Tilefish off South Carolina and Georgia

R. A. LOW, Jr., G. F. ULRICH, and F. BLUM

Introduction

The distribution of tilefish, LophoLatilis chamaeleonticeps, is discontinuous along the outer continental shelf of the eastern United States and Gulf of Moxico. Dooley (1978) described the jpecies and Katz et al.' recognized three populations: 1) Off southern New England and in the middle Attantic, 2) in the Gulf of Mexico, and 3) off the southeastern U.S. coast.

Commercial U.S. tilefish landings weie $8,595,000$ pounds in 1981, with an ex.vessel value of $\$ 7,544,000$ (U.S. Departinent of Commerce, 1982).

[^0][^1]Most of this production came from the middle Atlantic and southern New England. Tilefish were first discovered off New England in 1879 (Goode and Bean, 1880), but a mass mortality in 1882 drastically reduced that population (Collins, 1884). The stock subsequently reestablished itself and a commercial fishery began in the middle Atlantic in 1915 (Smith, 1917). Landings fluctuated widely until 1972, then increased substantially as the commercial longline fishery expanded. New Jersey longliners presently account for most of the regional landings (Grimes et al., 1980).

In the Gulf of Mexico, there was no substantial fishery for tilefish before 1981. Exploratory surveys during 1967-68 found that tilefish were the most abundant demersal foodfish (based on longlinc catch-per-unit-ofeffort) in depths $>200 \mathrm{~m}$ (>100 fathoms) (Nelson and Carpenter, 1968). Additional longlining in 1975 confirmed this ${ }^{2}$. Because of the need to develop alternative opportunities for shrimp trawlers, interest in bottom longlining was renewed in 1980 and a commercial fishery developed.

In the South Atlantic Bight, landings of tilefish by snapper reel fishermen were small prior to 1980 and were primarily caught in a small area off southeastern Florida. In 1980, the South Carolina Wildife and Marine Resources Departinent began a study of the development potential of tilefish off South Carolina and Georgia
R. A. Low, Jr., G. F. Ulrich, and F. Bium are with the South Carolina Wildlife and Marine Resources Deparment, P.O. Box 12.559, Charleston, SC 29412. F. Blum is currently with the Charleston Star Seafood Co., 101 Haddrell St., Mit. Pleasant, SC 29464. Views or opinions expressed or implied aie those of the authors and do not necessarily reflect the position of the National Marine Fisheries Service, NOAA.
and several commercial boats beyan directed fishing for the species. This paper describes the results of that study and the status of the commercial fishery. In 1981, commercial tilefish landings in the South Allantic Bight were $1,125,000$ pounds ${ }^{3}$.

Methods

Field Procedures

Objectives were location of suitable habitat and concentrations of tilefish off South Carolina and Georgia, then evaluation of seasonal catchability, size composition, and catch rates by area, depth, and time of day. The area along the 200 m (100 -fathom) curve between $31^{\circ} 20^{\prime} \mathrm{N}, 79^{\circ} 40^{\prime} \mathrm{W}$ and $33^{\circ} 10^{\prime} \mathrm{N}, 77^{\circ} 20^{\prime} \mathrm{W}$ was divided into blocks (Fig. 1). Loran-C (7980 chain) boundaries of these blocks are listed in Table 1. Survey procedure consisted of traveling along a randomly determined course between 180 and 300 m (90 and 150 fathoms) whie continualiy recording bottom topography with a whiteline fathoneter.

[^2]

Alexander Dragovich and Essie M. Coleman
John W. Brown, John J. Manzi, Harry Q. M. Clawson, and Fred S. Stevens R. A. Low, Jr., G. F. Ulrich, and F. Blum 16

James L. Squire, Jr.27

Steve L. Taylor and Marci W. Speckhard 35
Participation of U.S. Trawlers in the Offshore Shrimp
Fisheries of French Guiana, Surinam, and Guyana, 1978-79
Moving Out the Learning Curve: An Analysis of Hard
Clam, Mercenaria mercenaria, Nursery Operations in South Carolina
Tilefish off South Carolina and Georgia
Warm Water and Southern California Recreational Fishing:
A Brief Review and Prospects for 1983
Isolation of Histamine-Producing Bacteria From Frozen Tuna
Nomograph for Estimating Histamine
Formation in Skipjack Tuna at Elevated Temperatures
Hilmer A. Frank, Derrick H. Yoshinaga, and I-Pai Wu
40
Fatty Acids and Lipid Classes of Three
Underutilized Species and Changes Due to Canning
Malcolm B. Hale and Thomas Brown

Departments

NOAA/NMFS Developments

Foreign Fishery Developments

Fishery Notes
Publications

NOAA-NMFS Reorganizes, Best NMFS Papers, U.S. Seafood Exhibits, New Fishing Rules, Pacific Seamount Resources, Salmon Tasting, S. E. Enforcement Policy, Former Editor Dies, Northwest Fisheries Research History, and Fishery Economics Profiles

Italy's Fishing Markets, Salmon Poaching, Malaysian
Markets, Pakistani Fish Aid, Mexico's Pacific Shrimp, Italian Joint Venture, Norway's Fish Research, and South African Harvests El Niniõ Impacts, Texas' Redfish Production, and Herring Management

Foreign Fishery Reports, Bivalve Culture, Minced Fish, Fishing
Records, SWFC Tech Memos, Shrimp By-Catch, Nets, and Fishery Economics

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary
National. OCEANIC AND ATMOSPHIERIC ADMIINISTRATION

John Y. Byrne, Administrator
Willian G. Gordon, Assistant Adninistralor for Fisheries

National Marine Fisheries Service
Editor. W'. L. Hobart

Marine Fisheries Review (USPS 090-080) is published quarterly by the Scientific Publications Office, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Bin C15700 Seattc, WA 98115.
Single copies and annual subscriptions are sold by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Single copies of articles are available from E/Al13, Publications Scrvices Branch, AISC,'NESDIS/NOAA. 3300 Whitehaven Street, Washington, DC 20235. New's litms are not reprinted.
Publication of material from sources outside the NMFS is not an endorsement and the NMFS is not responsible for the accuracy of facts, views, or opinions of these sources.
The Secretary of Commerce has determined that the publication of this periodical is neces-
sary for the transaction of public business required by law of this Department. Use of the funds for printing this periodical has been approved by the Director of the Office of Management and Budget through I April 1985.
The NMFS does not approve, recommend, or endorse any proprietary produci or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approtes, recommends, or endorses any proprietary product or proprietary material mentioned hercin, or which has as its purpose an intent to cause directly or indirectly the advertiscel product to be used or parchased because of this NMFS publication. Second class postage paid at Finance Department, USPS, Washington, DC 20260.

Test fishing with electric snapper reels was conducted on fish marks and at irregulat intervals along the trackline determine bottom composition nom the impact of the weight (Porter, 1976) and availability of tilefish. Bottom grab samples were later made to verify substrate composition. During July 1980, three 1.5 -hour longline sets were made in the center of block 5 in 190-210 m (95-105 fathoms). No. 3 and 5 circle hooks with 760 mm (30 -inch) monofilament snells were attached to nylon groundline with swiveled snap-on connectors. Weights (about 2 kg or 4 pounds each) were spaced on the groundline at $110 \mathrm{~m}(325$-foot) intervals. For two sets, the groundline was $700 \mathrm{~m}(2,300$ feet) and hooks were spaced 4 m (13 feet) apart. For the third set, the groundline was $1,180 \mathrm{~m}$ (3,900 feet) and hooks were spaced 12 m (39 feet) apart.

Cruises to evaluate seasonal catchability and size composition were conducted in 1980 (October), 1981 (March, April, July, August, October, and November), and 1982 (January and February). Drift-fishing ith snapper reels was done within .ocks in 1) $180-209 \mathrm{~m}$ ($90-104$ fathoms), 2) $210-239 \mathrm{~m}$ (105-119 fathoms), and 3) $240-300 \mathrm{~m}$ ($120-150$ fathoms). For each drift, the following were recorded: 1) Time at start and end, 2) Loran-C position at start and end, 3) depth at start and end, 4) number of reels fished, and 5) number of tilefish caught. Each fish was measured (total length in cm) and weighed (in kg).

Biocr	Loran Clisa	in) boundaries
1	45025-45090	59325-59550
2	45110-45:50	59975-60050
3	45110-45150	60050-60150
4	45110-65:0	60150-60275
5	45:10-45150	60275-60350
6	45110-45150	60350-60.25
1	45100-45:40	60425-60525
B	-5090-95130	60525-50600
5	45630-45120	$60.500 \cdot 60700$
10	45070-45110	60709 -60360
11	45050-45050	60800-60900

Figure 1.-Areas surveyed: The dotted line represents the 200 m (100 -fathom) curve (not drawn to scale).

Cook and Crist (1979) showed that the temperature of demersal fish >60 cm total length immediately after capture was usually within $\pm 1.0^{\circ} \mathrm{C}$ of the true bottom temperature. Internal temperatures of tilefish $>60 \mathrm{~cm}$ total length were occasionally measured immediately after capture by inserting a metal-cased thermometer into the anus. These readings were then compared periodically with XBT temperatures taken at the same time.

Captains of two snapper reel boats and two longliners routinely kept daily logs of fishing activities which they turned over to us. Captains of two converted shrimp boats furnished similar data occasionally (since they participated in the fishery on a parttime basis). Snapper reel fishermen recorded the same information as we did during the research cruises (except for temperature). Longliners recorded the number of hooks per set in addition. Scientific personrel periodically made trips aboard these boats to observe fishing methods, verify logsheet data, and record point-of-capture information.

Size composition of commercial
catches was monitored by routine port sampling. Catches sampled represented a substantial amount of the tilefish landed in South Carolina. At least 75 fish (or the entire catch if less than this) were chosen at random from each landing, with separate subsamples being measured for snapper reel and longline-caught fish.

Data Analysis

Snapper reel catch and effort data were combined for commercial and research vessels (to expand sampling coverage) because the gear and fishing methods were identical. Because two objectives were to evaluate seasonal catch rates and the trend in catch-per-unit-of-effort (CPUE) as the fishery expanded, data were pooled and analyzed by 3 -month quarters: 1) Spring - March, April, May; 2) Summer June, July, August; 3) Fall - September, October, November; and 4) Winter - December, January, February.

CPUE was used to evaluate seasonal catchability by 1) block, 2) depth, and 3) time of day ($0700-1100,1100-$ $1400,1400-1700$, and 1700-2000
hours). Mean CPUE can be calculated using two methods: 1) Catch (C) and effort (f) can be summed and the mean calculated as

$$
\frac{\Sigma C}{\Sigma f}
$$

(the ratio of averages statistic), or 2) the CPUE for each observation can be determined and the mean then calculated as the average of these values (the average of ratios statistic). Rothschild and Yong (1970) recommended use of the latter procedure because the resultant values are unweighted by the distribution of effort and tend to conform more to the normality assumptions associated with statistical analysis. This method also provides estimators of variances, which the former method does not. We therefore used average of ratios statistics in our analysis.
Choice of an appropriate unit of effort is partly dependent on assumptions regarding distribution of fish and of effort. Off New England and in the middle Atlantic, tilefish are contagiously distributed, as indicated in fishing patterns (Freeman and Turner, 1977) and observations from submersibles (Able et al. ${ }^{4}$). In the Gulf of Mexico, Nelson and Carpenter (1968) found no indication of concentrations and longline catch patterns suggested a dispersed distribution on moderate to steep slopes. The latter distribution was evident on the similar type of habitat which we later describe.

Because of this distribution, most fishermen drift-fished in a random manner, their movements governed by current and wind rather than positioning on their part. Over 3-month periods, when all the fishing locations (based on Loran positions) of all boats are considered, the effort was randomly distributed. As noted above, when average of ratios statistics are used, the distribution of effort

[^3]| Reelshoal | N Obser. vations | Boat-hous | Mean' Fish/boat-hour |
| :---: | :---: | :---: | :---: |
| Fall 1980 | | | |
| 3 | 11 | 4.3 | 12.9 |
| 4 | 146 | 156.6 | 11.5 |
| Winta: 1980.81 | | | |
| 2 | 37 | 25.8 | 6.9 |
| 3 | 34 | 19.8 | 5.9 |
| 4 | 66 | 45.8 | 14.1 |
| Spring 1981 | | | |
| 2 | 28 | 20.7 | 4.6 |
| 3 | 78 | 80.3 | 8.4 |
| 4 | 90 | 91.9 | 8.6 |
| 5 | 27 | 24.7 | 7.8 |
| Summer 1987 | | | |
| 2 | 11 | 4.3 | 4.5 |
| 3 | 126 | 114.4 | 8.4 |
| 4 | 85 | 81.2 | 5.6 |
| 5 | 22 | 23.5 | 6.7 |
| Fall 1981 | | | |
| 3 | 35 | 204 | 98 |
| 4 | 20 | 14.8 | 4.8 |
| Winter 1981-82 | | | |
| 3 | 19 | 10.4 | 5.5 |

'Average of ratios statistics.
is not as important a consideration as when other methods of CPUE calculation are employed.
The number of reels fished per boat varied and preliminary inspection of the data (Table 2) indicated that this influenced the catch per boat-hour. Dockside interviews with captains supported the overall trend exhibited in the data, i.e., that boat catch rates usually were lowest with only two reels in use, about the same with either three or four, and somewhat lower when five (or more) reels were fished. Because the reels are mounted on both sides and the boat is drifting, it is not difficult to visualize a competitive effect emerging when more than a few reels are used. In any event, it is desirable to standardize effort in order to account for differing catch rates according to the number of reels fished.

Inconsistencies in the relative efficiencies of the various numbers of reels are apparent in between-quarters comparisons. Different boats participated during each half of the study and catch patterns also changed. During 1980 and early 1981, the fish bit well everywhere all of the time and
catch rates were fairly uniform. During the latter half of 1981, catches were extremely variable as fishing was alternately good and bad. The cause of the inconsistencies is thus speculative. We chose a boat-hour as the standard unit of effort and made adjustments for differing efficiency (as a function of the number of reels per boat) on the basis of catch rates averaged over the entire study period. The standardization parameters are summarized as follows, where the mean CPUE is the average of the quarterly values (to avoid bias introduced by unequal quarterly sample sizes):

Reels/boat	N Observations	Boat-hours	Mean fish/boat-hour
2	76	50.8	5.3
3	303	249.6	8.5
4	407	390.3	8.9
5	49	48.2	7.3

We assigned an equal efficiency factor (E) of 1.0 to boat-hours with three and four reels in use. Efficiency factors for effort with two reels/boat and five reels/boat were calculated as:

$$
\begin{aligned}
& E_{2}=5.3\left(\frac{1}{8.9}\right)=0.6 \quad \text { and } \\
& E_{3}=7.3\left(\frac{1}{8.9}\right)=0.8,
\end{aligned}
$$

respectively. The number of boathours with each number of reels in use was multiplied by the appropriate efficiency factor to obtain the standardized effort.

The trend in mean total length over time was evaluated by linear regression. Differences in mean length of research-caught fish by area and depth were analyzed with nonparametric tests. Production of snapper reel boats was evaluated in terns of the number and weight (head-on, gutted) of tilefish caught and the days fished. When actual weights were not known, production was estimated from the number of fish caught multiplied by 6.8 kg (15.0 pounds), since this was the long-term average observed in commercial snapper reel catches.

The longline fishermen used the snap-on system and hook spacing nded to be variable. The amount of sroundline per set also varied and was frequently not known precisely. Longline effort was therefore measured as the number of hooks per set and CPUE was calculated as fish per 100 hooks. Production was measured in (head-on, gutted) weight per hook. Because soak time did not vary much, fish-per-hour values showed the same trend as fish-per-100 hooks statistics. When actual weights were not known, we converted the number of fish into weight by multiplying by the longterm average of 5.9 kg (13.0 pounds) observed for longline-caught fish. Statistical treatments were similar to those used for snapper reel data.

Results

Location of Tilefshing Areas

In the middle Atlantic, tilefishing is conducted over submarine canyons. Able et al. (footnote 4) observed the habitat in the Hudson Canyon and reported that the fish hovered over burrows in clay sediments at depths of $20-140 \mathrm{~m}$ ($60-120$ fathoms). In the Gulf of Mexico, Nelson and Carpenter (1968) obtained their highest catch rates over rough bottom and moderate to steep slopes.

Off Georgia and South Carolina, the outer edge of the continental shelf paralle!s the coastline and has no canyons. The smooth bottom typically slopes steeply from about 160 m (80 fathoms) to at least 300 m (150 fathoms). The major exception is rocky, irregular terrain between $32^{\circ} 30^{\prime} \mathrm{N}$ and $32^{\circ} 55^{\prime} \mathrm{N}$. The smooth, sand bottom of block 1 slopes gradually between 180 and 280 m (90 and 140 fathoms). We caught no tilefish there and have no reports of commercial catches in this area. The soft, green mud bottom in block 2 drops steeply between 180 and 280 m (90 and 140 fathoms). We caught tilefish throughout this area on research cruises and commerciai fishermen reported good catcher there. The bottom is smooth sand in block's 3 and 4 and slopes gradually out to 260 m (130 fathoms),

Table 3.-Length composition of commerclally caugh tilefish from the Mid-Atlantic and South Attantic Bigh1.

Area	Year	N	$\begin{gathered} \%<70 \\ \mathrm{~cm} \end{gathered}$	$\begin{aligned} & \% 70- \\ & 89 \mathrm{~cm} \end{aligned}$	$\begin{gathered} 0 \geqslant 90 \\ \mathrm{~cm} \end{gathered}$
Hudson					17
Hudson Canyon'	1978	2.355	66	30	4
S.C.-Ga.	${ }^{2} 1977$ (3)	128	6	55	39
	1978 (2)	168	3	63	34
	1978 (3)	57	12	58	30
	1979 (2)	50	8	58	34
	1980 (2)	260	20	48	32
	1980 (3)	684	15	50	35
	1980 (4)	381	19	47	34
	1981 (1)	238	17	52	31
	1981 (2)	226	12	49	39
	1981 (3)	150	22	55	23
	${ }^{3} 1981$ (4)	300	32	47	21

'Percentages estimated from graphs in Grmes at al. (1980)
${ }^{2}$ Quarters include months as follows: (1) January-March, (2) Aprit-June, (3) July-September. (4) October-December ${ }^{3}$ Longline fish only.
then drops off more sharply. Our test fishing produced no tilefish and we have no reports of commercial catches in these areas. The bottom in blocks 5 through 8 is soft, green mud and slopes steeply between 180 and 300 m (90 and 150 fathoms). Tilefish catches during research cruises were consistently good throughout this region and most commercial fishing occurred here. The bottom in blocks 9 , 10, and 11 is similar to that in blocks 5 through 8. Test fishing there was limited to the shallow stratum because of strong currents in the deeper zones, but produced catch rates comparable to other areas.

Size Composition

Grimes et al. (1980) examined the length composition of tilefish from the middle Atlantic and southern New England. Length composition of tilefish caught commercially off South Carolina and Georgia is shown for comparison in Table 3. The total length categories correspond approximately to the commercial weight grades ($<3.6 \mathrm{~kg}$ or <8.0 pounds, $3.6-6.8 \mathrm{~kg}$ or $8.0-15.0$ pounds, >6.8 kg or >15.0 pounds) used by the New York market. Although the percent contribution of small tilefish to the South Carolina-Georgia catch has generally increased with increasing exploitation, it is still far less than that

Table 4.- Mean toial length (cm) of research-caught tilefish by area and deplh (sample size shown in parentheses). Means were not calculated for samples <10 fish.

Block	$180-209 \mathrm{~m}$	$210-239 \mathrm{~m}$	$240-300 \mathrm{~m}$	All
deplhs				

'Totals do not always equal the sum of the figures shown due to inclusion of fish from small samples not listed.
observed in the middle Atlantic fishery.

Trends in mean total lengths from monthly port sampling and research catches (Fig. 2) show a decline, with the slope (-0.237) of the regression line for the commercial catch being significantly different from $0(\mathrm{t}=$ $2.21, P<0.05$). The slope (-1.200) of the line for the research catch is not significantly different from that (-0.903) for the commercial catch during the same period ($\mathrm{t}=0.32$).

Total length composition of the research catch by area and depth is summarized in Table 4. Because the variance in mean length was much smaller in the deepest stratum than in the other two zones, nonparametric tests were used. A Kruskal-Wallis test
(Steel and Torrie, 1960) indicated a significant difference in total length composition by depth ($H^{\prime}=65.8$) for data pooled over all quarters. In each quarter, tilefish from the middepth stratum had the largest mean length. In three of the four quarters, fish from the shallow stratum had the next largest mean length, with fish from the deepest stratum being the smallest. When mean length by depth (areas combined) by quarter was analyzed using Wilson's nonparametric test (Wilson, 1956), significant differences in depth ($\chi^{2}=41.4$), season (χ^{2} $=41.3$), and interaction ($\chi^{2}=14.4$) effects were detected. The previouslynoted decline in mean length over time probably accounts for most of the interaction. Analysis of differ-

Depth/block	$\leqslant 70 \mathrm{~cm}$	71.89 cm	$\geq 90 \mathrm{~cm}$
Spring 1981			
180.209 m	48	32	20
210-239 m	10	76	14
240-300 m	57	27	16
Block 2	14	75	11
Block 5 ,	44	45	11
Biock 7	40	36	24
Total	36	48	16
Sumiter 1981			
180-209 m	60	28	12
210-239	35	53	12
240-300 m	43	48	9
Block 6	32	57	11
Block 7	39	48	13
Block 9	55	30	15
Total	50	39	11
Foll 1981			
180-209 m	59	34	7
$210-239 \mathrm{~m}$	58	36	6
240-303 m	73	15	12
Block 6	30	63	7
Block 7	43	47	10
Biock 8	81	12	7
To:a!	63	29	8
Whinter :991-82			
210-230 in	53	33	14
Bleca 5	63	23	14
Picck ${ }^{\text {P }}$	77	20	3
TO. ${ }^{\text {a }}$	66	23	11
Toial			
180.2 Ca m	57	31	12
210-239 m	36	53	11
? 10.300	62	27	11
Bloct 2	13	76	11
Elor: 5	51	37	12
Butan e	30	54	16
Eiock 7	44	42	14
Elock ${ }^{\text {c }}$	81	13	6
arose 9	55	30	15
Toicl	53	34	13

ences by area was not attempted because of the divergent sample sizes and dispersed effort.

Grade composition (in percent of the number of fish caught) of re-search-caught tilefish is indicated in Table 5. There have been no consistent trends in grade composition by depth within quarters, but the contribution of small fish has tended to be greater to the south. When the relative size composition of the catch during the Winter 1981-82 quarter is com-
pared with that in the Spring 1981 quarter, the contribution of small tilefish increased about 83 percent, while medium-sized fish decreased about 51 percent. Throughout the study, the percentage of small fish in the research catch was considerably larger than that observed in the commercial catch.

Relative Abundance and Catchability

Relative abundance by area and season is indicated in Table 6. Snap-

Figure 2.-Mean total length of tilefish in commercial and research catches.

Table 6.-CPUE by arca (in fish per standardized boat-hour for snapper reeis and tlah per 100 hooks for longlines).

Block	Snapper reel				Longiine		
	Fall 1980	Winter 1980-81	Spring 1981	Summer 1981	Summer 1981	Fail 1981	Winter 1981-82
2	-	6.2	12.6	9.9	-	42	8.1
5	11.6	10.5	7.6	4.5	69	-	7.4 12.7
6	12.5	130	6.3	5.9	69 131	86	12.7 12.4
7	-	-	102	9.4	131	16.1	12.4
8	-	-	8.9	5.2	13.9	198	21.1
9	-	-	\rightarrow	6.7	-	309	125
All	119	11.4	86.	7.4	13.2 9	45	33
	160	138	225.	244	26.0	111.9	51.5

per reel CPUE declined steadily in the two most intensively fished areas rblocks 5 and 6) as well as in the over-il-fishery. Longline CPUE tended to ve progressively higher to the south in each quarter. Because of nonhomogeneity of variance, a Kruskal-Wallis test was used to evaluate the significance of differences in between-quarters longline CPUE for all areas combined. There was no significant difference ($H=3.917$).

CPUE by depth and season is shown in Table 7. An ANOVA of snapper reel CPUE by depth combined over all quarters (i.e., the total values) did not reveal any significant difference in catchability (and preșumably relative abundance) attributable to depth.

Source	df	SS	Mean square	F
Treatment	2	160.88	80.44	1.43
Error	576	32349.78	56.16	
Total	578	32510.66		

Longline CPUE by depth for all quarters combined was also not significantly different when a KruskalWailis test was applied ($H=1.312$). For both units of gear, however, catch rates were lowest in the shallow stratum.

CPUE by time, depth, and season is listed in Table 8. Because of the lack of difference in CPUE by depth, the effect of time of day only was analyzed. An ANOVA of mean snapper reel CPUE by time pooled over all depths and quarters (i.e., the total values) indicated significant differences.

| Source | df | SS | Mean square | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Treaiment | 3 | 82365 | 274.55 | 5.91 |
| Error | 732 | 34020.68 | 46.48 | |
| Total | 735 | $348 \div 4.33$ | | |

By inspection of the data, it is obvious that this difference is attributable to lower catchability during 0700-1100 hours. Catchability during the other three pericds was nearly identical. The ANOV'A of mean longline CPUE (pooied over all guarters within each

Table 7-CPUE by depth (In flsh per standardzed boathour for anspper reels and flsh per 100 hooks for longlines). Snapper reel values are based on $\geqslant 10$ observallons per stralum

Depth (m)	Snapper reel						Longline			
	$\begin{gathered} \text { Fall } \\ 1980 \end{gathered}$	$\begin{aligned} & \text { Winter } \\ & 1980-81 \end{aligned}$	Spring 1981	Summer 1981	$\begin{aligned} & \text { Fall } \\ & 1981 \end{aligned}$	Toial	Summer 1981	$\begin{gathered} \text { Fall } \\ 1931 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Winter } \\ & 1981-82 \\ & \hline \end{aligned}$	Total
180-209	10.7	7.4	8.1	7.0	7.8	8.1	10.9	10.6	12.1	11.3
	-	-	-	-	-	183	-	-	-	9
s^{2}	-	-	-	-	-	48.04	-	-		160
210-239	10.5	12.3	8.3	7.0	7.1	8.8	13.8	18.2	12.3	16.2
N	-	-	-	-	-	289	-	-	-	57
s^{2}	-	-		-	-	47.22	-	14.4	13.7	106.5 13.9
240-300	11.7	-	7.0	8.1	-	9.6	-	14.4	13.7	13.9
N	-	-	-	-	-	107	-	-	-	20
s^{2}	-	-	-	-	-	52.12	-	-	-	33.9

${ }^{1}$ Includes values from Winter 1981-82 quarter.

Time/depth (m)		Snapper reel					
		Fall 1980	Winter 1980-81	Spring 1981	Summer 1981	Faß 1981	Total ${ }^{\text {P }}$
0700-1100 h 63							
180-209		-	4.7	$\overline{6}$ -	6.3	$\overline{4.2}$	-
210-239		11.2	13.9	6.8	5.7	4.2	
240-300		11.0	-	5.0	$\overline{6.1}$	5.1	7.7
All		12.0	8.8	7.2	6.1	5.1	294
	N s^{2}	-	-	二	-	-	47.87
$1100-1400 \mathrm{~h}$							
180-209		-	- 13.5	8.9	7.9	-	-
All		10.7	13.5 13.2	8.9 9.5	7.9	9.3	9.8
		10.7	13.2	$\stackrel{-}{-}$	-	-	184
	s^{2}	-	-	-	-	-	45.55
$1400-1700$ - 72 - 5.7							
180-209		7.2	$\overline{12.5}$	8.8	9.5	-	-
All		$\overline{9.8}$	13.6	9.7	8.2	10.1	10.0
	N	-	-	-	-	-	197
	$\mathbf{s}^{\mathbf{2}}$	-	-	-	-	-	45.33
$1700-2000 \mathrm{~h}$$210-239$. 12.0	-	-	7.6	-	-
		-12.3	-	10.0	7.5	-	10.0
	N	-	-	-	-	-	${ }_{51} 6177$
	s^{2}	-	-	-			51.77

Time		Longline			
		Summer 1981	Fall 1981	Winter 1981-82	Total
0700-1100 h		12.8	16.2	11.1	14.0
	N	-	-	-	32
	5^{2}	-	-	-	79.8
1100-1400 h		13.3	18.6	13.7	16.0
	N	-	-	-	27
	$\mathrm{s}^{\mathbf{2}}$	-	-	-	77.0
1400-1700 h		13.4	17.2	13.0	15.2
	N	-	-	-	${ }^{27}$
	s^{2}	-	-	-	100.2

includes values from Winter 1981-82 quanter.
time interval) indicated no significant difference in catchability with time of day, although CPUE was again lowest during 0700-1100 hours.

Source	of	SS	Moan square	F
Treatment	2	62.21	31.11	0.37
Error	83	7092.66	8533	
Total	85	7144.87		

Seasonal Production

Most snapper reel boats fish from three to six electric-reels with two or three hooks per reel and make from $7-$ to 10 -day trips. Most longliners use snap-on gangions with $300-600$ hooks per set, spaced 3-5 m (12-15 feet) apart. Soak time is usually about 3 hours and most boats make three sets per day.

Practically all of the tilefish caught off South Carolina and Georgia during 1980-81 were landed in South Carolina. Although the state does not have a mandatory catch reporting system for marine finfish, most landings were reported voluntarily. There was no recreational catch. The monthly landings shown in Figure 3 are therefore somewhat below actual production. Prior to August 1981, virtually ali landings were by snapper reel boats. L.ongline-caught fish predominoted in more recent landings.

Figure 4 illustrates the distribution of vessel efferr and catch by area.

Table 9 lists production figures for a hypothetical snapper reel boat, based on pooled and averaged logcheet dyta froin four vessels. The Ausest 1931 values are based on very limitet data and are probably anomblousiy low.

In our experimenial longlining in 1980, one set with hooks spaced 4 m (13 feet) apart produced 0.8 kg (1.7 poinds) per hook (260 kg or 574 pounds per mile of line), while the other produced 0.7 kg (1.6 pounds) per hook (243 kg or 537 pounds per mile of line). The set with the hooks spaced 12 m (39 feet) apart produced 1.8 kg (4.0 pounds) per hook (211 kg or 465 pounds per mile of line). The overall average was 15.4 tilefish per 100 hooks. Buring August 1981 through Fcbruary 1982, Cata for 87 commercial sets, were obtained. Overall production statistics were 130 fis!! per day fished, 15.0 fish per 100 hooks, and 0.88 kg (1.95 pounds) head-on, gutted weight per hook. Average daily production was about 767 kg (1.690 pounds).
Environmental conditions that collu influence seasona! production

Figure 3.-Monthly commercial landings of tilefish in South Carolina, May 1980-December 1981.

include weather, currents, and bottom temperature. Weather is highly variable from year to year, but offshore conditions during fall and winter of both 1980 and 1981 were dominated by a series of closely spaced fronts featuring sirong northeast winds. Because the tilefish grounds are loceted near the northeasi-flowing Guli Stream, such winds make fishing there very difficult; light to moderate southwest winds are best for fishing. Because of the water depth, strong currents (>2 knots) preclude either snapper reel or longline fisling. These currents are most likely to prevail when the Gulf Stream's western
boundary is closest to the 200 m (100 -fathom) curve.

Bottom isotherms (Fig. 5) indicate that temperature is not a major influence on seasonal production, although it does cause pronounced short-term effects. Northern fish are caught within a bottom temperature range of $8.3^{\circ}-11.7^{\circ} \mathrm{C} \quad\left(47^{\circ}-53^{\circ} \mathrm{F}\right)$ (Bigelow and Schroeder, 1953). In the Gulf of Mexico, Nelson and Carpenter (1968) caught tilefish within a temperature range of $10.0^{\circ}-17.2^{\circ} \mathrm{C}$ $\left(50^{\circ}-63^{\circ} \mathrm{F}\right)$ with highest catch rates in $12.8^{\circ}-13.9^{\circ} \mathrm{C}\left(55^{\circ}-57^{\circ} \mathrm{F}\right)$. Off South Carolina and Georgia, we caught tilefish over a temperature range of $7.5^{\circ}-16.0^{\circ} \mathrm{C}\left(46^{\circ}-61^{\circ} \mathrm{F}\right)$ (Table 10). Catch rares-were generally low at temperatures below $9.5^{\circ} \mathrm{C}\left(49^{\circ} \mathrm{F}\right)$.

Discussion

Off South Carolina and Georgic, tilefish are abundant over green, steeply sloping mud boitom at depth and temperature ranges intermediate to those of populations in the middle Atlantic and Gulf of Mexico. In the middle Atlantic, tilefish are contagiously distributed in association with burrows in canyon walls (Ablc et al., Footnote 4). In our area, the presence

Figure 4.-Distribution of catch and effort by area.
of burrows has yet to be confirmed and the fish appear to be rather uniformly distributed.
The average size of tilefish from off South Carolina and Georgia is substartially larger than that of fish from either the middle Atlantic or the Gulf
of Mexico. Much of the difference vis-a-vis the middle Atlantic population is due to the difference in historical exploitation rates. Freeman and Turner (1977) reported a significant difference in size between fish caught with longlines and those caught drift-
fishing with vertical hook-and-line gear in the middle Atlantic area, while the observed size of longline-caught fish in our area was only slightly smaller than that of fish caught with snapper reels. During 1980-81, the mean total length of the commercial

Figure 5.-Bottom temperatures off South Carolina and Georgia in 1973. Dark isotherms represent thermal limits for tilefish; hatched areas show the preferred range (modified from Mathews and Pashuk, 1977).
catch declined significantiy and the percentage of small ($<3.6 \mathrm{~kg}$ or <8 pounds) tilefish increased substantially, suggesting that the level of exploitation has teen sufficient to affect the population siructure. Large tilefish (>6.8 lis or >15.9 pounds) accounted for 50 percent of the total poundage landed in 1981. Even a modest decrease in their percent contribution
(28 percent by number) requires at least a two-fold increase in the corresponding number of small ($<3.6 \mathrm{~kg}$ or <8.0 pounds) fish to compensate for the lost poundage.

The difference in average size of commercially-caught tilefish and those taken during research cruises emphasizes a point of significance to management. Freeman and Turner
(1977) noted the tendency for fish in concentrations to be relatively similar in size. When commercial fishermen caught large numbers of small tilefish, they moved to another area in search of larger fish. This may explain the consistently larger size of tilefish in commercial catches compared with the fish in research catches during the same period. Research catches, if
based on adequate samples obtained from numerous locations, are a more ppropriate source of specimens for mortality estimates than are commercial landings.

Freeman and Turner (1977) observed that larger fish tended to be less abundant at depths greater than 238 m , an observation confirmed by our results. Mean total length was largest in the intermediate depth stratum ($210-239 \mathrm{~m}$) and almost identical in the shallow and deep zones. The relative contribution of small tilefish appeared to increase to the south regardless of season, but this was probably an artifact of sampling due to a disproportionately large part of the catch there being from the shallow stratum.
The decline in snapper reel CPUE during the study coincided with a substantial increase in fishing effort. Results from the analysis of longline CPUE also suggested slight decrease in overall CPUE in recent months. The overall impression is one of a moderate decline in abundance, particularly in those areas (blocks 5 and 6) where most of the effort has been targeted.

Freeman and Turner (1977) suggested that tilefish feed most actively

Month	Black	Depit (m)	Temperature (${ }^{\circ} \mathrm{C}$)
Maren	5	180-209	11.3-11.5
		210-239	9.3-10.4
		240.300	7.6-9.2
March	σ	210-239	10.5
		$240 \cdot 300$	7.5
Parch	7	180-209	12.4
		2 10-239	11.5
		240-300	9.4
April	2	180-209	10.8-11.9
		210-239	10.4-10.7
		240-300	9.5-10.2
July	9	180-209	8.6-15.5
		210-239	15.2-15.4
		240.300	12.2-12.5
Juiy	10	130-209	9.5
July	11	180-209	12.0
August	6	240-300	14.0.15.0
August	7	210-239	$14.0-16.0$ 8.5
Septeriber	2	210.239	8.5 12.14 .0
October	5	180-209	12.0-14.0
October	7	180-209	140 105
		$210-239$	10.5
November	8	180-209	16.0 90
January	8	240.300	90 93
January	7	$<10-239$	93 82
		$2.40-300$ 180.209	8.2
January January	6 5	$180-209$ 210.239	97

during midday and afternoon, an observation substantiated by our results. Snapper reel CPUE indicated that catchability was significantly-lower during the early daylight hours. Although we did no night fishing, we did observe that the fish always stopped biting abruptly and completely within an hour of sunset.

As production of snapper reel boats declined during the summer of 1981, there was an increasing shift to longline gear. Under similar conditions, a longline vessel can obtain a much higher catch rate than can a snapper reel boat. On three occasions, we fished with snapper reels (three) in the immediate vicinity of a longline vessel (fishing 425 hooks per set). In each instance, the longliner's catch rate was about double ours (42.3 vs. $25.5,55.6$ vs. 25.3 , and 29.8 vs. 14.7 fish per hour). Overall longline production during August 1981 through February 1982 averaged about 767 kg (1,690 pounds) per day, while snapper reel production during the same months (a year earlier) averaged about 388 kg (855 pounds) per day, again almost a $2: 1$ advantage for the longline gear.

At present, the fishery off South Carolina and Georgia is expanding, due primarily to additional longline effort, a trend that is expected to continue. Whether the population can sustain a profitable fishery with substantially increased effort remains to be seen. The overall mean longline catch rate during August 1981 through February 1982 of about 0.86 kg (1.9 pounds) per hook compares favorably with rates observed in other fisheries for the species. Grimes et al. (1980) reported an average catch rate of 0.64 kg (1.4 pounds) per hook during 1974-79 in the middle Atlantic, with the lowest being $0.32 \mathrm{~kg}(0.7$ pounds) per hook in 1978. A fishery on an unexploited northern stock in 1879 produced a catch rate of about 0.90 kg (2.0 pounds) per hook (Bumpus, 1899). In the Gulf of Mexico, the highest catch rate reported by Nelson and Carpenter (1968) for an unfished stock was 0.23 kg (0.5 pound) per hook. The best catch rate reported
from the Gulf during exploratory longlining in 1975 was 0.36 kg (0.8 pound per hook). By these standards, the-observed longline catch rate is indicative of a healthy population off South Carolina and Georgia.

Other factors, however, suggest a cautious approach to further expansion in the area currently being fished. The nonmigratory nature of tilefish (Freeman and Turner, 1977) implies that localized recruitment is mainly a function of growth of resident fish rather than immigration. Both snapper reel CPUE and mean total length of commercially-caught tilefish declined during the 1980-81 study period coincident with a pronounced increase in nominal fishing effort. The commercial longline catch rate dropped from 15.0 tilefish per 100 hooks (August 1981-February 1982) to 6.6 fish per 100 hooks (March-May 1982). Some fishermen have expressed concern over the amount of fish that have been taken from a limited area during this short time interval and recount the rapid decline of the New Jersey party boat fishery some years back. Others counter with the reference in Freeman and Turner (1977) of 5,000 fish weighing $36,400 \mathrm{~kg}(80,000$ pounds) taken during a 6 -month period from a $23.0 \mathrm{~km}^{2}$. $\left(9.0 \mathrm{mile}^{2}\right)$ newly exploited area.

The total area between 180 and 300 m (90 and 150 fathoms) in those blocks $(2,5-10)$ where wie found tilefish to be abundant is about $476 \mathrm{~km}^{2}$. Able et al. (Footnote 4) reported an average density of 680 adult tilefish per km^{2} in the Hudson Canyon (where the contemporary catch rate was about the same as we obtained during our exploratory longlining in 1980). If one accepts the assumption that this density is comparable to that off South Carolina and Georgia initially, then the initial population of adults in the study area may have been about 324,000 fish. Based on the 5.30 kg (11.67 pounds) mean individual round weight of researchcaught fish observed in early 1981, the initial exploitable biomass (B_{0}) was then perhaps 3.96 million pounds. A rough estimate of the maximum sus-
tainable yield (MSY) would be about 356,000 pounds, based on the simple model MSY $=0.5 M \times B_{0}$, where M (instantareous annual rate of natural mortality) is assumed to be about 0.18 .

Practically all of the 1981 catch was made in blocks $2,5,6,7$, and 8 . The initial population here was perhaps about 184,000 adult tilefish, with a biomass of 2.15 million pounds and a MSY of 193,000 pounds. The reported 1981 catch was 208,558 pounds of head-on, gutted fish, or about 223,000 pounds round weight (round weight $\cong 1.07$ dressed weight). Since the commercial catch is slightly biased toward larger fish, a more accurate estimate of the utilization rate is derived from the numbers of fish caught rather than their weight. Based on length composition from port sampling and the length-weight relationship $W=0.0000011 L^{3.3553}$, where W is the head-on, gutted weight in grams and L is the tota! length in millimeters, the number of fish caught was about 15,400 . The annual exploitation rate in terms of individuals was then about 8.4 percent, or slightly below the theoretical level implied in the MSY expression.

Acknowiedgrments

This study was funded by the Gulf and South Atlantic Fisheries Development Foundation under contracts GASAFDFI No. 11-09-27613 and GASAFDFI No. 17-02-24750. Doug Oakley, Pete Richards, and Mike Schwarz of the South Carolina Wildlife and Marine Resources Department provided valuable assistance during the field work and port sampling.

Literature Cited

Bigclow, H. B., and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. U.S. Fish Wildl. Serv., Fish. Bull. 53, 577 p.
Bumpus, H. C. 1899. The reappearance of the tilerish. Bull. U.S. Fish Comm. 18:321333.

Collins, J. W. 1884. History of the tile-fish. In report of the Commissioner for 1882, p. 237-295. U.S. Comm. Fish Fish., Pt. 10, Wash., D.C.
Cook, S. K., and R. W. Crist. 1979. Estimates of bottom temperature from fish capterred in lobster traps. Mar. Fish. Rev. 41(8): 23-25.
Dooley, J. K. 1978. Systematics and biology of the tilefishes (Perciformes: Branchiostegidae and Malacanthidae), with descriptions of two new species. U.S. Dep. Commer., NOAA Tech. Rep. NMFS Circ. 411, 78 p.
Freeman, B. L., and S. C. Turner. 1977. Biological and fisheries data on tilefish, Lopholatilus chamaeleonticeps Goode and

Bean. U.S. Dep. Commer., NOAA, Natl. Mar. Fish. Serv., Sandy Hook Lab., Tech. Rep. 5, 41 p .
Goode, G. B., and T. H. Bean. 1850. Description of a new genus and species of-fish, Lopholatius chamzeleonticeps, from the south coast of New England. Proc. U.S. Natl. Mus. 2:205-209.
Grimes, C. B., K. W. Able, and S. C. Tumer. 1980. A preliminary analysis of the tilefish, Lopholatilus chamaeleonticeps, fishery in the mid-Atlantic Bight. Mar. Fish. Rev. 42(11):13-18.
Mathews, T. D., and O. Pashuk. 1977. A description of oceanographic conditions of the southeastern United States during 1973. S.C. Mar. Res. Cent. Tech. Rep. 19, 112 p .
Nelson, W. R., and J. S. Carpenter. 1968. Bottom longline explorations in the Gulf of Mexico. A report on "Oregon II's" first cruise. Commer. Fish. Rev. 30(10):57-62.
Porter, W. 1976. Tilefish in the Gulf Stream. Natl. Fisherman 56(10):1-B.
Rothschild, B. J., and M. Y. Y. Yong. 1970. Apparent abundance, distribution, and migrations of albacore, Thunnus alalunga, on the North Pacific longline grounds. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 623:1-37.
Smith, H. M. 1917. Introduction of new aquatic foods. In report of the Commissioner of Fisheries for the fiscal year ended June 30, 1916, p. 98-100. Bur. Fish., Rep. U.S. Comm. Fish. for the Fiscal Year 1916.
Steel, R. G. D., and J. H. Torrie. 1960. Principles and procedures of statistics. MiGrawHill Book Co., Inc., New York, 481 p.
U.S. Department of Commerce. 1982. Fisheries of the United States, !981. Curr. Fish. Stat. 8200. U.S. Dep. Commer., NOAA, Natl. Mar. Fish. Serv., 131 p.
Wilson, K. V. 1956. A distribution-free test of analysis of variance hypotheses. Psychol. Bull. 53:96-101.

[^0]: "inat\%, S. j., C. B. Grinicy, and K. W. Able. 1979. Idertif!ration of tilefish, Lopholuilus chisimaeleonticans, stocks along the United Sintes' ca:i coast and Gilf of Mexico. Paper prosented at Amer. Fish. Soc. Mceting, April 1970. Provitence, R.I.

[^1]: ABSTRACT-During 1980-81, the area alo ig tie 200 in (100 fath:om) curve terween $3!=20^{\prime} N, 70^{\circ}, 10^{\prime} 3$ and $33^{\circ} 10^{\prime} N$, $77^{\circ} 20^{\prime} W$ ius sisimyed for tiicfish, Lopholatilus Ghamseleoritiseps. Researich cruise data and ionshiset inform!ation provided by commercial fisher.7!en were aralyzed to evainate cuich-per-inif-cijeffort (CDUE) by arca, depih, and wate of ticy. Size composition by area and antit :us duteralned und neat: total length of cu:me:rc:al wothes was obtained from port ...j.ting. Tiforin were aburdant alons 130 er, ? Til 7.mi.jof the outer continenial shelf in 10.300 m (sin ivo jathems) over soft, green n:3i. EBG:O:: terpperclures ranged from 7.5°

 \because x., sithmantialiy. Frciiminary indications
 Cab: : a as Cooraia was comparable to the

[^2]: ${ }^{3}$ South Atlantic Fishery Bianegement Council. July 1982. Source document Fisimery namiec. ment plan for the smapier-grouper conplex of the South A.tlantic region. Charl, itn, S.C.

[^3]: ${ }^{\top}$ Able, K. W., R. A. Cooper, C. B. Grimes, aid J. R. Uzinann. 1980. Tilefish, Lopholatilus chamurleonticeps, habitat on the outer continental shelf; obscrvations from a submeesible. Paper presented at Amer. Soc. Jch Herp. Mecting, June 1980, Fort Worth, Tex.

