Notice on SEDAR Working Papers

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Red snapper standardized catch rates from the Marine Recreational Fisheries Statistics Survey for the southeastern U.S. Atlantic Ocean, 1991-2009

Julie M. Defilippi
Atlantic Coastal Cooperative Statistics Program
1444 Eye St. NW
Washington, DC 20005

U.S. Atlantic Ocean recreational catches of red snapper, Lutjanus campechanus, occur most commonly in the private/rental boat and charterboat modes. The Marine Recreational Fisheries Statistics Survey (MRFSS) is a fishery-dependent survey where total catch including discards is reported in angler intercepts and effort is estimated from telephones surveys. Total catch rates (i.e., catch per unit effort, CPUE) can indicate changes in relative abundance. In 1991, MRFSS made several improvements to the survey including linking ancillary intercepts from the same fishing trip together and recording the total number of anglers in the party. Therefore, the data for this analysis was constrained to MRFSS intercepts from 1991-2009 in the private/rental boat and charterboat modes from North Carolina through the Florida Keys (Figure 1). I attempted to calculate two separate indices, north and south of Cape Canaveral, but data were not sufficient for convergence in the southern region. Therefore, I generated a single index that included region as a potential variable. This index was created with and without the B2 data.

There were 152,319 MRFSS intercepts in the charterboat and private/rental boat modes from nearshore (state) and offshore waters (federal), and 43 species including red snapper occurred on at least 0.5% of those intercepts. In this analysis, those additional intercepts from the same fishing trip that caught fish but were unavailable to the creel sampler were linked back to the main intercept for the party.

Over the 19 years from 1991 through 2009, there were 1,711 intercepts that caught red snapper in the study area (Table 1a and 1b, Figure 2a and 2b). However, there were trips that could have caught red snapper, but didn't. To identify that effort and include it in the catch rate standardization process, Stephens and MacCall (2004) logistic regressions (S\&M) were employed. The rationale of $S \& M$ is to identify a homogeneous group of intercepts that are believed to reflect the abundance of the target species. The S\&M method uses a logistic regression of presence or absence by species on each intercept to predict whether the target species (red snapper) could be caught on the trip. Following Stephens and MacCall's example, species that occurred on less than 1% of the total number of intercepts were omitted.

For the S\&M method, the intercept data were rearranged to one record per intercept with binomial (presence or absence) information for each of the 43 species. The response variable in the logistic regression was the presence (1) or absence (0) of red snapper on each intercept and the predictor variables in the full model were the presence or absence
of the other 42 species. There were 30 species (Table 2, Figure 3) whose regression coefficients were significant at the $\alpha=0.05$ level and those species were used in the final, reduced model.

Potential thresholds (estimated probability of catching red snapper) for choosing whether to include an intercept in the catch rate analysis ranged from 0.01 to 0.99 and the critical value was based on the minimum absolute difference between observed number of intercepts with red snapper and the predicted number of intercepts. The smallest absolute difference occurred with a threshold of 0.152 (Figure 4). There were 1,709 intercepts that exceeded the 0.152 threshold.

Once the MRFSS intercepts for calculating the catch rates were selected, the total number of red snapper caught was calculated for each selected intercept and annual catch rates were estimated with generalized linear models (GLM). I applied an approach based on Lo et al. (1992) by dividing the data into two datasets: 1) red snapper presence or absence data (1,709 intercepts) and fit to a GLM with a binomial distribution with a logit link and 2) the total catch of red snapper on positive intercepts (718 intercepts) were fit to a GLM with a gamma distribution with a log link. Potential explanatory variables were year (1991-2009), wave (two-month time period), mode (charterboat or private/rental boat), area (nearshore or offshore), region (North Carolina through Georgia; Nassau County through Flagler County, Florida: Volusia County through Dade County, Florida; and Monroe County, Florida), hours fished ($0,2,4,6,8,10,12+\mathrm{hr}$), and the number of anglers on the trip ($1,2,3,4,5,6,8,10,12+$). Potential variables were evaluated for inclusion in the GLM through a step-wise process. For each step-wise level, provided that the variable with the lowest Akaike Information Criterion (AIC) value was also significant at the $\alpha=0.05$ level (from twice the change in log-likelihood), that variable was added to the model for use in the calculations in the next step (Table 3a, 3b, 3c and 3d).

With the B2 data, the GLM explained 41.43% of the deviance with region explaining 15.21%, year explaining 9.62% of the deviance (Table 3a), and wave, area, hours fished, mode and number of anglers explaining the rest. The model for the total number of red snapper caught per intercept on positive intercepts using a gamma distribution with a log link explained 10.8% of the deviance with most of the deviance explained by year (3.78%), wave (2.29%), number of anglers (1.58%) and the rest by the remaining variables (Table 3b). Without the B2 data, the GLM explained 42.86% of the deviance with number of anglers explaining 13.48%, mode explaining 12.18% of the deviance (Table 3c), and wave, region, area, hours fished and year explaining the rest. The model for the total number of red snapper caught per intercept on positive intercepts using a gamma distribution with a log link explained 26.36% of the deviance with most of the deviance explained by year (8.79%) and wave (6.12%) and the rest by the remaining variables (Table 3d). The annual mean catch per intercept values (Table 1a and 1b, Stephens and MacCall columns) were calculated with a Monte Carlo method based on the number of intercepts by two-month wave, area, mode, region, hours fished and number of anglers per year to determine the probability of a non-zero intercept multiplied by the mean number of red snapper caught per angler. Random variation was added to
each outcome by multiplying the standard error of the proportion positive by a random, normal deviate and by multiplying the standard error of the number per intercept by a different random, deviate. After the random deviates were added to the terms, the terms were back-transformed to their original scales and multiplied together. This process was repeated for each of the 1,709 intercepts and the index was the mean of the outcomes by year (Figure 5a and 5b).

The S\&M standardization method appears to add noise to the relative abundance index data both with and with the B2 data (Figure 6a and 6b). However, a trend is more apparent in the standardized relative CPUE index than in the nominal index. When comparing the with and without B2 versions of the index, the B2 data adds noise and slight increase in the severity of the upward trend (Figure 7).

Literature Cited

Lo, N. C., L. D. Jacobson, and J. L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2515-2526.

Stephens, A. and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70:299-310.

Table 1a. Nominal and standardized total catch rates of red snapper from charterboat and private/rental boat MRFSS modes from nearshore and offshore waters from North Carolina through the Florida Keys using intercepts selected with the Stephens and MacCall logistic regressions. The N is the number of intercepts included in the analysis where red snapper were caught. Run with B2 data.

	Nominal				Stephens and MacCall			
Year	N	Mean	CV	Scaled to Mean	N	Mean	CV	Scaled to Mean
1991	44	5.98	0.51	1.01	9	0.68	0.35	0.32
1992	90	6.24	0.60	1.05	21	0.56	0.34	0.26
1993	45	4.93	0.49	0.83	16	1.82	0.90	0.84
1994	80	5.79	0.55	0.98	20	1.06	0.58	0.49
1995	59	6.32	0.37	1.07	21	1.39	0.51	0.64
1996	51	5.82	0.66	0.98	14	0.71	0.47	0.33
1997	40	5.60	0.75	0.95	5	0.11	0.08	0.05
1998	54	6.43	0.48	1.09	17	0.82	0.39	0.38
1999	95	6.40	0.41	1.08	46	2.40	0.97	1.10
2000	92	7.12	0.45	1.20	41	3.26	1.48	1.50
2001	117	5.16	0.43	0.87	61	1.53	0.66	0.70
2002	108	6.18	0.30	1.04	52	3.34	1.01	1.54
2003	143	5.48	0.38	0.93	67	2.52	0.96	1.16
2004	153	6.75	0.41	1.14	69	2.44	1.00	1.12
2005	104	5.47	0.41	0.92	42	2.48	1.01	1.14
2006	116	5.76	0.36	0.97	52	1.22	0.43	0.56
2007	94	5.59	0.34	0.94	44	2.56	0.86	1.18
2008	118	5.17	0.40	0.87	59	2.35	0.94	1.08
2009	106	6.08	0.35	1.03	62	2.46	0.87	1.13

Table 1b. Nominal and standardized total catch rates of red snapper from charterboat and private/rental boat MRFSS modes from nearshore and offshore waters from North Carolina through the Florida Keys using intercepts selected with the Stephens and MacCall logistic regressions. The N is the number of intercepts included in the analysis where red snapper were caught. Run without B2 data.

	Nominal				Stephens and MacCall			
Year	N	Mean	CV	Scaled to Mean	N	Mean	CV	Scaled to Mean
1991	44	5.59	1.22	1.32	9	0.27	92.91	0.42
1992	90	5.61	0.69	1.32	14	0.14	61.12	0.85
1993	45	4.33	0.91	1.02	13	0.37	57.14	0.42
1994	80	5.38	1.00	1.26	18	0.47	58.43	0.75
1995	59	4.63	0.93	1.09	14	0.47	57.10	0.56
1996	51	5.33	1.13	1.26	10	0.26	47.78	0.48
1997	40	4.65	1.35	1.09	4	0.05	85.89	0.38
1998	54	4.78	1.04	1.12	13	0.26	59.95	0.51
1999	95	3.82	0.66	0.90	31	0.63	43.55	0.90
2000	92	3.59	0.76	0.84	32	0.85	47.73	0.87
2001	117	3.64	0.72	0.86	47	0.57	58.16	1.10
2002	108	3.64	0.82	0.86	44	1.11	45.72	1.02
2003	143	3.75	0.64	0.88	44	0.57	55.58	1.35
2004	153	4.70	0.57	1.11	52	0.89	50.44	1.44
2005	104	3.74	0.59	0.88	26	0.53	47.34	0.98
2006	116	4.13	0.53	0.97	34	0.31	43.88	1.09
2007	94	3.50	0.56	0.82	26	0.54	42.75	0.89
2008	118	3.75	0.47	0.88	43	0.95	53.38	1.11
2009	106	4.62	0.98	1.09	42	0.67	46.46	1.00

Table 2. Species names and codes with significant regression coefficients ($\alpha=0.05$) to predict whether red snapper were caught on MRFSS intercepts for charterboat and private/rental boat MRFSS modes from nearshore and offshore waters.

NODC Code	Scientific Name	Common Name	Coefficient	Error
	Intercept	-4.6741	0.0487	
8835020102 Morone saxatilis	BASS, STRIPED	-5.1450	1.0029	
8839010101 Thunnus thynnus	TUNA, BLUEFIN	-3.5865	1.0016	
8857030301 Mycteroperca microlepis	GROUPER, GAG	-3.5060	0.4499	
88260201 Prionotus	SEAROBINS, NORTH AMERICAN	-2.6777	1.0110	
8710010201 Scomberomorus cavalla	MACKEREL, KING	-2.3956	0.7212	
8850030402 Tautoga onitis	TAUTOG	-2.3028	0.7089	
8835440102 Thunnus albacares	TUNA, YELLOWFIN	-2.1059	0.5803	
8850030403 Seriola dumerili	AMBERJACK, GREATER	-1.9187	0.4178	
8835430101 Scomberomorus maculatus	MACKEREL, SPANISH	-1.7977	0.4365	
8835440702 Rhomboplites aurorubens	SNAPPER, VERMILION	-1.5932	0.3578	
8835250101 Centropristis striata	BASS, BLACK SEA	-1.2779	0.1633	
88500304 Thunnus	TUNA	-1.1144	0.4713	
8850060101 Lutjanus griseus	SNAPPER, GRAY	-1.1022	0.2749	
8850030502 Caranx crysos	RUNNER, BLUE	-1.0664	0.1735	
88570303 Paralichthys	FLOUNDER	-0.9601	0.3397	
8835400102 Cynoscion nebulosus	SEATROUT, SPOTTED	-0.9369	0.1160	
8835280306 Ocyurus chrysurus	SNAPPER, YELLOWTAIL	-0.7484	0.1810	
8835290101 Squalus acanthias	DOGFISH, SPINY	-0.7286	0.0926	
8835360103 Haemulon plumieri	GRUNT, WHITE	-0.6074	0.1684	
8835360401 Coryphaena hippurus	DOLPHIN	-0.3131	0.1361	
8850030501 Epinephelus morio	GROUPER, RED	-0.2895	0.0800	
8850030102 Rachycentron canadum	COBIA	-0.2317	0.1131	
8835020408	Istiophorus platypterus	SAILFISH	0.5484	0.1144
8835360102 Lutjanus analis	SNAPPER, MUTTON	0.5812	0.1069	
8835260101 Euthynnus alletteratus	TUNNY, LITTLE	0.7704	0.1230	
8860020201 Stenotomus chrysops	SCUP	1.1691	0.0818	
8835280801 Micropogonias undulatus	CROAKER, ATLANTIC	1.2259	0.0954	
8835020301 Pomatomus saltatrix	BLUEFISH	1.7117	0.0665	
8835360501 Balistes capriscus	TRIGGERFISH, GRAY	2.0746	0.0802	
8835020501 Paralichthys dentatus	FLOUNDER, SUMMER	2.1837	0.0769	

Table 3a. Stepwise selection of variables to include in estimating the proportion of positive MRFSS intercepts for red snapper (shaded lines) with a GLM (binomial distribution and logit link) selected with Stephens and MacCall logistic regression based on lowest AIC values. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), the change in mean deviance (Δ mean dev), percent reduction in mean deviance ($\%$ mean dev), cumulative reduction in mean deviance, log likelihood, the change in log likelihood from previous run, minus two times the change in log-likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the null hypothesis (Prob Ho), and the Akaike Information Criterion (AIC). Run with B2 data.

Variables		df	Deviance	Mean dev	Δ mean dev	\% expl	Cum \%	log like	Δ log like	Chi sq	df	Prob Ho	AIC
Null	Deviance	1708	2325.38	1.3615				-1162.69			1		2327.38
Year	Deviance	1690	2240.2717	1.3256	0.0359	2.64\%		-1120.1358	-42.5542	85.1084	18	1.07818E-10	123.1084
Wave	Deviance	1703	2308.0066	1.3553	0.0062	0.46\%		-1154.0033	-8.6867	17.3734	5	0.003843464	29.3734
Area	Deviance	1707	2265.639	1.3273	0.0342	2.51\%		-1132.8195	-29.8705	59.741	1	$1.08199 \mathrm{E}-14$	63.741
Mode_fx	Deviance	1707	2302.9182	1.3491	0.0124	0.91\%	0.91\%	-1151.4591	-11.2309	22.4618	1	$2.14365 \mathrm{E}-06$	26.4618
Region	Deviance	1704	2242.634	1.3161	0.0454	3.33\%		-1121.317	-41.373	82.746	4	4.56062E-17	92.746
Hr fished	Deviance	1702	2287.3875	1.3439	0.0176	1.29\%		-1143.6937	-18.9963	37.9926	6	1.12711E-06	51.9926
Num anglers	Deviance	1700	2254.9369	1.3264	0.0351	2.58\%		-1127.4684	-35.2216	70.4432	8	4.01065E-12	88.4432
Year	Deviance	1689	2203.4793	1.3046	0.0569	4.18\%		-1101.7397	-60.9503	121.9006	19	$4.88929 \mathrm{E}-17$	161.9006
Wave	Deviance	1702	2277.9383	1.3384	0.0231	1.70\%	2.61\%	-1138.9691	-23.7209	47.4418	6	1.5274E-08	61.4418
Area	Deviance	1706	2249.5434	1.3186	0.0429	3.15\%		-1124.7717	-37.9183	75.8366	2	3.40637E-17	81.8366
Region	Deviance	1703	2135.3081	1.2439	0.1176	8.64\%		-1067.654	-95.036	190.072	5	3.7707E-39	202.072
Hr fished	Deviance	1701	2272.2517	1.3358	0.0257	1.89\%		-1136.1259	-26.5641	53.1282	7	3.49723E-09	69.1282
Num anglers	Deviance	1699	2254.9184	1.3272	0.0343	2.52\%		-1127.4592	-35.2308	70.4616	9	$1.23615 \mathrm{E}-11$	90.4616
Year	Deviance	1684	2182.2369	1.2959	0.0656	4.82\%		-1091.1185	-71.5715	143.143	24	6.15315E-19	193.143
Area	Deviance	1701	2219.9517	1.3051	0.0564	4.14\%		-1109.9759	-52.7141	105.4282	7	8.1374E-20	121.4282
Region	Deviance	1698	2114.6812	1.2454	0.1161	8.53\%		-1057.3406	-105.3494	210.6988	10	$9.42538 \mathrm{E}-40$	232.6988
Hr fished	Deviance	1696	2245.6704	1.3241	0.0374	2.75\%	5.35\%	-1122.8352	-39.8548	79.7096	12	4.68859E-12	105.7096
Num anglers	Deviance	1694	2222.855	1.3122	0.0493	3.62\%		-1111.4275	-51.2625	102.525	14	$1.55344 \mathrm{E}-15$	132.525
Year	Deviance	1678	2152.6549	1.2829	0.0786	5.77\%		-1076.3275	-86.3625	172.725	30	5.45853E-22	234.725
Area	Deviance	1695	2197.7274	1.2966	0.0649	4.77\%	10.12\%	-1098.8637	-63.8263	127.6526	13	6.12812E-21	155.6526
Region	Deviance	1692	2082.4429	1.2308	0.1307	9.60\%		-1041.2215	-121.4685	242.937	16	1.44966E-42	276.937
Num anglers	Deviance	1688	2189.8333	1.2973	0.0642	4.72\%		-1094.9167	-67.7733	135.5466	20	$3.52358 \mathrm{E}-19$	177.5466
Year	Deviance	1677	2107.9642	1.257	0.1045	7.68\%		-1053.9821	-108.7079	217.4158	31	7.0989E-30	281.4158
Region	Deviance	1691	2036.2277	1.2042	0.1573	11.55\%		-1018.1138	-144.5762	289.1524	17	$1.94022 \mathrm{E}-51$	325.1524
Num anglers	Deviance	1687	2148.1139	1.2733	0.0882	6.48\%	16.60\%	-1074.057	-88.633	177.266	21	$1.00831 \mathrm{E}-26$	221.266
Year	Deviance	1669	2053.6915	1.2305	0.131	9.62\%	26.22\%	-1026.8457	-135.8443	271.6886	39	1.21614E-36	351.6886
Region	Deviance	1683	1994.8495	1.1853	0.1762	12.94\%		-997.4247	-165.2653	330.5306	25	$4.26749 \mathrm{E}-55$	382.5306
Region	Deviance	1665	1921.9953	1.1544	0.2071	15.21\%	41.43\%	-960.9976	-201.6924	403.3848	43	4.50683E-60	491.3848

Table 3b. Stepwise selection of variables to include in estimating the total catch of red snapper on positive MRFSS intercepts for red snapper (shaded lines) with a GLM (gamma distribution and log link) selected with Stephens and MacCall logistic regression based on lowest AIC values. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), the change in mean deviance (Δ mean dev), percent reduction in mean deviance ($\%$ mean dev), cumulative reduction in mean deviance, log likelihood, the change in log likelihood from previous run, minus two times the change in log-likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the null hypothesis (Prob Ho), and the Akaike Information Criterion (AIC). Run with B2 data.

Variables		df	Deviance	Mean dev	Δ mean de\% expl		Cum \%	log like	Δ log like	Chi sq	df	Prob Ho	AIC
Null	Deviance	712	986.6681	1.3858				-2021.41			1		4044.819
Year	Deviance	694	942.342	1.3578	0.028	2.02\%		-2002.16	-19.2457	38.4914	18	0.003333	76.4914
Wave	Deviance	707	961.4326	1.3599	0.0259	1.87\%		-2010.55	-10.8604	21.7208	5	0.000592	33.7208
Area	Deviance	711	986.6129	1.3876	-0.0018	-0.13\%		-2021.39	-0.0234	0.0468	1	0.828728	4.0468
Mode_fx	Deviance	711	986.6515	1.3877	-0.0019	-0.14\%		-2021.4	-0.0071	0.0142	1	0.905146	4.0142
Region	Deviance	709	975.6148	1.376	0.0098	0.71\%	0.71\%	-2016.68	-4.7262	9.4524	3	0.023843	17.4524
Hr fished	Deviance	706	979.2738	1.3871	-0.0013	-0.09\%		-2018.25	-3.1564	6.3128	6	0.389077	20.3128
Num angle	Deviance	704	982.1591	1.3951	-0.0093	-0.67\%		-2019.49	-1.9222	3.8444	8	0.870882	21.8444
Year	Deviance	691	928.5934	1.3438	0.042	3.03\%		-1996.03	-25.3786	50.7572	21	0.000286	94.7572
Wave	Deviance	704	956.7779	1.3591	0.0267	1.93\%		-2008.52	-12.8912	25.7824	8	0.001144	43.7824
Area	Deviance	708	975.6131	1.378	0.0078	0.56\%		-2016.68	-4.7269	9.4538	4	0.050705	19.4538
Mode_fx	Deviance	708	975.116	1.3773	0.0085	0.61\%	1.32\%	-2016.47	-4.9406	9.8812	4	0.042477	19.8812
Hr fished	Deviance	703	964.3657	1.3718	0.014	1.01\%		-2011.82	-9.5852	19.1704	9	0.023782	39.1704
Num angle	Deviance	701	971.2333	1.3855	0.0003	0.02\%		-2014.8	-6.6128	13.2256	11	0.278836	37.2256
Year	Deviance	690	927.3592	1.344	0.0418	3.02\%		-1995.48	-25.9331	51.8662	22	0.000326	97.8662
Wave	Deviance	703	956.7277	1.3609	0.0249	1.80\%		-2008.5	-12.9131	25.8262	9	0.002181	45.8262
Area	Deviance	707	975.1156	1.3792	0.0066	0.48\%		-2016.47	-4.9408	9.8816	5	0.07866	21.8816
Hr fished	Deviance	702	963.2506	1.3722	0.0136	0.98\%	2.30\%	-2011.34	-10.0696	20.1392	10	0.027963	42.1392
Num angle	Deviance	700	970.9512	1.3871	-0.0013	-0.09\%		-2014.67	-6.7345	13.469	12	0.335892	39.469
Year	Deviance	684	915.0345	1.3378	0.048	3.46\%		-1989.9	-31.5065	63.013	28	0.000166	121.013
Wave	Deviance	697	942.7408	1.3526	0.0332	2.40\%		-2002.34	-19.069	38.138	15	0.000861	70.138
Area	Deviance	701	963.2318	1.3741	0.0117	0.84\%	3.15\%	-2011.33	-10.0777	20.1554	11	0.043254	44.1554
Num angle	Deviance	694	960.1129	1.3834	0.0024	0.17\%		-2009.97	-11.4352	22.8704	18	0.19562	60.8704
Year	Deviance	683	914.7474	1.3393	0.0465	3.36\%		-1989.77	-31.6371	63.2742	29	0.000238	123.2742
Wave	Deviance	696	942.4537	1.3541	0.0317	2.29\%	5.43\%	-2002.21	-19.1962	38.3924	16	0.00133	72.3924
Num angle	Deviance	693	960.0386	1.3853	0.0005	0.04\%		-2009.94	-11.4676	22.9352	19	0.240208	62.9352
Year	Deviance	678	897.9003	1.3243	0.0615	4.44\%		-1982.04	-39.3669	78.7338	34	$2.09 \mathrm{E}-05$	148.7338
Num anglı	Deviance	688	938.3838	1.3639	0.0219	1.58\%	7.01\%	-2000.41	-21.0031	42.0062	24	0.012884	92.0062
Year	Deviance	670	893.3843	1.3334	0.0524	3.78\%	10.80\%	-1979.95	-41.4608	82.9216	42	0.00017	168.9216

Table 3c. Stepwise selection of variables to include in estimating the proportion of positive MRFSS intercepts for red snapper (shaded lines) with a GLM (binomial distribution and logit link) selected with Stephens and MacCall logistic regression based on lowest AIC values. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), the change in mean deviance (Δ mean dev), percent reduction in mean deviance ($\%$ mean dev), cumulative reduction in mean deviance, log likelihood, the change in log likelihood from previous run, minus two times the change in log-likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the null hypothesis (Prob Ho), and the Akaike Information Criterion (AIC). Run without B2 data.

Variables		df	Deviance	Mean dev	Δ mean dev	\% expl	Cum \%	log like	Δ log like	Chi sq	df	Prob Ho	AIC
Null	Deviance	1708	2093.496	1.2257				-1046.75			1		2095.496
Year	Deviance	1690	2043.035	1.2089	0.0168	1.37\%		-1021.52	-25.2304	50.4608	18	6.43E-05	88.4608
Wave	Deviance	1703	2077.984	1.2202	0.0055	0.45\%	0.45\%	-1038.99	-7.7562	15.5124	5	0.008383	27.5124
Area	Deviance	1707	2054.673	1.2037	0.022	1.79\%		-1027.34	-19.4116	38.8232	1	$4.64 \mathrm{E}-10$	42.8232
Mode_fx	Deviance	1707	2035.448	1.1924	0.0333	2.72\%		-1017.72	-29.0239	58.0478	1	$2.56 \mathrm{E}-14$	62.0478
Region	Deviance	1704	2056.747	1.207	0.0187	1.53\%		-1028.37	-18.3743	36.7486	4	$2.03 \mathrm{E}-07$	46.7486
Hr fished	Deviance	1702	2063.209	1.2122	0.0135	1.10\%		-1031.6	-15.1437	30.2874	6	$3.47 \mathrm{E}-05$	44.2874
Num anglers	Deviance	1700	1999.995	1.1765	0.0492	4.01\%		-999.997	-46.7507	93.5014	8	9.03E-17	111.5014
Year	Deviance	1685	2030.092	1.2048	0.0209	1.71\%		-1015.05	-31.7018	63.4036	23	1.21E-05	111.4036
Area	Deviance	1702	2034.073	1.1951	0.0306	2.50\%		-1017.04	-29.7115	59.423	6	5.9E-11	73.423
Mode_fx	Deviance	1702	2007.801	1.1797	0.046	3.75\%		-1003.9	-42.8473	85.6946	6	$2.37 \mathrm{E}-16$	99.6946
Region	Deviance	1699	2041.617	1.2017	0.024	1.96\%	2.41\%	-1020.81	-25.9395	51.879	9	$4.76 \mathrm{E}-08$	71.879
Hr fished	Deviance	1697	2044.796	1.2049	0.0208	1.70\%		-1022.4	-24.3501	48.7002	11	1.07E-06	72.7002
Num anglers	Deviance	1695	1965.358	1.1595	0.0662	5.40\%		-982.679	-64.0691	128.1382	13	4.91E-21	156.1382
Year	Deviance	1681	1998.87	1.1891	0.0366	2.99\%		-999.435	-47.313	94.626	27	1.93E-09	150.626
Area	Deviance	1698	1999.318	1.1775	0.0482	3.93\%	6.34\%	-999.659	-47.0891	94.1782	10	7.92E-16	116.1782
Mode_fx	Deviance	1698	1895.801	1.1165	0.1092	8.91\%		-947.9	-98.8476	197.6952	10	$4.88 \mathrm{E}-37$	219.6952
Hr fished	Deviance	1693	2004.323	1.1839	0.0418	3.41\%		-1002.16	-44.5865	89.173	15	$1.41 \mathrm{E}-12$	121.173
Num anglers	Deviance	1691	1899.108	1.1231	0.1026	8.37\%		-949.554	-97.194	194.388	17	3.83E-32	230.388
Year	Deviance	1680	1958.561	1.1658	0.0599	4.89\%		-979.281	-67.4675	134.935	28	5.95E-16	192.935
Mode_fx	Deviance	1697	1861.829	1.0971	0.1286	10.49\%		-930.914	-115.834	231.6676	11	1.9E-43	255.6676
Hr fished	Deviance	1692	1971.57	1.1652	0.0605	4.94\%	11.28\%	-985.785	-60.9632	121.9264	16	$2.34 \mathrm{E}-18$	155.9264
Num anglers	Deviance	1690	1866.555	1.1045	0.1212	9.89\%		-933.277	-113.471	226.9412	18	3.85E-38	264.9412
Year	Deviance	1674	1930.24	1.1531	0.0726	5.92\%	17.20\%	-965.12	-81.6282	163.2564	34	8.15E-19	233.2564
Mode_fx	Deviance	1691	1847.574	1.0926	0.1331	10.86\%		-923.787	-122.961	245.922	17	$1.42 \mathrm{E}-42$	281.922
Num anglers	Deviance	1684	1849.677	1.0984	0.1273	10.39\%		-924.839	-121.91	243.819	24	$2.76 \mathrm{E}-38$	293.819
Mode_fx	Deviance	1673	1800.805	1.0764	0.1493	12.18\%	29.38\%	-900.403	-146.345	292.6906	35	1.95E-42	364.6906
Num anglers	Deviance	1666	1809.479	1.0861	0.1396	11.39\%		-904.739	-142.009	284.0172	42	$1.13 \mathrm{E}-37$	370.0172
Num anglers	Deviance	1665	1765.791	1.0605	0.1652	13.48\%	42.86\%	-882.895	-163.853	327.7052	43	$1.77 \mathrm{E}-45$	415.7052

Table 3d. Stepwise selection of variables to include in estimating the total catch of red snapper on positive MRFSS intercepts for red snapper (shaded lines) with a GLM (gamma distribution and log link) selected with Stephens and MacCall logistic regression based on lowest AIC values. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), the change in mean deviance (Δ mean dev), percent reduction in mean deviance ($\%$ mean dev), cumulative reduction in mean deviance, log likelihood, the change in log likelihood from previous run, minus two times the change in log-likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the null hypothesis (Prob Ho), and the Akaike Information Criterion (AIC). Run without B2 data.

Variables		df	Deviance	Mean dev	Δ mean dev	\% expl	Cum \%	log like	Δ log like	Chi sq	df	Prob Ho	AIC
Null	Deviance	448	553.5123	1.2355				-1207.05			1		2416.1
Year	Deviance	430	528.4716	1.229	0.0065	0.53\%		-1195.00	-12.0525	24.105	18	0.151618	62.105
Wave	Deviance	443	525.6135	1.1865	0.049	3.97\%		-1193.59	-13.4604	26.9208	5	5.91E-05	38.9208
Area	Deviance	447	553.0826	1.2373	-0.0018	-0.15\%		-1206.85	-0.2027	0.4054	1	0.524314	4.4054
Mode_fx	Deviance	447	543.7569	1.2165	0.019	1.54\%	1.54\%	-1202.41	-4.6364	9.2728	1	0.002326	13.2728
Region	Deviance	445	534.3588	1.2008	0.0347	2.81\%		-1197.88	-9.1738	18.3476	3	0.000373	26.3476
Hr fished	Deviance	442	546.7558	1.237	-0.0015	-0.12\%		-1203.85	-3.2033	6.4066	6	0.379215	20.4066
Num angle	Deviance	440	540.0119	1.2273	0.0082	0.66\%		-1200.61	-6.436	12.872	8	0.11633	30.872
Year	Deviance	429	523.41	1.2201	0.0154	1.25\%		-1192.50	-14.5506	29.1012	19	0.06441	69.1012
Wave	Deviance	442	517.1162	1.1699	0.0656	5.31\%		-1189.36	-17.6871	35.3742	6	3.65E-06	49.3742
Area	Deviance	446	543.2686	1.2181	0.0174	1.41\%	2.95\%	-1202.18	-4.8704	9.7408	2	0.00767	15.7408
Region	Deviance	444	530.7517	1.1954	0.0401	3.25\%		-1196.12	-10.9342	21.8684	4	0.000213	31.8684
Hr fished	Deviance	441	538.3397	1.2207	0.0148	1.20\%		-1199.81	-7.2431	14.4862	7	0.043179	30.4862
Num angle	Deviance	439	533.5455	1.2154	0.0201	1.63\%		-1197.48	-9.5698	19.1396	9	0.024032	39.1396
Year	Deviance	428	522.1381	1.2199	0.0156	1.26\%		-1191.87	-15.1817	30.3634	20	0.064175	72.3634
Wave	Deviance	441	516.3755	1.1709	0.0646	5.23\%		-1188.99	-18.0585	36.117	7	6.89E-06	52.117
Region	Deviance	443	530.5894	1.1977	0.0378	3.06\%	6.01\%	-1196.04	-11.0137	22.0274	5	0.000517	34.0274
Hr fished	Deviance	440	537.9538	1.2226	0.0129	1.04\%		-1199.62	-7.4298	14.8596	8	0.061934	32.8596
Num angle	Deviance	438	532.7979	1.2164	0.0191	1.55\%		-1197.12	-9.9342	19.8684	10	0.030522	41.8684
Year	Deviance	425	501.3557	1.1797	0.0558	4.52\%		-1181.36	-25.6939	51.3878	23	0.000604	99.3878
Wave	Deviance	438	511.5793	1.168	0.0675	5.46\%		-1186.58	-20.4748	40.9496	10	1.15E-05	62.9496
Hr fished	Deviance	437	525.2619	1.202	0.0335	2.71\%	8.72\%	-1193.42	-13.6341	27.2682	11	0.004185	51.2682
Num angle	Deviance	435	520.4823	1.1965	0.039	3.16\%		-1191.04	-16.0054	32.0108	13	0.002393	60.0108
Year	Deviance	419	490.5067	1.1707	0.0648	5.24\%		-1175.71	-31.3378	62.6756	29	0.000284	122.6756
Wave	Deviance	432	502.2632	1.1626	0.0729	5.90\%		-1181.82	-25.2268	50.4536	16	$1.94 \mathrm{E}-05$	84.4536
Num anglı	Deviance	429	515.5362	1.2017	0.0338	2.74\%	11.45\%	-1188.57	-18.4799	36.9598	19	0.008027	76.9598
Year	Deviance	411	479.8799	1.1676	0.0679	5.50\%		-1170.07	-36.9757	73.9514	37	0.000293	149.9514
Wave	Deviance	424	491.7847	1.1599	0.0756	6.12\%	17.57\%	-1176.38	-30.6671	61.3342	24	$4.13 \mathrm{E}-05$	111.3342
Year	Deviance	406	457.5277	1.1269	0.1086	8.79\%	26.36\%	-1157.84	-49.2104	98.4208	42	2E-06	184.4208

Figure 1. A map of the study area: North Carolina through the Florida Keys.

Figure 2a. Nominal catch rate of red snapper by year from North Carolina to southern Florida with B2. The vertical lines are the 95% confidence interval and the circle is the mean. The numbers above the figures are the number of intercepts in the private/rental and charterboat modes per year.

Figure 2b. Nominal catch rate of red snapper by year from North Carolina to southern Florida without B2. The vertical lines are the 95% confidence interval and the circle is the mean. The numbers above the figures are the number of intercepts in the private/rental and charterboat modes per year.

Figure 3. Species with significant logistic regression coefficients at the $\alpha=0.05$ level for determining whether a MRFSS intercept should be selected for calculating annual total catch rates using the Stephens and MacCall method.

Figure 4. Absolute difference between the numbers of observed and predicted intercepts with red snapper from the logistic regression over a range of threshold values.

Figure 5a. Standardized annual total catch of red snapper per angler hour per intercept with intercepts selected by Stephens and MacCall's logistic regression with the B2 data. The vertical lines are the 95% confidence interval, the box is the inter-quartile range, the horizontal line is the median of the outcomes and the number above the lines are the number of intercepts that caught red snapper for each year.

Figure 5b. Standardized annual total catch of red snapper per angler hour per intercept with intercepts selected by Stephens and MacCall's logistic regression without the B2 data. The vertical lines are the 95% confidence interval, the box is the inter-quartile range, the horizontal line is the median of the outcomes and the number above the lines are the number of intercepts that caught red snapper for each year.

Figure 6a. Comparison of the nominal catch rates to the standardized catch rates calculated with intercepts selected by the Stephens and MacCall regression with the B2 data.

Figure 6b. Comparison of the nominal catch rates to the standardized catch rates calculated with intercepts selected by the Stephens and MacCall regression without the B2 data.

Figure 7. Comparison of the standardized catch rates calculated with intercepts selected by the Stephens and MacCall regression with and without the B2 data.

