An assessment of cobia in Southeast US waters

Nancy B Thompson, 1995

SEDAR28-RD12

9 January 2012

An Assessment of Cobia in Southeast U.S. Waters

Nancy B. Thompson

March 1995

National Marine Fisheries Service Southeast Fisheries Science Center Miami Laboratory
75 Virginia Beach Dr.
Miami, FL 33149
Miami Laboratory Contribution No. MIA-94/95-7?

MSAP/95/2

Introduction

Cobia (Rachycentron canadum) are pelagic fish found in U.S. waters from Massachusetts to Texas (Shaffer and Nakamura 1989). According to the three previous assessments (Isley 1992; Thompson 1993; Thompson 1994), cobia are caught primarily by the recreational sector in both the Atlantic and the Gulf of Mexico. In addition, it was determined that there is a significant bycatch of cobia that occurs incidental to the bottom shrimp trawl fishery in the Gulf of Mexico (Thompson 1993; Thompson 1994). The 1994 assessment determined that with stable catches and low F, the Atlantic stock was not overfished. It was also determined that the Gulf stock was more heavily exploited and at that time was not overfished.

In the 1994 assessment, an age length key provided by Mr. Jim Franks, Gulf Coast Research Laboratory was used to age fish in both the Atlantic and Gulf of Mexico. It was recommended by the Mackerel Stock Assessment Panel that it would be more appropriate to age fish landed in the Atlantic from data more representative of this area. To this end, data were provided by Mr. Joseph Smith, SEFSC, Beaufort Laboratory and used to construct an age length key for Atlantic landed fish. Fish landed in the Gulf of Mexico were aged with the key provided by Mr. Jim Franks.

Other changes in the data which impact the assessment, include "new" estimates of Gulf of Mexico bycatch in the shrimp trawl fishery provided by Dr. Scott Nichols, SEFSC, Pascagoula Laboratory; no estimates are yet available for the Atlantic. Recreational estimates from MRFSS derived from the "new" method were incorporated into the catch data.

Finally, the South Atlantic Fishery Management Council specifically requested that all information on stock identification be summarized.

Stock Identification
While there is no new mark recapture information from the project of Mr. Jim Franks, there are new recaptures from the NMFS/SEFSC Cooperative Gamefish Tagging Program (Table 1). A total of 1301 fish have been released through March, 1995 and of these, 120 recaptures have been reported (Table 1). All the recaptures have been reported since 1986. Notably, from 1987 through 1994, about $5-14 \%$ of fish released were reported as recaptured. Of the 120 recaptures, 5 were released from an unknown location. Of the 115 fish recaptured with know release location, all but $9(8 \%)$ were recaptured in the body of water of release using the Dade/Monroe counties line to separate the Gulf and Atlantic waters (Table 1). For these 9 fish, all were released in
the Atlantic and recaptured in the Gulf. For these 115 recaptures the mean straight line distance between was 158.66 nm (range 0764.46 nm). Mean days at large was estimated as 264.38 (range 01124 days at large). Of the five fish without release location, 4 were recaptured in the Gulf of Mexico and one in the Atlantic defined by the Dade/Monroe counties line.

Table 1. Releases and recaptures of cobia from the SEFSC database as of $3 / 95$.

YEAR	RELEASES	RECAPTURES	O/O RECAPTURED
1940	6	0	0
1962	1	0	0
1965	4	0	0
1966	1	0	0
1969	1	0	0
1972	1	0	0
1973	2	0	0
1977	1	0	0
1978	2	0	0
1984	7	0	0
1985	2	0	0
1986	1	1	100
1987	39	2	5
1988	27	0	0
1989	41	5	12
1990	203	13	6
1991	274	14	5
1992	305	43	14
1993	204	25	12
1994	177	16	9
1995	1	0	0
[GRAND TOTAL	=	= = = = = =	$========$ =
	1301	120	

As summarized in the previous assessment, Franks and McBee (1994) tagged and released 5,260 fish from the northern Gulf of Mexico to North Carolina and by 1993, 322 (6.1%) had been recaptured. Franks and McBee (1994) noted that recaptures indicate that movement between the Gulf of Mexico and the Atlantic is typical and seasonal. These authors hypothesize that the Florida Keys represent a winter aggregating area for cobia and that fish move in the spring from the Florida Keys to spawning areas off North Carolina and the northern Gulf. The longest distance between release and recapture was from Vermilion Bay, Louisiana and Daytona Beach, FL.; a total of 1300 nm . They conclude from their results that cobia demonstrate some movement between the Gulf and the Atlantic that interaction occurs in the Florida Keys. Franks and

McBee (1994) indicate that this movement between the Gulf and Atlantic suggests that there is a single cobia stock. Genetic work by Biesiot and Franks (pers. comm) further supports the one stock hypothesis although sample sizes were limited in number by location. Franks (pers comm) indicated that the limited samples from the Atlantic were genetically indistinguishable from those obtained from the northern Gulf of Mexico. Genetic homogeneity implies some level of mixing of fish from the Gulf of Mexico and the U.S. North Atlantic. Franks (pers. comm) considers these results preliminary.

Franks hypothesizes that there is a single stock of cobia in U.S. Atlantic waters including the Gulf of Mexico. Thompson (1993) suggested that resource conservation argued to evaluate cobia utilizing a two stock hypothesis. The two stock approach was endorsed by the Mackerels Stock Assessment Panel in 1993. Therefore, for the purposes of this assessment, the two stock hypothesis was examined.

Catches

Catches for the Gulf and Atlantic were updated from the previous assessment for both the commercial and recreational sector. (Table 2). Commercial catches were derived from the NMFS/SEFSC General Canvass and the states. Recreational data are obtained from the Beaufort Headboat Survey, the Texas Parks and Wildife Creel Survey, and the National Marine Recreational Fishery Statistics Survey (MRFSS). Estimates of catch in numbers from MRFSS include those from the old and new methods for the period 1988 through 1992. Catch estimates for 1993 and 1994 are from the new method only.

The commercial catch data are provided by weight. The TIP samples from the commercial sector separated by Gulf and Atlantic were used to derive average weight per fish and to estimate numbers of fish landed. The recreational catch from is provided as an estimate of total numbers landed. To derive weight, samples from TPWD, Headboat, MRFSS, and recreational TIP data were used to derive average weights for the Gulf and Atlantic respectively which were then multiplied by numbers to derive total weight landed. The catch in numbers of fish derived from new MRFSS catch estimates for 1988 through 1992 were used to re-estimate catch in weight as presented for the recreational catch.

Table 2. Cobia U.S. Atlantic and Gulf of Mexico catch summary in number and by weight in pounds. Year denotes calendar year. For the period 1988 through 1992, estimates using the new and old MRFSS catch estimates are included, with the old estimates in parentheses. The 1994 estimates are preliminary and only include commercial data through June and only the MRFSS data are included for the recreational estimate.

Atlantic Catch in Numbers

Year	Commercial	Recreational	Total	
84	1479	40750	42229	
85	1328	44204	45532	
86	3099	33130	36229	
87	5401	29211	34612	
88	4684	29578 (27138)	34262	(31822)
89	5799	48068 (48880)	53867	(54679)
90	5482	30876 (26242)	36358	(31775)
91	5533	34458 (27010)	39991	(32543)
92	6078	55741 (60057)	61819	(66135)
93	3432	29199	32631	
94	1013	21535	22548	

Gulf Catch in Numbers

Gulf Catch in Weight X 1000lbs.

84	174.4	1066.9	1240.3	
85	161.4	1115.8	1277.3	
86	176.8	1492.2	1669.1	
87	201.9	1145.6	1347.5	
88	180.0	1358.8	(1249.6)	1538.8
89	232.3	1477.6	(1249.6)	1709.9

As noted in the previous assessments, in both number and weight, annual catches in the Gulf of Mexico are higher than in the Atlantic over the period 1984-1994. As before, the majority of the total catch for both stocks, both in weight and numbers, is from the recreational sector. For both sectors, catch is typically from hook and line or longline. For the period 1988 through 1992, combined catches were at or slightly higher than MSY (2.2 million pounds).

Bycatch Estimates in Gulf Shrimp Fishery

The bycatch data from the commercial shrimp trawl fishery in the Gulf of Mexico that were utilized in the previous two years assessment were updated for this assessment (Figure 1). New data, available from the NMFS/SEFSC observer program have been accumulated with data from previous sampling periods to produce updated estimates for the time period. As before, size samples from the bycatch were used to apportion the bycatch by age based on the age-length key of Franks. Bycatch are either of age zero or 1 based on length. No data are yet available for the Atlantic. These bycatch estimates are included in the annual catch at age estimates and in all analyses.

Catch at Age

Gulf of Mexico
As was done in the previous assessment, the age-length key of Franks and McBee (1991) was used to catches by number for the Gulf of Mexico. The annual catch at age is included with the results of the VPA. Without bycatch, fish appear to be fully recruited at age 2. Based on the age-length key provided by Franks, there are no fish older than age 9 in the catch of either "stock". Thus, catch at age was pooled at age $8+$.

Atlantic
To age the Atlantic catches in number, the age length key provided by Mr. Joseph Smith, SEFSC, Beaufort Laboratory was applied. Notably, this resulted in no fish of age 0 in the catches. Fish are fully recruited at age 3 rather than age 2 as in the Gulf of Mexico. Fish were aged to 14 years, and pooled at this age. The resulting distribution of ages is from age 1 through age 14. It appears that fish in the Atlantic grow more slowly than in the Gulf of Mexico and live longer.

Table 3. Catch at age in numbers of fish for combined conmercial and recreational catches. Gulf of Mexico catch at age includes estimated bycatch for ages 0 and 1. Gulf of Mexico catch at age was derived from the results of Franks and McBee (1991) and Atlantic catch at age was derived using the results of Smith (pers comm.)

	Catch at age gulf of mexico					
	84	85	86	87	88	89
0	84420	122220	44100	69300	46230	90258
1	49580	71780	25900	40700	38739	62575
2	24809	22364	29903	21040	31972	26393
3	12813	11550	15444	10867	14916	12313
4	6387	5758	7699	5417	9170	7570
5	1852	1670	2233	1571	2251	1858
6	624	562	752	529	844	697
7	225	203	271	191	651	542
$8+$	109	99	132	93	235	199
Total	180819	236206	126434	149708	145008	202405
1-3	87202	105694	71247	72607	85627	101281
2-8+	46819	42206	56434	39708	60039	49572
1-8+	96399	113986	82334	80408	98778	112147

	90	91	92	93
0	103278	155978	136745	188308
1	69616	103567	91310	119394
2	24724	33002	30346	24537
3	11534	15406	14157	11477
4	7091	9475	8704	7043
5	1740	2325	2136	1729
6	652	872	801	648
7	503	672	618	500
7	182	243	223	180
$8+$	219320	32150	285040	353796
Total	105874	151975	135813	155388
$1 \cdot 3$	46426	61995	56985	46094
$2 \cdot 8+$	116042	165562	148295	165488
$1 \cdot 8+$				

Catch at age atlantic

	84	85	86	87	88	89
	2275	2992	$2380 \cdot$	1928	2251	3539
2	3412	3679	2928	2797	2769	4353
3	11017	11879	9452	9030	899	14053
4	7343	7918	6300	6019	5958	9367
5	5062	5458	4343	4149	4107	6458
6	3719	4010	3191	3048	3018	4744
7	2179	2350	1869	1786	1768	2780
8	1782	1922	1529	1461	1446	2273
9	1305	1407	1120	1070	1059	1665
10	1110	1197	952	910	900	1416

11	487	525	418	399	395	621
12	194	209	167	159	158	248
13	323	348	277	264	262	412
$14+$	253	273	217	208	206	323
Total	40462	44166	35142	33227	33234	52250
$1-3$	16704	18550	14760	13755	13958	21945
$2-8$	34515	37215	29611	28290	28004	44028
$1-8$	36790	40207	31992	30218	30255	47567

	90	91	92	93
1	2197	2627	4062	2144
2	2702	3232	4995	2554
3	8722	10433	16128	8415
4	5814	6954	10750	5502
5	4008	4589	7411	3762
6	2944	3317	5444	2776
7	1725	1653	3190	1639
8	1411	1547	2609	1332
9	1033	1171	1910	986
10	879	1051	1625	783
11	386	461	713	376
12	154	184	284	150
13	255	241	472	249
$14+$	201	240	371	196
Total	32430	37700	59964	30864
$1-3$	13621	16292	25185	13114
2.8	27326	31725	50527	25980
$1-8$	29523	34353	54588	28124

Reproduction
Shaffer and Nakamura (1989) reviewed information on the reproductive biology of cobia. They noted that spawning in the Atlantic off the Carolinas and Virginia and in the Gulf of Mexico off of Texas occurred between May and August and peaked in June/July. Lotz et al (1991) examined the gonads of fish sampled in the northern Gulf to the Florida Keys. A total of 459 fish were examined including 134 males and 361 females and GSI's were determined. They determined that the peak of ovarian developmental activity occurred from April to June, with a second peak in August and September. They suggested that spawning may occur two or even three times in a year, beginning in early spring and ending in early fall. Lotz et al (1991) provided an estimated mean spawn size of 4.8×10^{7} eggs $\left(\mathrm{SE}=9.8 \times 10^{8}\right)$. They demonstrated that spawn size increased with increasing fork length of fish. However, fecundity was not estimated by age because of likely multiple spawning. Thus, while fecundity by size and therefore age cannot be estimated, it is valid to evaluate SPR based on biomass at age, since fish increase in size and fecundity with age.

Most recently, Biesot, Caylor, and Franks (1994) examined female cobia sampled from spawning grounds in the northern Gulf of Mexico. Their results confirm those from previous studies with the spawning season peaking in April through August in this area. More notably, they describe seasonal migrations with winter mixing in the waters of the Florida Keys and movement to spawning grounds in
the northern Gulf of Mexico in the spring and in waters off North Carolina to New Jersey in late spring to early fall.

Recruitment

The data provided by Pelligren and referenced by Thompson (1993) were used to evaluate recruitment again. These data from the fall groundfish surveys from 1972-1992 provided numbers of cobia by tow which were used to estimate numbers of fish by year (Figure 2). Catch frequency as before is reasonably stable and the only statistical differences were noted for 1976 and 1977 (low estimate) as compared with 1983 (high estimate).

CPUE

As noted in previous assessments, the recreational catch is more significant than the commercial catch. Given that most of the catch comes from the private/rental recreational mode, the MRFSS CPUE data were evaluated as an index to calibrate VPA results. To derive an index, a general linear model (ANOVA) was completed for the Gulf and Atlantic MRFSS data by Mr. Michael Schirripa, Miami Laboratory. During this process, several variables were examined and those that were significant at $p<.05$ were maintained in the model to derive the index value. In this way, year, county, mode, and area were examined as variables significantly determining CPUE for the Gulf and year mode and county were significant for the Atlantic. The standardized annual values for CPUE from the MRFSS data for the Gulf and Atlantic are presented in Appendix I.

VPA
An age based analysis as described by Powers and Restrepo (1992) was completed for the Gulf and Atlantic stocks respectively. The full results of the Gulf analysis is presented in Appendix II for the Gulf of Mexico and Atlantic landed fish separately and for the Gulf and Atlantic landed fish combined.

Using results fron the previous assessments, with $\mathrm{M}=.4$, and the catch at age from table 3 , the VPA was completed with Powers STAATS program. For the Gulf "stock" the catch at age including bycatch was applied. The CPUE indices evaluated from the MRFSS data were used to calibrate the results of the VPA. This approach provides stock at age and fishing mortality at age vectors by year.

Notably, fishing mortality rates are extremely low for the Atlantic area as noted in the previous assessments and effectively $\mathrm{M}=\mathrm{Z}$. Thus, there is no new information for this area and this group cannot be overfished. A combination of Atlantic and Gulf
catches effectively results in a Gulf analysis and does not offer additional information. The VPA therefore, only provides results for the Gulf group which is the more heavily exploited group.

SPR
SPR ratios was evaluated for the Gulf group only. Because fecundity estimates were not available by age, biomass was used to estimate SSBR with and without fishing mortality. SPR was evaluated using Goodyear's YPR-SPR program. As before, a vector of fishing mortality by age, which was estimated as an average of the F at age from the VPA, is required. This vector is derived from the F values for catch at age from the 1993 catch at age data. Each fishing mortality rate at age is standardized with the highest F at age value. Natural mortality was assumed to be . 4 as used in the previous two assessments. Average weight per fish at age was estimated using the age and growth equations of Franks and McBee. Results are presented in Figure 3. Values of F for the fully recruited age classes, $2-8+$, exceed $F_{0.1}$ for the time series. In 1993, estimated F is slightly below $F_{\max }$ and the resulting equilibrium SPR is below 20% for the Gulf fish. It is suggested that cobia assessments continue to be done separately for the Gulf and Atlantic.

References

Biesiot, P.M., R.E. Caylor, and J.S. Franks. 1994. Biochemical and histological changes during ovarian development of cobia, Rachycentron canadum, from the northern Gulf of Mexico. US Fish. Bull. 92: 686-696.

Franks, J.S. and J.T. McBee (1994). Investigations of the cobia Rachycentron canadum in Mississippi marine waters and adjacent Gulf waters. Draft Annual Report Project No. F-91, Sport Fish restoration USFWS, Atlanta, Ga.

Franks, J.S. and J.T. McBee. 1991. Age and growth in cobia from the northcentral Gulf of Mexico. In: Franks, J.S., T.D. McIlwain, R. M. Overstreet, J.T. McBee, J.M. Lotz, and G. Meyer. Investigations of the cobia (Rachycentron canadum) in Mississippi waters and adjacent Gulf waters. Gulf Coast Res. Lab. Ocean Springs, MS. Final Report to Miss. Dept. Wildl. fish. and Parks/Bur. Mar. Res. and USFWS, Atlanta Ga. Project No. F-91.

Isley, J. 1992. Examination of the status of cobia and dolphin stocks in the U.S. South Atlantic and Gulf of Mexico in 1992. Miami Laboratory Contribution MIA-91/92-50.

Lotz, J.M.. R.M. Overstreet, and J.S. Franks. 1991. Reproduction of cobia, Rachycentron canadum, from the northeastern Gulf of

Mexico. In: Franks, J.S., T.D. McIlwain, R. M. Overstreet, J.T. McBee, J.M. Lotz, and G. Meyer. Investigations of the cobia (Rachycentron canadum) in Mississippi waters and adjacent Gulf waters. Gulf Coast Res. Lab. Ocean Springs, MS. Final Report to Miss. Dept. Wildl. fish. and Parks/Bur. Mar. Res. and USFWS, Atlanta Ga. Project No. F-91.

Powers, J.E. and V.R. Restrepo. 1992. Additional options for agesequenced analysis. ICCAT Coll. Vol. Sci. Pap 39:540-553.

Richards, C.E. 1977. Cobia (Rachycentron canadum) tagging within Chesapeake Bay and updating of growth equations. Chesapeake Science 18(3):310-311.

Shaffer, R. A. and E.I. Nakamura. 1989. Synopsis of biological data on the cobia Rachycentron canadum (Pices:Rachycentridae). NOAA Tech. Rpt. NMFS 82.

Thompson, N.B. 1993. Assessment of the status of cobia in the Gulf and Atlantic: A working paper presented to the Mackerel Stock Assessment Panel. Miami Laboratory Contribution MIA-92/93-45.

Thompson, N.B. 1994. An assessment of cobia in southeast U.S. waters. Miami Laboratory Contribution No. MIA-93/94-38.

Bycatch in Gulf Shrimp Fishery

\rightarrow Old + Updated

Recruitment Index from Groundfish Surveys

MRFSS Gulf - catA + catB1 + catB2 $=$ total catch Nominal average CPUE (catch/man-hour)

9:48 Tuesday, January 31, 1995

YEAR	AVE_CPU	C8S_CPU	SE_CPU
82	111.322	62	13.0684
83	137.820	30	29.9229
84	139.782	24	28.6725
85	89.916	23	9.8685
86	161.868	53	25.6975
87	138.596	66	16.9041
88	258.193	61	74.7860
89	145.670	53	15.2560
90	187.619	64	25.5371
91	174.434	90	22.4668
92	143.713	141	17.8536
93	123.058	99	10.3468

```
MRFSS Gulf - catA + catB1 + catB2 = total catch

\title{
General Linear Models Procedure
}

Class Level Information
Class Levels Values

YEAR - \(\quad 12 \quad 828384858687888990919293\)
COUNTY \(\quad 21 \quad 1235678910111213141516171819202122\)
MODE \(4 \quad 1234\)

AREA 6012345

MRFSS Gulf - catA + catB1 + catB2 = total catch GLM on catches, numbers caught - all catch types General Linear Models Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & DF & Sum of Squares & Mean
Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 39 & 117.7712068 & 3.0197745 & 3.76 & 0.0001 \\
\hline Error & 726 & 583.0628752 & 0.8031169 & & \\
\hline \multirow[t]{3}{*}{Corrected Total} & 765 & 700.8340820 & & & \\
\hline & R-Square & c.v. & Root MSE & & LCPUE Mean \\
\hline & 0.168044 & 19.57672 & 0.896168 & & 4.57772228 \\
\hline Source & DF & Type IIII ss & Mean Square & F Value & Pr > F \\
\hline year & 11 & 30.44855886 & 2.76805081 & 3.45 & 0.0001 \\
\hline COUNTY & 20 & 30.00428388 & 1.50021419 & 1.87 & 0.0121 \\
\hline MODE & 3 & 37.34808030 & 12.44936010 & 15.50 & 0.0001 \\
\hline AREA & 5 & 8.29886764 & 1.65977353 & 2.07 & 0.0676 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & Estimate & & T for HO: Parameter \(=0\) & \(\mathrm{Pr}>|\mathrm{T}|\) & Std Error of Estimate \\
\hline \multirow[t]{13}{*}{\[
\begin{aligned}
& \text { INTERRCEPT } \\
& \text { YEAR }
\end{aligned}
\]} & & 4.974848190 & B & 23.87 & 0.0001 & 0.20844656 \\
\hline & 82 & -0.339637490 & B & -2.16 & 0.0314 & 0.15754132 \\
\hline & 83 & 0.049833344 & B & 0.25 & 0.8035 & 0.20020092 \\
\hline & 84 & 0.040342932 & B & 0.19 & 0.8519 & 0.21603088 \\
\hline & 85 & -0.336186619 & B & -1.55 & 0.1219 & 0.21706496 \\
\hline & 86 & 0.055698220 & B & 0.35 & 0.7279 & 0.16002909 \\
\hline & 87 & -0.063805970 & B & -0.43 & 0.6667 & 0.14807199 \\
\hline & 88 & 0.438734547 & B & 2.85 & 0.0044 & 0.15373674 \\
\hline & 89 & 0.145114164 & B & 0.92 & 0.3575 & 0.15760350 \\
\hline & 90 & 0.413539246 & B & 2.78 & 0.0055 & 0.14851592 \\
\hline & 91 & 0.161474363 & B & 1.20 & 0.2291 & 0.13413797 \\
\hline & 92 & -0.066223634 & B & -0.55 & 0.5842 & 0.12094698 \\
\hline & 93 & 0.000000000 & B & & & \\
\hline \multirow[t]{21}{*}{COUNTY} & 1 & -0.192192882 & B & -1.05 & 0.2928 & 0.18254172 \\
\hline & 2 & -0.439912190 & B & -2.60 & 0.0095 & 0.16918079 \\
\hline & 3 & -0.234915581 & B & -1.30 & 0.1948 & 0.18102870 \\
\hline & 5 & -0.146369079 & B & -0.76 & 0.4504 & 0.19383616 \\
\hline & 6 & -0.284587766 & B & -1.40 & 0.1620 & 0.20331386 \\
\hline & 7 & -0.745956488 & 8 & -4.18 & 0.0001 & 0.17848048 \\
\hline & 8 & -0.561845767 & & -1.98 & 0.0477 & 0.28323121 \\
\hline & 9 & -0.437839514 & 8 & -1.93 & 0.0544 & 0.22725346 \\
\hline & 10 & -0.503302993 & B & -1.69 & 0.0919 & 0.29822212 \\
\hline & 11 & -0.450380384 & 8 & -1.89 & 0.0591 & 0.23820169 \\
\hline & 12 & -0.669222972 & B & -2.78 & 0.0057 & 0.24113679 \\
\hline & 13 & -0.366938116 & 8 & -1.15 & 0.2513 & 0.31960047 \\
\hline & 14 & -0.594969975 & B & -3.01 & 0.0027 & 0.19786802 \\
\hline & 15 & -0.367670250 & & -1.88 & 0.0600 & 0.19519318 \\
\hline & 16 & -0.132238374 & B & -0.58 & 0.5621 & 0.22801238 \\
\hline & 17 & -0.530785009 & & -1.35 & 0.1783 & 0.39393984 \\
\hline & 18 & -0.352792512 & & -1.11 & 0.2695 & 0.31926282 \\
\hline & 19 & -0.582522614 & & -1.54 & 0.1229 & 0.37718474 \\
\hline & 20 & -0.431263174 & & -1.38 & 0.1667 & 0.31154693 \\
\hline & 21 & -.0.053251618 & B \({ }^{\text {, }}\) & . 0.11 & 0.9100 & -0.47109959 \\
\hline & 22 & 0.000000000 & & & & \\
\hline \multirow[t]{4}{*}{MODE} & 1 & -0.038073496 & B & -0.25 & 0.8051 & 0.15422712 \\
\hline & 2 & 0.260319469 & & 1.08 & 0.2824 & 0.24198269 \\
\hline & 3 & -0.585028849 & B & -6.60 & 0.0001 & 0.08860274 \\
\hline & 4 & 0.000000000 & & & & \\
\hline \multirow[t]{6}{*}{AREA} & 0 & -0.982915027 & & -2.02 & 0.0440 & 0.48718023 \\
\hline & 1 & 0.077210243 & & 0.48 & 0.6311 & 0.16070947 \\
\hline & 2 & 0.002289214 & & 0.02 & 0.9877 & 0.14790805 \\
\hline & 3 & 0.073890323 & & 0.53 & 0.5947 & 0.13882096 \\
\hline & 4 & 0.284540637 & & 1.75 & 0.0804 & 0.16250655 \\
\hline & 5 & 0.000000000 & & & & \\
\hline
\end{tabular}

NOTE: The X 'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.
MRFSS Gulf - catA + catB1 + catB2 \(=\) total catch GLM on catches , numbers caught - all catch types
9:48 Tuesday, January 31, 1995
General Linear Models Procedure
Least Squares Means
\begin{tabular}{|c|c|c|c|c|}
\hline YEAR & \[
\begin{aligned}
& \text { LCPUE } \\
& \text { LSMEAN }
\end{aligned}
\] & Std Err LSMEAN & \[
\begin{gathered}
\mathrm{Pr}>|T| \\
H O: L S M E A N=0
\end{gathered}
\] & LSMEAN Number \\
\hline 82 & 4.07404354 & 0.16228415 & 0.0001 & 1 \\
\hline 83 & 4.46351438 & 0.19525122 & 0.0001 & 2 \\
\hline 84 & 4.45402397 & 0.21068476 & 0.0001 & 3 \\
\hline 85 & 4.07749442 & 0.21481411 & 0.0001 & 4 \\
\hline 86 & 4.46937925 & 0.16957020 & 0.0001 & 5 \\
\hline 87 & 4.34987506 & 0.16582921 & 0.0001 & 6 \\
\hline 88 & 4.85241558 & 0.15193364 & 0.0001 & 7 \\
\hline 89 & 4.55879520 & 0.16936244 & 0.0001 & 8 \\
\hline 90 & 4.82722028 & 0.16548188 & 0.0001 & 9 \\
\hline 91 & 4.57515540 & 0.15022648 & 0.0001 & 10 \\
\hline 92 & 4.34745740 & 0.13791988 & 0.0001 & 11 \\
\hline 93 & 4.41368103 & 0.14584308 & 0.0001 & 12 \\
\hline
\end{tabular}
\(\operatorname{Pr}>|\mathrm{Tr}| \mathrm{HO}: \operatorname{LSmEAN}(\mathrm{i})=\operatorname{LSMEAN}(\mathrm{j})\)
\begin{tabular}{llrrrrrrrrr} 
i/j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 0.0651 & 0.0651 & 0.0874 & 0.9878 & 0.0256 & 0.1023 & 0.0001 & 0.0072 & 0.0001 \\
2 & 0.0651 & 0.9702 & 0.9702 & 0.1357 & 0.9785 & 0.5899 & 0.0726 & 0.6673 & 0.0879 \\
3 & 0.0874 & 0.9757 & 0.1632 & 0.1632 & 0.9473 & 0.6476 & 0.0842 & 0.6523 & 0.0983 \\
4 & 0.9878 & 0.1357 & 0.1632 & 0.0875 & 0.0875 & 0.2266 & 0.0008 & 0.0402 & 0.0010 \\
5 & 0.0256 & 0.9785 & 0.9473 & 0.085 &. & 0.4886 & 0.0305 & 0.6262 & 0.0398 \\
6 & 0.1023 & 0.5899 & 0.6476 & 0.2266 & 0.4886 & & 0.0025 & 0.2289 & 0.0038 \\
7 & 0.0001 & 0.0726 & 0.0842 & 0.0008 & 0.0305 & 0.0025 & & 0.0964 & 0.8822 \\
8 & 0.0072 & 0.6673 & 0.6523 & 0.0402 & 0.6262 & 0.2289 & 0.0964 & & 0.1230 \\
9 & 0.0001 & 0.0879 & 0.0983 & 0.0010 & 0.0398 & 0.0038 & 0.8822 & 0.1230 & \\
10 & 0.0017 & 0.5798 & 0.5752 & 0.0221 & 0.5107 & 0.1366 & 0.0779 & 0.9189 & 0.0994 \\
11 & 0.0652 & 0.5503 & 0.6116 & 0.2039 & 0.4225 & 0.9863 & 0.0007 & 0.1610 & 0.0008 \\
12 & 0.0314 & 0.8035 & 0.8519 & 0.1219 & 0.7279 & 0.6667 & 0.0044 & 0.3575 & 0.0055
\end{tabular}
\(\operatorname{Pr}>|T|\) HO: LSMEAN(i)=LSMEAN(j)
\begin{tabular}{lrrr} 
i/j & 10 & 11 & 12 \\
1 & 0.0017 & 0.0652 & 0.0314 \\
2 & 0.5798 & 0.5503 & 0.8035 \\
3 & 0.5752 & 0.6116 & 0.8519 \\
4 & 0.0221 & 0.2039 & 0.1219 \\
5 & 0.5107 & 0.4225 & 0.7279 \\
6 & 0.1366 & 0.9863 & 0.6667 \\
7 & 0.0779 & 0.0007 & 0.0044 \\
8 & 0.9189 & 0.1610 & 0.3575 \\
9 & 0.0994 & 0.0068 & 0.0055 \\
10 &. & 0.0696 & 0.2291 \\
11 & 0.0696 &. & 0.5842 \\
12 & 0.2291 & 0.5842 &.
\end{tabular}

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

MRFSS Gulf - catA + catB1 + catB2 = total catch
Index and variance caiculations - Gulf Cobia
\begin{tabular}{rcrrrc} 
OBS & LCPUE & UC_CPU & INDEX & VAR_CP & CV \\
1 & 4.07404 & 57.794 & 85.621 & 240.151 & 0.18099 \\
2 & 4.44351 & 85.792 & 126.206 & 610.297 & 0.19574 \\
3 & 4.45402 & 84.972 & 124.611 & 689.638 & 0.21074 \\
4 & 4.07749 & 57.997 & 85.124 & 336.613 & 0.21553 \\
5 & 4.46938 & 86.303 & 127.555 & 474.056 & 0.17069 \\
6 & 4.34988 & 76.469 & 113.146 & 357.903 & 0.16720 \\
7 & 4.85242 & 127.049 & 188.090 & 828.751 & 0.15305 \\
8 & 4.55880 & 94.468 & 139.584 & 565.578 & 0.17038 \\
9 & 4.82722 & 123.863 & 182.990 & 926.114 & 0.16630 \\
10 & 4.57516 & 96.043 & 142.340 & 465.913 & 0.15164 \\
11 & 4.3446 & 76.282 & 113.353 & 251.269 & 0.13984 \\
12 & 4.41368 & 81.573 & 121.046 & 318.917 & 0.14753
\end{tabular}
```

MRFSS Gulf - catA + catB1 + catB2 = total catch
Index with 80% ci, Gulf Cobia
9:48 Tuesday, January 31, 1995

```

Plot of UINDEX*YEAR. Legend: \(A=1\) obs, \(B=2\) obs, etc.
Plot of INDEX*YEAR. Legend: \(A=1 \mathrm{obs}, B=2\) obs, etc.
Plot of LINDEX*YEAR. Legend: \(A=1 \mathrm{obs}, B=2 \mathrm{obs}\), etc.


\section*{Gulf Cobia}
\(M=.4\)

Catch at Age Data in file: C:\STAATS\COBIA\GULAGECD

Final year selectivity was entered as an input
\(\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8+\end{array}\)

Reference Age for Selectivity
\(\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8+\end{array}\)
\begin{tabular}{llllllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\cline { 3 - 9 } & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{tabular}
Available Indices (** denotes indices selected for this fit)
Code \# Index Name Ages at Which Index is Directed
1 MRFSS 2 to 8+ No transformation was used: VPA Model

Indices were scaled to the mean after any transformations were taken.

No tri-cubic weighting used in the least squares

Minimization using a Marquardt Search

Catchability Q's estimated by MLE's and not through the search

F ratio (alpha) method used for bottom row \(\mathrm{F}^{\prime}\) s

Natural Mortality Rate at Age
\begin{tabular}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400
\end{tabular}

CATCH AT AGE DURING YEAR
\begin{tabular}{rrrrrr}
84 & 85 & 86 & 87 & 88 & 89 \\
\hline 84420 & 122220 & 44100 & 69300 & 46230 & 90258
\end{tabular}
\begin{tabular}{lrrrrrr}
1 & 49580 & 71780 & 25900 & 40700 & 38739 & 62575 \\
2 & 24809 & 22364 & 29903 & 21040 & 31972 & 26393 \\
3 & 12813 & 11550 & 15444 & 10867 & 14916 & 12313 \\
4 & 6387 & 5758 & 7699 & 5417 & 9170 & 7570 \\
& 1852 & 1670 & 2233 & 1571 & 2251 & 1858 \\
& 624 & 562 & 752 & 529 & 844 & 697 \\
& 225 & 203 & 271 & 191 & 651 & 542 \\
\(8+\) & 109 & 99 & 132 & 93 & 235 & 199 \\
Total & 180819 & 236206 & 126434 & 149708 & 145008 & 202405 \\
\(1-3\) & 87202 & 105694 & 71247 & 72607 & 85627 & 101281 \\
\(2-8+\) & 46819 & 42206 & 56434 & 39708 & 60039 & 49572 \\
\(1-8+\) & 96399 & 113986 & 82334 & 80408 & 98778 & 112147
\end{tabular}
\begin{tabular}{lrrrr} 
& 90 & 91 & 92 & 93 \\
\cline { 3 - 5 } & & & & \\
1 & 103278 & 155978 & 136745 & 188308 \\
2 & 69616 & 103567 & 91310 & 119394 \\
3 & 24724 & 33002 & 30346 & 24537 \\
4 & 11534 & 15406 & 14157 & 11457 \\
5 & 7091 & 9475 & 8704 & 7043 \\
6 & 1740 & 2325 & 2136 & 1729 \\
7 & 652 & 872 & 801 & 648 \\
\(8+\) & 503 & 672 & 618 & 500 \\
Total & 182 & 243 & 223 & 180 \\
\(1-3\) & 105874 & 151975 & 135813 & 155388 \\
\(2-8+\) & 46426 & 61995 & 56985 & 46094 \\
\hline \(8+\) & 116042 & 165562 & 148295 & 165488 \\
\hline
\end{tabular}

YIELD AT AGE (Lbs)
\begin{tabular}{lrrrrrr} 
& 84 & 85 & 86 & 87 & 88 & 89 \\
\cline { 2 - 7 } 0 & 84420 & 122220 & 44100 & 69300 & 46230 & 90258 \\
1 & 49580 & 71780 & 25900 & 40700 & 38739 & 62575 \\
2 & 24809 & 22364 & 29903 & 21040 & 31972 & 26393 \\
3 & 12813 & 11550 & 15444 & 10867 & 14916 & 12313 \\
4 & 6387 & 5758 & 7699 & 5417 & 9170 & 7570 \\
5 & 1852 & 1670 & 2233 & 1571 & 2251 & 1858 \\
6 & 624 & 562 & 752 & 529 & 844 & 697 \\
7 & 225 & 203 & 271 & 191 & 651 & 542 \\
\(8+\) & 109 & 99 & 132 & 93 & 235 & 199 \\
Total & 180819 & 236206 & 126434 & 149708 & 145008 & 202405 \\
\(1-3\) & 87202 & 105694 & 71247 & 72607 & 85627 & 101281 \\
\(2-8+\) & 46819 & 42206 & 56434 & 39708 & 60039 & 49572 \\
\(1-8+\) & 96399 & 113986 & 82334 & 80408 & 98778 & 112147 \\
& & & & & & \\
\hline
\end{tabular}
\(\begin{array}{llll}90 & 91 & 92 & 93\end{array}\)
\begin{tabular}{rrrr}
\hline 103278 & 155978 & 136745 & 188308 \\
69616 & 103567 & 91310 & 119394 \\
24724 & 33002 & 30346 & 24537 \\
11534 & 15406 & 14157 & 11457 \\
7091 & 9475 & 8704 & 7043
\end{tabular}
\begin{tabular}{lrrrr}
5 & & 1740 & 2325 & 2136 \\
\hline 6 & 652 & 872 & 801 & 648 \\
7 & & 503 & 672 & 618 \\
\(8+\) & 182 & 243 & 223 & 500 \\
& & 219320 & 321540 & 285040 \\
& 1 & 105874 & 151975 & 135813 \\
& & 46426 & 61995 & 56985 \\
\hline & & 116042 & 165562 & 148295 \\
\hline \(1-8+\) & & & & 165488 \\
\hline
\end{tabular}

Initial Parameter Estimates
\begin{tabular}{cccc} 
& Estimate & Lower Bound & Upper Bound \\
1. N Age 3 & 1000000 & 1 & \(1 E+08\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(1 t=1\) & S & SSQAft \(=1.412947\) & 0 \\
\hline \(1 t=2\) & SSQBef= 1.412947 & SSQAft \(=1.322562\) & No. Rewt=0 \\
\hline \(1 t=3\) & SSQBef= 1.322562 & SSQAft= .9441431 & No.Rewt= 0 \\
\hline \(t=4\) & SSQBef= . 9441431 & SSQAft \(=.5494056\) & No.Rewt=0 \\
\hline \(\mathrm{It}=5\) & SSQBef= . 5494056 & SSQAft \(=.5321798\) & No.Rewt= 0 \\
\hline \(I t=6\) & ssabef= . 5321798 & SSQAft \(=.5321589\) & No.Rewt= 0 \\
\hline
\end{tabular}
ration= 6
-f Squares Before \(=.5321798 \quad\) After \(=.5321589\)
ibda \(=9.999999 \mathrm{E}-07 \quad\) omega \(=6.721274 \mathrm{E}-03\)
Corivergence in Marquardt Search: tolerance RSS = . 0001 ; parameter \(=.0005\)

STOCK AT AGE AT BEGINNING OF YEAR
\begin{tabular}{lrrrrrr} 
& 84 & 85 & 86 & 87 & 88 & 89 \\
\cline { 2 - 7 } 0 & 452738 & 401031 & 357436 & 364215 & 383088 & 480019 \\
1 & 193556 & 235396 & 170892 & 203921 & 188262 & 219389 \\
2 & 89835 & 89907 & 100279 & 93628 & 103891 & 94984 \\
3 & 39499 & 40307 & 42290 & 43250 & 45826 & 44027 \\
4 & 14726 & 16223 & 17754 & 16020 & 20257 & 18782 \\
5 & 4635 & 4798 & 6276 & 5785 & 6408 & 6306 \\
6 & 1572 & 1632 & 1882 & 2423 & 2617 & 2497 \\
7 & 540 & 557 & 645 & 663 & 1198 & 1079 \\
\(8+\) & 262 & 272 & 314 & 323 & 433 & 396 \\
\(1-3\) & 322890 & 365610 & 313460 & 340799 & 337979 & 358401 \\
\(2-8+\) & 151069 & 153696 & 169439 & 162092 & 180630 & 168079 \\
\(1-8+\) & 344625 & 389092 & 340331 & 366014 & 368892 & 387460
\end{tabular}
\begin{tabular}{rrrrrr}
2 & 96865 & 111035 & 86668 & 72495 & 236073 \\
3 & 42489 & 45064 & 47975 & 33850 & 28976
\end{tabular}
\begin{tabular}{lrrrrr}
4 & 19632 & 19222 & 17892 & 20809 & 13530 \\
5 & 6564 & 7499 & 5394 & 5108 & 8317 \\
6 & 2737 & 3002 & 3164 & 1915 & 2042 \\
7 & 1114 & 1310 & 1313 & 1477 & 765 \\
& 403 & 474 & 474 & 532 & 803 \\
& 388335 & 408328 & 351090 & 601760 & 932628 \\
& 169805 & 187606 & 162880 & 136186 & 290506 \\
\(1-8+\) & 418786 & 439835 & 379327 & 631600 & 958085 \\
\hline
\end{tabular}
f at age during year
\begin{tabular}{lrrrrrr} 
& 84 & 85 & 86 & 87 & 88 & 89 \\
\cline { 2 - 7 } 0 & 0.2540 & 0.4530 & 0.1612 & 0.2599 & 0.1574 & 0.2565 \\
1 & 0.3668 & 0.4533 & 0.2017 & 0.2744 & 0.2841 & 0.4175 \\
2 & 0.4015 & 0.3542 & 0.4410 & 0.3145 & 0.4585 & 0.4045 \\
3 & 0.4898 & 0.4199 & 0.5707 & 0.3585 & 0.4919 & 0.4076 \\
4 & 0.7214 & 0.5498 & 0.7213 & 0.5164 & 0.7671 & 0.6514 \\
5 & 0.6436 & 0.5360 & 0.5516 & 0.3934 & 0.5425 & 0.4345 \\
6 & 0.6379 & 0.5285 & 0.6438 & 0.3041 & 0.4863 & 0.4068 \\
7 & 0.6822 & 0.5694 & 0.6898 & 0.4230 & 1.0155 & 0.8968 \\
\(8+\) & 0.6822 & 0.5694 & 0.6898 & 0.4230 & 1.0155 & 0.8968 \\
\(1-3\) & 0.3907 & 0.4244 & 0.3179 & 0.2956 & 0.3617 & 0.4128 \\
\(2-8+\) & 0.4622 & 0.3985 & 0.5062 & 0.3478 & 0.5048 & 0.4348 \\
\(1-8+\) & 0.4075 & 0.4313 & 0.3418 & 0.3062 & 0.3861 & 0.4250 \\
F8+/F7 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
& & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
& \multicolumn{1}{r}{90} & 91 & 92 & 93 \\
\cline { 2 - 5 } 0 & 0.2851 & 0.4557 & 0.2013 & 0.2053 \\
1 & 0.4075 & 0.6682 & 0.6938 & 0.3413 \\
2 & 0.3652 & 0.4392 & 0.5401 & 0.5171 \\
3 & 0.3932 & 0.5237 & 0.4353 & 0.5171 \\
4 & 0.5625 & 0.8707 & 0.8535 & 0.5171 \\
5 & 0.3822 & 0.4628 & 0.6359 & 0.5171 \\
6 & 0.3366 & 0.4269 & 0.3617 & 0.5171 \\
7 & 0.7640 & 0.9258 & 0.8120 & 0.5171 \\
\(8+\) & 0.7640 & 0.9258 & 0.8120 & 0.5171 \\
\(1-3\) & 0.3953 & 0.5847 & 0.6156 & 0.3702 \\
\(2-8+\) & 0.3964 & 0.5008 & 0.5390 & 0.5171 \\
\(1-8+\) & 0.4030 & 0.5934 & 0.6244 & 0.3766 \\
F8+/F7 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
& & & & \\
\hline
\end{tabular}
selectivity at age during year
\begin{tabular}{lrrrrrr} 
& 84 & 85 & 86 & 87 & 88 & 89 \\
\cline { 2 - 7 } 0 & 0.3521 & 0.7956 & 0.2235 & 0.5033 & 0.1550 & 0.2860 \\
1 & 0.5084 & 0.7962 & 0.2796 & 0.5314 & 0.2798 & 0.4656 \\
& 0.5565 & 0.6221 & 0.6114 & 0.6090 & 0.4515 & 0.4510 \\
& 0.6790 & 0.7375 & 0.7912 & 0.6942 & 0.4845 & 0.4545 \\
4 & 1.0000 & 0.9655 & 1.0000 & 1.0000 & 0.7554 & 0.7263 \\
5 & 0.8922 & 0.9414 & 0.7647 & 0.7617 & 0.5342 & 0.4845 \\
6 & 0.8842 & 0.9281 & 0.8926 & 0.5889 & 0.4789 & 0.4536
\end{tabular}
\begin{tabular}{lllllll}
7 & 0.9456 & 1.0000 & 0.9563 & 0.8191 & 1.0000 & 1.0000 \\
\(8+\) & 0.9456 & 1.0000 & 0.9563 & 0.8191 & 1.0000 & 1.0000 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
& 90 & 91 & 92 & 93 \\
\cline { 2 - 5 } 0 & 0.3732 & 0.4923 & 0.2359 & 0.3970 \\
1 & 0.5334 & 0.7218 & 0.8130 & 0.6600 \\
2 & 0.4781 & 0.4744 & 0.6329 & 1.0000 \\
3 & 0.5147 & 0.5657 & 0.5100 & 1.0000 \\
4 & 0.7363 & 0.9405 & 1.0000 & 1.0000 \\
5 & 0.5002 & 0.4999 & 0.7450 & 1.0000 \\
6 & 0.4406 & 0.4611 & 0.4238 & 1.0000 \\
7 & 1.0000 & 1.0000 & 0.9515 & 1.0000 \\
\(8+\) & 1.0000 & 1.0000 & 0.9515 & 1.0000 \\
\hline
\end{tabular}

\section*{INDEX RESULTS}

Index No. 1 MRFSS VPA Index: Applied to ages 2 to 8+ Index Fitted to Mid-Year Stock Size in Numbers

Age Selectivity by the Gear/Fishery
\begin{tabular}{llllll}
2 & 3 & 4 & 5 & 6 & 7
\end{tabular}
\begin{tabular}{lcccccc} 
& & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
& 1.000 \\
& 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
& 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
81 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
88 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
89 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
90 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
91 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
92 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
93 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000
\end{tabular}
\begin{tabular}{lr} 
& \(8+\) \\
\cline { 2 - 2 } 84 & 1.000 \\
85 & 1.000 \\
86 & 1.000 \\
87 & 1.000 \\
88 & 1.000 \\
89 & 1.000 \\
90 & 1.000 \\
91 & 1.000 \\
92 & 1.000 \\
93 & 1.000 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr} 
& & & & \\
\cline { 2 - 6 } & 139.7820 & 1.0000 & 0.8944 & 0.9255 & -0.0311 \\
85 & 89.9160 & 1.0000 & 0.5753 & 0.9682 & -0.3929 \\
86 & 161.8680 & 1.0000 & 1.0357 & 1.0188 & 0.0169 \\
& 138.5960 & 1.0000 & 0.8868 & 1.0441 & -0.1572 \\
& 258.1930 & 1.0000 & 1.6521 & 1.0866 & 0.5655 \\
& 145.6700 & 1.0000 & 0.9321 & 1.0421 & -0.1100 \\
90 & 187.6190 & 1.0000 & 1.2005 & 1.0706 & 0.1298 \\
91 & 174.4340 & 1.0000 & 1.1161 & 1.1299 & -0.0138 \\
92 & 143.7130 & 1.0000 & 0.9196 & 0.9653 & -0.0458 \\
93 & 123.0580 & 1.0000 & 0.7874 & 0.8156 & -0.0282 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Stock Sizes: VPA and scaled} & Standardized Residuals \\
\hline Year & VPA Stock Size & Index Stock Size & -.-.-.-..-|------------ \\
\hline 84 & 151069 & 145997 & \#| \\
\hline 85 & 153696 & 91331 & \#\#\#\#\#\#\#\#| \\
\hline 86 & 169439 & 172256 & 1 \\
\hline 87 & 162092 & 137681 & \#\#\#\#| \\
\hline 88 & 180630 & 274638 & |\#\#\#\#\#\#\#\#\#\#\# \\
\hline 89 & 168071 & 150330 & \#\#\#| \\
\hline 90 & 169805 & 190399 & |\#\# \\
\hline 91 & 187606 & 185318 & \#| \\
\hline 92 & 162880 & 155154 & \# \\
\hline 93 & 136186 & 131471 & \# \\
\hline
\end{tabular}
\(Q=9.149237 \mathrm{E}-06\)
Residuals Squared Weighted by 1 ; Percent of total RSS \(=100.000\)

Total Residual Analysis
\begin{tabular}{rrlrlr} 
& \begin{tabular}{c} 
Sorted \\
Weighted \\
Residuals
\end{tabular} & Index & Year & \begin{tabular}{c} 
Cumul \\
Prob
\end{tabular} & \begin{tabular}{c} 
Normal \\
\(Z\)
\end{tabular} \\
\hline 1 & -0.39287 & MRFSS & 85 & 0.1000 & -1.5889 \\
2 & -0.15724 & MRFSS & 87 & 0.2000 & -0.6195 \\
3 & -0.11000 & MRFSS & 89 & 0.3000 & -0.4251 \\
4 & -0.04579 & MRFSS & 92 & 0.4000 & -0.1609 \\
5 & -0.03107 & MRFSS & 84 & 0.5000 & -0.1004 \\
6 & -0.02824 & MRFSS & 93 & 0.6000 & -0.0887 \\
7 & -0.01378 & MRFSS & 91 & 0.7000 & -0.0293 \\
8 & 0.01694 & MRFSS & 86 & 0.8000 & 0.0971 \\
9 & 0.12985 & MRFSS & 90 & 0.9000 & -0.5617 \\
10 & 0.56550 & MRFSS & 88 & 1.0000 & 2.3540 \\
\hline
\end{tabular}

Weighting Given to lndices in Sum of Squares
\begin{tabular}{llllll}
84 & 85 & 86 & 87 & 88 & 89
\end{tabular}
\begin{tabular}{lllllll} 
MRFSS & 1.000000 & 1.000000 & 1.000000 & 1.000000 & 1.000000 & 1.000000
\end{tabular}
\(\begin{array}{llll}90 & 91 & 92 & 93\end{array}\)
\begin{tabular}{llll}
\cline { 2 - 4 } & 1.000000 & 1.000000 & 1.000000 \\
\hline
\end{tabular}

Proportion of Sum of Squares from each Index Point
\begin{tabular}{lrrrrrrr} 
& 84 & 85 & 86 & 87 & 88 & 89 \\
\cline { 2 - 8 } \begin{tabular}{lr} 
& 84 \\
MRFSS \\
\cline { 2 - 8 } & 0.001815 \\
Total & 0.290035 \\
\hline
\end{tabular} & 0.000539 & 0.046460 & 0.600935 & 0.022738 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
& \multicolumn{2}{c}{90} & 91 & 92 & 93 & Total \\
\cline { 2 - 7 } \begin{tabular}{lll} 
MRFSS \\
Total & 0.031683 & 0.000357 \\
& 0.031683 & 0.000357 \\
& & \\
\hline
\end{tabular} l & 0.003940 & 0.001499 & 1.000000 \\
\hline
\end{tabular}

Residual Sum of Squares \(=.5321589\)
Number of Parameters \(=2\)
Number of Data Points \(=\mathbf{1 0}\)
Mean Squared Error \(=6.651986 \mathrm{E}-02\)

Parameter Estimates
\begin{tabular}{cccc} 
& Estimate & Std Error & Coeff of Var \\
1. N Age 3 & 28976.09 & 11123.19 & 0.38387
\end{tabular}

Correlation Matrix of Parameters

N Age 3

N Age 31.000000```

