let muform=eta; 
    %let dmuform=1; 
 %end; 
 %else %if &trlink=LOG %then %do; 
    %let linkfn=LOG; 
    %let etaform=log(mu); 
    %let detaform=1/mu; 
    %let muform=exp(eta); 
    %let dmuform=exp(eta); 
 %end; 
 %else %if &trlink=EXP %then %do; 
    %let linkfn=EXPONENTIAL; 
    %let etaform=exp(mu); 
    %let detaform=exp(mu); 
    %let muform=log(eta); 
    %let dmuform=1/eta; 
 %end; 
 %else %if &trlink=RECIP %then %do; 
    %let linkfn=INVERSE; 
    %let etaform=1/mu; 
    %let detaform=-1/mu**2; 
    %let muform=1/eta; 
    %let dmuform=-1/eta**2; 
 %end; 
 %else %if &trlink=POWER %then %do; 
    %let linklen = %eval(%length(&link)-7); 
    %let expon=%substr(&link,7,&linklen); 
    %let linkfn=POWER(&expon); 
    %let etaform=mu**(&expon); 
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    %let detaform=(&expon)*mu**(&expon-1); 
    /* 
    %let detaform=((mu+&numder)**(&expon)-(mu-&numder)**(&expon))/ 
       (2*&numder); 
    %let detaform=((mu+&numder*(1+abs(mu)))**(&expon) - 
       (mu-&numder*(1+abs(mu)))**(&expon))/ 
       (2*&numder*(1+abs(mu))); 
    */ 
    %let muform=eta**(1/(&expon)); 
    %let dmuform=(1/(&expon))*eta**(1/(&expon)-1); 
 %end; 
 %else %if &trlink=INVGA %then %do; 
    %let linkfn=POWER(-2); 
    %let etaform=mu**(-2); 
    %let detaform=-2*mu**(-3); 
    %let muform=eta**(-1/2); 
    %let dmuform=(-1/2)*eta**(-3/2); 
 %end; 
 %else %if &trlink=BOXCO %then %do; 
    %let linkfn=BOX-COX; 
    %let linklen = %eval(%length(&link)-8); 
    %let expon=%substr(&link,8,&linklen); 
    %let etaform=(mu**(&expon)-1)/(&expon); 
    %let detaform=mu**((&expon)-1); 
    %let muform=((&expon)*eta + 1)**(1/(&expon)); 
    %let dmuform=((&expon)*eta + 1)**(1/(&expon)-1); 
 %end; 
 %else %if &trlink=USER %then %do; 
    %let linkfn=USER; 
    %if %length(&linku) %then %let etaform=&linku; 
    %else %let exiterr = 1; 
    %if %length(&linkud) %then  %let detaform=&linkud; 
    %else %let exiterr = 1; 
    %if %length(&linkui) %then %let muform=&linkui; 
    %else %let exiterr = 1; 
    %if %length(&linkuid) %then %let dmuform=&linkuid; 
    %else %let exiterr = 1; 
 %end; 
 %else %if &trlink=NLIN %then %do; 
    %let linkfn=NONLINEAR; 
    %if %length(&linkn) %then %let nlinform=&linkn; 
    %else %let exiterr = 1; 
    %if %length(&linknd) %then %let nlinder=&linknd; 
    %else %let exiterr = 1; 
 %end; 
 
 %if %index(&options,DEBUG) %then %do; 
    %put options = &options; 
    %put intopt = &intopt; 
    %put varlst = &varlst; 
    %put error = &errorfn; 
    %put variance = &varform; 
    %put deviance = &devform; 
    %put link:  eta = &etaform; 
    %put dlink:  deta = &detaform; 
    %put invlink:  mu = &muform; 
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 %end; 
  
%mend errlink; 
 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %init                                                     */ 
 /*    Sets the initial values for the iterations.               */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro init; 
 
 %let off = &offset; 
 
 %if %index(&intopt,NLIN) %then %do; 
    /*---determine number of parameters---*/ 
    %let nb = 0; 
    %let i = 1; 
    %do %while(%index(&linkni,B&i)); 
       %let nb = %eval(&nb + 1); 
       %let i = %eval(&i + 1); 
    %end; 
    %let nu = 0; 
    %let ns = 0; 
    %let nus = 0; 
    %let varlst = &varlst one mu; 
 %end; 
 
 data _ds; 
    set %unquote(&data);    
    %if not %index(&options,INITIAL) %then %do; 
       /*---move away from parameter space boundary for the binomial 
            error situation---*/ 
       %if %index(&response,/) %then %do; 
          mu = (%scan(&response,1,/) + &cf)/(%scan(&response,2,/) +  
             2*&cf);  
          _wght = %scan(&response,2,/) ; 
       %end; 
       %else %if &errorfn=BINOMIAL %then %do; 
          mu = (&response + &cf)/(1 + 2*&cf); 
          _wght = 1; 
       %end; 
       %else %do; 
          mu = &response + &cf; 
          _wght = 1; 
       %end; 
       %if %length(&weight) %then %do; 
          _wght = &weight * _wght;                
       %end; 
       _y      = &response; 
       var     = &varform; 
       _offset = &off; 
       %if %index(&intopt,NLIN) %then %do; 
          array b{&nb} b1-b&nb; 
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          array db{&nb} db1-db&nb; 
          one = 1; 
          %do i = 1 %to &nb; 
             %let idx = %index(&linkni,B&i); 
             b&i = %scan(%substr(&linkni,&idx),2,'=' ' '); 
          %end; 
          &nlinform 
          _z = _y - mu; 
          &nlinder 
          do i = 1 to &nb; 
             _z = _z + db{i}*b{i}; 
          end; 
          _w = _wght / var; 
       %end; 
       %else %do; 
          eta  = &etaform ; 
          deta = &detaform ;  
          _w = _wght / ((deta**2)*(var)); 
          _z = (_y-mu)*deta + eta - _offset; 
       %end; 
       %if %length(&freq) %then %do; 
          do i = 1 to &freq; 
             if i=1 then _orig='y';  
             else _orig='n';                     
             output;                          
          end; 
       %end; 
       %else %do; 
          _orig='y'; 
       %end; 
       if (_w = .) then _w = 1; 
       /* 
       keep _y _z _w _offset _wght _orig &varlst; 
       */ 
    %end; 
 run; 
 
 %if %index(&options,PRINTDATA) %then %do; 
    proc print; 
    run; 
 %end; 
 
 %let iter = 0; 
   
%mend init; 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %newdata                                                  */ 
 /*    Create the new data set with the updated values           */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro newdata; 
 /*---save previous parameter estimates---*/ 
 data _oldsoln; 
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    set _soln; 
 run; 
 
 /*---save previous estimates of covariance matrix---*/ 
 data _oldcov; 
    set _cov; 
    %let covsaved = 1; 
 run; 
 
 %if %index(&options,DEBUG) %then %put Creating new pseudo data.; 
 
 /*---create new data set---*/ 
 data _ds;  
    %if %index(&intopt,NLIN) %then %do; 
       set _ds; 
       array b{&nb} b1-b&nb; 
       array db{&nb} db1-db&nb; 
       /* 
       array u{&nu,&ns} u1-u&nus; 
       array du{&nu,&ns} du1-du&nus; 
       array _r{&nu} _r1-_r&nu; 
       */ 
       &nlinform  
       _z = _y - mu; 
       &nlinder  
       do i = 1 to &nb; 
          _z = _z + db{i}*b{i}; 
       end; 
       /* 
       do i = 1 to &nu; 
          _r{i} = du{i,subject}; 
          _z = _z + _r{i}*u{i,subject}; 
          end; 
       end; 
       */ 
       var = &varform;  
       _w = _wght / var; 
       /* 
       keep _y _z _w _offset _wght _orig &varlst db1-db&nb one x; 
       */ 
    %end; 
    %else %do;  
       set _pred; 
       eta = pred + _offset; 
       mu = &muform;  
       deta = &detaform; 
       var = &varform;   
       %if %index(&options,HYBRID) %then %do; 
          eta = (pred + _offset)/1.5; 
          mu = &muform;  
          deta = &detaform; 
          eta = pred + _offset; 
          mu = &muform;  
          /* 
          mu = &muform;  
          var = &varform;   
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          */ 
       %end; 
       _w = _wght / ((deta**2)*(var)); 
       _z = (_y - mu)*deta + eta - _offset; 
       /* 
       keep _y _z _w _offset _wght _orig &varlst; 
       */ 
       %end; 
    run; 
   
 %if %index(&options,PRINTDATA) %then %do; 
    proc print; 
    run; 
 %end; 
 
%mend newdata; 
 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %mixed                                                    */ 
 /*    Calculate parameter estimates using Proc Mixed.           */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro mixed; 
 
 %if %index(&options,DEBUG) %then %put Calling Proc Mixed.; 
 
 %let mivque0 = 0; 
  
 %again: 
 
 /*---get rid of predicted data set---*/ 
 /*proc datasets lib=work nolist; 
    delete _pred; 
 run;*/ 
 
 /*---use mivque0 if did not converge the first time---*/ 
 %if (&mivque0 = 1) %then %do; 
    /*---save the original method---*/ 
    %let procopt0 = &procopt; 
    %let procopt = &procopt METHOD=MIVQUE0; 
 %end; 
 
 proc mixed data=_ds &procopt; 
    %if %length(&class) %then %do; 
       class &class ;  
       %if not %index(&procopt,NOCLPRINT) %then %do; 
          ods output classlevels=_class; 
       %end; 
    %end; 
    model _z = %unquote(&mdlspec) %unquote(&mdlopt); 
    weight _w; 
    ods output modelinfo=_model; 
    ods output dimensions=_dim; 
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    ods output covparms=_cov; 
    ods output fitstatistics=_fitstats; 
    ods output solutionf=_soln; 
    %if %length(%scan(&mdlspec,1)) and not %index(&mdlopt,NOTEST)  
       %then %do; 
       ods output tests3=_tests3; 
    %end; 
    %if %length(&spec) %then %do; 
       %unquote(&spec) 
       %if %index(&intopt,SOLNR) %then %do; 
          ods output solutionr=_solnr; 
       %end; 
       %if %index(&spec,ESTIMATE) %then %do; 
          ods output estimates=_est; 
       %end; 
       %if %index(&spec,CONTRAST) %then %do; 
          ods output contrasts=_con; 
       %end; 
       %if %index(&spec,LSMEANS) %then %do; 
          ods output lsmeans=_lsm; 
          %if %index(&intopt,LSMDIFF) %then %do; 
             ods output diffs=_diff; 
          %end; 
          %if %index(&intopt,LSMSLICE) %then %do; 
             ods output slices=_slice; 
          %end; 
       %end; 
    %end; 
    %if &covsaved=1 and not %index(&options,NOPREV) and  
       not %index(&procopt,MIVQUE0) and (&mivque0 = 0) %then  
       %str(parms / pdata=_oldcov &parmopt2;); 
    %else %if (%length(&parmspec) or %length(&parmopt)) and  
       (&mivque0 = 0) %then %do; 
       parms &parmspec &parmopt ; 
    %end; 
    id _y _offset _wght _orig &varlst; 
 run; 
 
 %if %index(&options,PRINTDATA) %then %do; 
    proc print data=_pred; 
    run; 
 %end; 
 
 /*---check for convergence, if not, then run again 
      with method=mivque0---*/ 
 %if (&mivque0 = 1) %then %do; 
    %let procopt = &procopt0; 
    %let mivque0 = 0; 
 %end; 
 %else %do; 
    %let there = no; 
    data _null_;  
       set _pred;  
       call symput('there','yes');  
    run; 
    %if ("&there" = "no") %then %do; 
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       %if not %index(&options,NOPRINT) %then %do; 
          %put Computing MIVQUE0 estimates in iteration &iter because; 
          %put %str(   )Proc Mixed did not converge.; 
       %end; 
       %let mivque0 = 1; 
       %goto again; 
    %end; 
 %end; 
 
 /*---set up for hybrid Taylor series---*/ 
 %if %index(&options,HYBRID) %then %do; 
    data _predm; 
       set _predm; 
       predm = pred; 
       keep predm; 
    run; 
    data _pred; 
       merge _predm _pred; 
    run; 
 %end;  
 
 /*---merge in new estimates of b and u for nonlinear link---*/ 
 %if %index(&intopt,NLIN) %then %do; 
    %if (&nb) %then %do; 
       proc transpose data=_soln out=_beta; 
          var estimate; 
       run; 
       data _beta; 
          set _beta; 
          array b{&nb} b1-b&nb;    
          array col{&nb} col1-col&nb; 
          do i = 1 to &nb; 
             b{i} = col{i}; 
             end; 
          one = 1; 
          keep one b1-b&nb; 
       run; 
       data _ds; 
          set _ds; 
          drop b1-b&nb; 
       run; 
       data _ds; 
          merge _ds _beta; 
          by one; 
       run; 
    %end; 
    /*---this isn't finished---*/ 
    /* 
    %if (&nu) %then %do; 
       proc transpose data=_solnr out=_blup; 
          var estimate; 
       run; 
       data _blup; 
          set _blup; 
          array u{&nus} u1-u&nus;    
          array col{&nus} col1-col&nus; 
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          do i = 1 to &nus; 
             u{i} = col{i}; 
             end; 
          one = 1; 
          keep one u1-u&nus; 
       run; 
    %end; 
    */ 
 %end; 
 
%mend mixed;    
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %compare                                                  */ 
 /*    Compare the last two parameter estimates to check for     */ 
 /*    convergence if no random components, else compare         */ 
 /*    estimates of covariance matrix.                           */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro compare; 
 
 /*---Use relative difference of parameter estimates and 
      covariance matrix as a measure of convergence---*/ 
 %let crit = 0; 
 %compit(soln,estimate);  
 %compit(cov,estimate); 
 
 data _null_; 
    crit = &crit; 
    if (crit<&converge) then conv = 1; 
    else conv = 0; 
    call symput('conv',conv); 
 run; 
 
%mend compare; 
 
 
%macro compit(type,est); 
 
 /*---save convergence information in conv and crit---*/ 
 data _compare; 
    merge _old&type(rename=(&est=oldest)) _&type end=last; 
    retain crit &crit; 
    denom = (abs(oldest) + abs(&est))/2; 
    if (denom > &converge) then do;  
       reldiff = abs(oldest - &est) / denom; 
       crit = max(crit,reldiff); 
    end; 
    output; 
    if last then do; 
       call symput('crit',left(crit)); 
    end; 
 run; 
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 %if %index(&options,DEBUG) %then %do; 
    proc print data=_compare;  
    run; 
 %end; 
 
%mend compit; 
 
 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %iterate                                                  */ 
 /*    Iteration process                                         */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro iterate; 
 
 %let conv = 0; 
 %let iter = 1; 
 
 %do %while(&iter <= &maxit);  
    %newdata 
    %mixed 
    %compare 
    %if not %index(&options,NOPRINT) and 
        not %index(&options,NOITPRINT) %then %do; 
       %if (&iter=1) %then %do; 
          %put %str(   ) GLIMMIX Iteration History; 
          %put; 
          %put Iteration    Convergence criterion; 
       %end; 
       %if (&iter<10) %then  
          %put %str(   ) &iter            &crit; 
       %else %if (&iter<100) %then  
          %put %str(  ) &iter            &crit; 
       %else  
          %put %str( ) &iter            &crit; 
    %end; 
    %let iter = %eval(&iter+1); 
    %if (&conv=1) %then %let iter=%eval(&maxit+1); 
 %end;    
 
%mend iterate; 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %compile                                                  */ 
 /*    Compile the macro results.                                */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro compile; 
 
 /*---get variance estimate---*/ 
 %let scale = 1; 
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 data _null_; 
    set _cov; 
    if covparm='Residual' then call symput('scale',estimate); 
 run; 
 
 /*---calculate deviance and Pearson Chi-Squared---*/ 
 %if %index(&intopt,NLIN) %then %do; 
    data _pred; 
       set _pred; 
       one = 1; 
    run; 
    data _pred; 
       merge _pred _beta; 
       by one; 
    run; 
 %end; 
 
 data _stats; 
    set _pred end=last; 
    retain deviance 0 pearson 0; 
    if ((_y ne .) and (pred ne .)) then do; 
       _y  = _y + 1e-10*(_y=0) - 1e-10*(_y=1); 
       eta = pred + _offset; 
       %if %index(&intopt,NLIN) %then %do; 
          &nlinform; 
       %end; 
       %else %do; 
          mu = &muform; 
       %end; 
       deviance + &devform; 
       pearson  + _wght * ((_y-mu)**2/(&varform)); 
    end; 
    if last; 
    keep deviance pearson; 
 run; 
 
 data _stats; 
    length descript $35; 
    set _stats; 
    descript = 'Deviance';  
    value = deviance; output; 
    descript = 'Scaled Deviance';  
    value = deviance / &scale; output; 
    descript = 'Pearson Chi-Square';  
    value = pearson; output; 
    descript = 'Scaled Pearson Chi-Square';  
    value = pearson / &scale; output; 
    descript = 'Extra-Dispersion Scale';  
    value = &scale; output; 
    keep descript value; 
    label descript = 'Description' value = 'Value'; 
 run; 
 
 /*---ESTIMATE statement results---*/ 
 %if %index(&spec,ESTIMATE) %then %do; 
    data _est; 
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       set _est; 
       %if not %index(&intopt,NLIN) %then %do; 
          eta = estimate; 
          mu = &muform; 
          label mu = 'Mu'; 
          drop eta; 
          %if %index(&intopt,ESTCL) %then %do; 
             eta = lower; 
             lowermu = &muform; 
             eta = upper; 
             uppermu = &muform; 
             label lowermu = 'LowerMu' uppermu = 'UpperMu'; 
          %end; 
       %end; 
    run; 
 %end; 
 
 /*---least squares means---*/ 
 %if %index(&spec,LSMEANS) %then %do; 
    data _lsm; 
       set _lsm; 
       %if not %index(&intopt,NLIN) %then %do; 
          eta = estimate; 
       stderreta = stderr; 
          mu = &muform; 
          dmu = &dmuform; 
          stderrmu = abs(dmu)*stderreta; 
          label mu = 'Mu'; 
          %if %index(&intopt,LSMCL) %then %do; 
             eta = lower; 
             lowermu = &muform; 
             eta = upper; 
             uppermu = &muform; 
             label lowermu = 'LowerMu' uppermu = 'UpperMu'; 
          %end; 
          drop eta; 
       %end; 
    run; 
 %end; 
 
%mend compile; 
 
 
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %printout                                                 */ 
 /*    Print out the macro results.                              */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro printout; 
 
 &titlen 'GLIMMIX Model Statistics';   
 proc print data=_stats noobs label; 
    format value 10.4; 
 run;   
 &titlen;    
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%mend printout; 
 
 
                         
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %outinfo                                                  */ 
 /*    Make an output data set.                                  */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro outinfo(outfile); 
 
 data &outfile;  
    set _pred; 
    eta = pred + _offset; 
    stderreta = stderrpred; 
    lowereta = lower + _offset; 
    uppereta = upper + _offset; 
    mu = &muform; 
    dmu = &dmuform; 
    stderrmu = abs(dmu)*stderreta; 
    eta = lowereta; 
    lowermu = &muform; 
    eta = uppereta; 
    uppermu = &muform; 
    eta = pred + _offset; 
    var = &varform; 
    resraw = _y - mu; 
    reschi = (_y-mu)/sqrt(&scale * var); 
    deta = &detaform; 
    _w = _wght /((deta**2)*(var)); 
    _z = (_y - mu)*deta + eta - _offset;  
    if _orig='y'; 
 run; 
 
%mend outinfo; 
                          
 /*--------------------------------------------------------------*/ 
 /*                                                              */ 
 /*    %glimmix                                                  */ 
 /*    Put it all together                                       */ 
 /*                                                              */ 
 /*--------------------------------------------------------------*/ 
%macro glimmix(data=,procopt=,stmts=,weight=,freq=, 
    error=BINOMIAL,errvar=,errdev=,link=,linku=,linkud=, 
    linkui=,linkuid=,linkn=,linknd=,linkni=,numder=1e-5,cf=0.5, 
    converge=1e-8,maxit=20,offset=0,out=,outalpha=0.05,options=); 
 
 %let options = %qupcase(&options); 
 %if %index(&options,DEBUG) %then %put Initializing.; 
 %else %if not %index(&options,NOTES) %then %do; 
    options nonotes nodate nonumber; 
 %end; 
 
 /*---default data set---*/ 
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 %if %bquote(&data)= %then %let data=&syslast; 
 %let exiterr = 0; 
 %let covsaved = 0; 
 %let there = no; 
 /*---check that it is there---*/ 
 data _null_;  
    set &data;  
    call symput('there','yes');  
 run; 
 %if ("&there" = "no") %then %do; 
    %let exiterr = 1; 
    %goto exit; 
 %end; 
 
 /*---change to uppercase---*/ 
 %let data     = %qupcase(&data); 
 %let procopt  = %qupcase(&procopt); 
 %let weight   = %qupcase(&weight); 
 %let freq     = %qupcase(&freq); 
 %let stmts    = %qupcase(&stmts); 
 %let error    = %qupcase(&error); 
 %let errvar   = %qupcase(&errvar); 
 %let errdev   = %qupcase(&errdev); 
 %let link     = %qupcase(&link); 
 %let linkn    = %qupcase(&linkn); 
 %let linknd   = %qupcase(&linknd); 
 %let linkni   = %qupcase(&linkni); 
 %let linku    = %qupcase(&linku); 
 %let linkud   = %qupcase(&linkud); 
 %let linkui   = %qupcase(&linkui); 
 %let linkuid  = %qupcase(&linkuid); 
 %let offset   = %qupcase(&offset); 
 %let outfile  = %qupcase(&out); 
 %let outalpha = %qupcase(&outalpha); 
 %let options  = %qupcase(&options); 
 
 /*---title---*/ 
 %let ntitle=0;  
 %let titlesas=; 
 data _null_; 
    set sashelp.vtitle; 
    if (number=1) and (text="The SAS System") then  
       call symput("titlesas",right(text)); 
    else call symput("ntitle",left(put(number,2.))); 
    if number=10 then call symput("title10",text); 
 run; 
 %if &ntitle=10 %then %let titlen = title10; 
 %else %let titlen = title%eval(&ntitle + 1); 
 
 /*---loop through statements and extract information---*/ 
 %let spec = ; 
 %let class = ; 
 %let parms = ; 
 %let id = ; 
 %let rndlst = ; 
 %let replst = ; 
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 %let intopt = ; 
 %let iv = 1; 
 %do %while (%length(%scan(&stmts,&iv,;))); 
 
    %let stmt = %qscan(&stmts,&iv,%str(;)); 
    %let first = %qscan(&stmt,1); 
    %let fn = %eval(%index(&stmt,&first) + %length(&first)); 
 
    /*---check RANDOM options and extract random effects list---*/ 
    %if %index(&first,RANDOM) or %index(&first,REPEATED) %then %do;  
       %let intopt = &intopt COVMOD; 
    %end; 
    %if %index(&first,RANDOM) %then %do; 
       %let i = %index(&stmt,/); 
       %if &i = 0 %then %let i = %length(&stmt); 
       %else %do;   
          %let rndopt = %substr(&stmt,&i);  
          %if %index(&rndopt,%str( S )) or %index(&rndopt,SOLUTION) or 
             %index(&rndopt,%str( CL )) or %index(&rndopt,ALPHA) %then %do; 
             %let intopt = &intopt SOLNR; 
          %end; 
       %end; 
       %let rndlst = %substr(&stmt,&fn,%eval(&i-&fn+1)); 
    %end; 
   
    /*---check REPEATED options and extract repeated effects list---*/ 
    %if %index(&first,REPEATED) %then %do; 
       %let i = %index(&stmt,/); 
       %if &i = 0 %then %let i = %length(&stmt); 
       %else %do;  
          %let repopt = %substr(&stmt,&i);  
          %let j = %index(&repopt,EXP); 
          %if &j ne 0 %then %do; 
             %let k = %index(&repopt,EXP); 
             %let repexp = %bquote(%substr(&repopt,&k)); 
             %let k1 = %index(&repexp,%str(%()); 
             %let k1 = %eval(&k1 + 1); 
             %let repexp1 = %bquote(%substr(&repexp,&k1)); 
             %let k2 = %index(&repexp1,%str(%))); 
             %let replst = &replst %substr(&repexp,&k1, 
                %eval(&k2-1)); 
          %end; 
          %let j = %index(&repopt,TYPE=SP); 
          %if &j ne 0 %then %do; 
             %let k = %index(&repopt,TYPE=SP); 
             %let repexp = %bquote(%substr(&repopt,&k)); 
             %let k1 = %eval(%index(&repexp,%str(%))) + 1); 
             %let repexp = %bquote(%substr(&repexp,&k1)); 
             %let k2 = %eval(%index(&repexp, %str(%()) + 1); 
             %let k3 = %eval(%index(&repexp, %str(%))) - 1); 
             %let replst = &replst %substr(&repexp,&k2, 
                %eval(&k3-&k2+1)); 
          %end; 
       %end; 
       %let j = %eval(&i-&fn); 
       %if &j > 0 %then  
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          %let replst = &replst %substr(&stmt,&fn,&j); 
    %end; 
 
    /*---check ESTIMATE and LSMEANS options---*/ 
    %if %index(&first,ESTIMATE) and  
       (%index(&stmt,CL) or %index(&stmt,ALPHA)) %then %do; 
       %let intopt = &intopt ESTCL; 
    %end; 
    %if %index(&first,LSMEANS) %then %do; 
       %if %index(&stmt,CL) or %index(&stmt,ALPHA) %then %do; 
          %let intopt = &intopt LSMCL; 
       %end;  
       %if %index(&stmt,DIFF) or %index(&stmt,ADJ) %then %do; 
          %let intopt = &intopt LSMDIFF; 
       %end;  
       %if %index(&stmt,SLICE) %then %do; 
          %let intopt = &intopt LSMSLICE; 
       %end;  
    %end; 
 
    /*---save statements---*/ 
    %if %index(&first,CLASS) %then %do; 
       %let class = %qsubstr(&stmt,&fn); 
    %end; 
    %else %if %index(&first,MODEL) %then %do; 
       %let model = %qsubstr(&stmt,&fn); 
    %end; 
    %else %if %index(&first,ID) %then %do; 
       %let id = %qsubstr(&stmt,&fn); 
    %end; 
    %else %if %index(&first,PARMS) %then %do; 
       %let parms = %qsubstr(&stmt,&fn); 
    %end; 
    %else %let spec = &spec &stmt %str(;) ; 
 
    %let iv = %eval(&iv + 1); 
 %end; 
 
 /*---get response, model specification, and model options---*/ 
 %let response = %scan(&model,1,=); 
 %let eqidx = %eval(%index(&model,=)+1); 
 %if (&eqidx > %length(&model)) %then %let mdl = %str(); 
 %else %let mdl = %str( ) %qsubstr(&model,&eqidx); 
 %if %index(&mdl,/) %then %do; 
    %let mdlspec = %qscan(&mdl,1,/);   
    %let mdlopt = / %qscan(&mdl,2,/);  
    %if %index(&mdlopt,%str( S )) or %index(&mdlopt,SOLUTION) or 
       %index(&mdlopt,CL) or %index(&mdlopt,ALPHA) %then %do; 
       %let intopt = &intopt SOLNF; 
    %end; 
    %if %index(&options,HYBRID) %then %do; 
       %let mdlopt = &mdlopt S OUTPM=_predm OUTP=_pred; 
    %end; 
    %else %if %index(&options,MQL) %then %do; 
       %let mdlopt = &mdlopt S OUTPM=_pred; 
    %end; 
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    %else %do; 
       %let mdlopt = &mdlopt S OUTP=_pred; 
    %end; 
 %end; 
 %else %do; 
    %let mdlspec = &mdl; 
    %if %index(&options,HYBRID) %then %do; 
       %let mdlopt = / S OUTPM=_predm OUTP=_pred; 
    %end;  
    %else %if %index(&options,MQL) %then %do; 
       %let mdlopt = / S OUTPM=_pred; 
    %end;  
    %else %do; 
       %let mdlopt = / S OUTP=_pred;  
    %end; 
 %end; 
 %let mdlopt = &mdlopt alphap = &outalpha; 
 
 /*---add an @ sign if it is missing---*/ 
 %if %index(&mdlspec,|) %then %do; 
    %let mdl=&mdlspec; 
    %let mdlspec=; 
    %let i=1; 
    %do %while(%length(%scan(&mdl,&i,' '))); 
       %let mdlterm = %scan(&mdl,&i,' '); 
       %if %index(&mdlterm,|) and %index(&mdlterm,@)=0 %then %do; 
          %let j=1; 
          %do %while(%length(%scan(&mdlterm,&j,|))); 
           %let j = %eval(&j+1); 
          %end; 
          %let atvalue = %eval(&j-1); 
          %let mdlterm = &mdlterm.@&atvalue; 
       %end; 
       %let mdlspec = &mdlspec &mdlterm; 
       %let i = %eval(&i+1); 
    %end; 
 %end; 
  
 /*---get parms specification, and parms options---*/ 
 %let parmopt2 = ; 
 %if %index(&parms,/) %then %do; 
    %let parmspec = %scan(&parms,1,/); 
    %let parmopt = / %scan(&parms,2,/); 
    %if not %index(&options,NOPREV) %then %do; 
       %let parmopt2 = %scan(&parms,2,/); 
       %let parmopt2 = %remove(%quote(&parmopt2),PARMSDATA); 
       %let parmopt2 = %remove(%quote(&parmopt2),PDATA); 
       %let parmopt2 = %remove(%quote(&parmopt2),OLS); 
       %let parmopt2 = %remove(%quote(&parmopt2),RATIOS); 
    %end; 
 %end; 
 %else %do; 
    %let parmspec = %qupcase(&parms); 
    %let parmopt  = ;  
 %end; 
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 %if %length(&linkn) %then %let intopt = &intopt NLIN; 
 
 /*---create local variables---*/ 
 %local varlst errorfn linkfn varform devform etaform detaform  
    muform dmuform nlinform nlinder deviance scale n nb nu ns nus  
    crit conv cf intopt iter; 
 
 /*---get variable list and trim it---*/ 
 %mvarlst 
 %trimlst(varlst,&varlst);                  
 
 /*---set error and link function macro variables---*/ 
 %errlink 
 
 /*---print header---*/ 
 %if not %index(&options,NOPRINT) %then %do; 
    %if %index(&data,.)=0 %then %let data=WORK.&data; 
    %put; 
    %put %str(      ) The GLIMMIX Macro; 
    %put; 
    %put Data Set           : &data; 
    %put Error Distribution : &errorfn; 
    %put Link Function      : &linkfn; 
    %put Response Variable  : &response; 
    %if %length(&weight) %then 
       %put Weight             : &weight; 
    %if %length(&freq) %then 
       %put Frequency          : &freq; 
    %put; 
    %put; 
 %end; 
 
 /*---initialize iteration starting values---*/ 
 %init 
 
 /*---turn off printing---*/ 
 %if not %index(&options,PRINTALL) %then %do; 
    ods exclude all; 
 %end; 
 
 /*---run first estimates for convergence tests---*/ 
 %mixed 
 
 /*---iterate until convergence---*/ 
 %iterate 
 
 /*---turn the printing back on---*/ 
 %if not %index(&options,PRINTALL) %then %do; 
    ods select all; 
 %end; 
 
 /*---final Proc Mixed run---*/ 
 %if not %index(&options,NOPRINT) %then %do; 
    %put; 
    %put Output from final Proc Mixed run:; 
    %mixed 



 106 

 %end; 
 
 /*---stop if did not converge---*/    
 %if &conv ne 1 %then %do;  
    %if not %index(&options,NOPRINT) %then %do; 
       %put GLIMMIX did not converge.; 
    %end; 
 %end; 
 /*---otherwise compile and print results---*/ 
 %else %do; 
    %compile 
    %if not %index(&options,NOPRINT) %then %do; 
       %printout 
    %end; 
    /*---create output data set---*/ 
    %if %length(&outfile) %then %do; 
       %outinfo(%quote(&outfile)); 
    %end; 
 %end; 
 
 %exit:; 
 %if not %index(&options,NOTES) %then %do; 
    options notes date number; 
 %end; 
 
 /*---title cleanup---*/ 
 &titlen; 
 %if %length(&titlesas) %then %do; 
    title "The SAS System"; 
 %end; 
 %else %if &ntitle=10 %then title10 &title10; 
   
%mend glimmix; 
 
 
 
 
End: GLIMMIX-Macro 
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