# SEDAR 21 DATA WORKSHOP DOCUMENT 

# Standardized catch rates for juvenile sandbar sharks caught during NMFS COASTSPAN longline survey in Delaware Bay 

Camilla T. McCandless<br>NOAA/NMFS<br>Northeast Fisheries Science Center<br>Apex Predators Investigation<br>28 Tarzwell Drive<br>Narragansett, RI 02882

July 2010

## Summary

This document details the young of the year, age 1+ juvenile and the total juvenile sandbar shark catch from the Northeast Fisheries Science Center (NEFSC), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey conducted in Delaware Bay. Catch per unit effort (CPUE) in number of sharks per 50 -hook set per hour was used to examine the relative abundance of juvenile sandbar sharks between the summer nursery seasons from 2001 to 2009. The CPUE was standardized using a two-step delta-lognormal approach originally proposed by Lo et al (1992) that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. All three juvenile sandbar shark time series showed a fairly stable trend in relative abundance from 2001 to 2005 with only a brief decrease in abundance in 2002, which may be attributed to a large storm (associated with a hurricane offshore) that passed through the Bay that year. This stable trend was followed by a decreasing trend from 2005 to 2008 and ends with an increase in relative abundance in 2009.

## Introduction

Delaware Bay is one of the principal pupping and nursery grounds for sandbar sharks, Carcharhinus plumbeus, in the east coast waters of the United States. Researchers from the NEFSC Apex Predators Program (APP) have been conducting gillnet and/or longline surveys for juvenile sandbar sharks in Delaware Bay since 1995. In 2001, a juvenile shark bottom longline survey using a random stratified sampling plan based on depth and geographic location was initiated to assess and monitor the juvenile sandbar shark population. Relative abundance indices from this survey have been previously generated for juvenile sandbar sharks covering the time period from 2001 to 2005 (McCandless 2005). In this document, these time series are updated with data through 2009.

## Methods

## Sampling Gear and Data Collection

A 50-hook bottom longline was used at random stratified sampling stations based on depth and geographic location during the summer months from 2001 to 2009. The mainline consisted of $305 \mathrm{~m}(1000 \mathrm{ft})$ of $0.64 \mathrm{~cm}(1 / 4 \mathrm{in})$ braided nylon mainline, and 50 gangions comprised of $12 / 0$ Mustad circle hooks with barbs depressed, 50 cm of $1 / 16$ stainless cable, and 100 cm ( 39 in ) of 0.64 cm ( $1 / 4$ inch) braided nylon line with $4 / 0$ longline snaps. The 50 gangions were placed along the mainline in $6 \mathrm{~m}(20 \mathrm{ft})$ intervals. Longline soak time was approximately 30 minutes. Hooks were baited with thawed Atlantic mackerel, Scomber scombrus. The gear was set with weights and/or anchors to maintain position and enough line to account for the depth at the sampling location for attachment to a fluorescent ball buoy and a staff buoy with a fluorescent flag to mark each end of the gear.

Station location, water and air temperatures, depth, salinity, and time of day were recorded for each set. When possible, bottom type was determined by observing bottom sediment on the anchor. The sex, weight, fork length, total length, and umbilical scar condition of all sandbar sharks were recorded. Umbilical scar condition was recorded in six categories: "umbilical remains," "fresh open," "partially healed," "mostly healed," "well healed," and none. Sandbar sharks were then tagged with a NMFS blue rototag or a steel tipped dart tag (M-tag) and released.

## Sampling Design

A random stratified sampling plan based on depth and geographic location was initiated in July 2001 to assess and monitor the juvenile sandbar shark population in Delaware Bay. The

Bay was split into nine different geographic regions, three across the northern section of the Bay (NW, NC, NE), three across the middle section of the Bay (CW, CC, CE) and three across the southern section of the Bay (SW, SC, SE) (Figure 1). Within each of these regions, different sampling areas were determined based on the mean low water depth strata (0-2 m, 2-5 m, 5-10 $m$, and $10+m$ ) located within that region (Figure 1). The geographic regions and depth strata ranges were chosen based on differences seen during sampling for juvenile sandbar sharks in Delaware Bay by the National Marine Fisheries Service from 1995 to 2000. In some locations throughout the Bay where small areas of one depth stratum occur within another, and there is no significant difference between catch rates during historical sampling in these areas, the two areas are combined into one sample area under the larger of the two depth strata. When a depth stratum from one geographic region crosses into another geographic region, but only a very small portion, then that small portion will remain attached to the larger portion in the original geographic region.

Depth data used in this study were derived from a bathymetric digital elevation model (30 m resolution) based on 17 surveys containing 321,774 soundings in Delaware Bay conducted by the National Ocean Service (NOS). The surveys dated from 1945 to 1993. This data was verified and corrected using field observations and a geographically referenced, digital version of the 2000 NOS nautical chart of Delaware Bay (\# 12304).

Stations in each depth stratum within the nine geographic regions of the Bay were chosen randomly from a list of every point (latitude, longitude) within that depth stratum in decimal degrees out to four decimal places. A macro was created in Excel that randomly chose a station from these lists of possible station locations for each month sampled. Sampling occurred during a one-week time frame in mid July and early August from 2001 to 2009.

## Data Analysis

Log-normal error models have been used to standardize fishery-independent catch rates from shark surveys (Carlson 2001, Simpfendorfer et al. 2002). Currently, there is another approach to modeling catch data that takes into account highly skewed data with many zeros which is commonly seen in marine data (Pennington 1983, 1996). This approach is based on a delta-lognormal model and is a two-step approach that models the zero catch separately from the positive catch, which was originally proposed by Lo et al. (1992) for use in analyzing fish spotter data for northern anchovy, Engraulis mordax, from the southern California purse-seine fishery. Carlson (2002) also used this method to conduct a fishery independent assessment of shark stock abundance for large coastal species in the northeast Gulf of Mexico. The Lo et al. method for
standardizing data can correct the bias that may be introduced into log-normal error models when a significant number of zero catches in the data may cause zero catches with low effort to appear higher

Catch per unit effort (CPUE) in number of sharks per 50-hook set per hour was used to examine the relative abundance of juvenile sandbar sharks in Delaware Bay between the summer nursery seasons from 2001 to 2009 for three dependent variables: total juvenile sandbar shark CPUE, young of the year (YOY) sandbar shark CPUE, and juvenile (age 1+) sandbar shark CPUE. The CPUE was standardized using the Lo et al. (2002) method, which models the proportion of positive sets separately from the positive catch. Factors considered as potential influences on CPUE were: year (2001-2009), month (July and August), depth (0-2, 2-5, 5-10 and $10+m$ ) and region (NW, NC, NE, CW, CC, CE, SW, SC, SE). The proportion of sets with positive catch values was modeled assuming a binomial distribution with a logit link function and the positive catch sets were modeled assuming a lognormal distribution.

Models were fit in a stepwise forward manner adding one potential factor at a time after initially running a null model with no factors included (Gonzáles-Ania et al. 2001, Carlson 2002). Each potential factor was ranked from greatest to least reduction in deviance per degree of freedom when compared to the null model. The factor resulting in the greatest reduction in deviance was then incorporated into the model provided the effect was significant at $\alpha=0.05$ based on a Chi-Square test, and the deviance per degree freedom was reduced by at least $1 \%$ from the less complex model. This process was continued until no additional factors met the criteria for incorporation into the final model. The factor "year" was kept in all final models, regardless of its significance, to allow for calculation of indices. Single factors were incorporated first, followed by fixed first-level interactions. All models in the stepwise approach were fitted using the SAS GENMOD procedure (SAS Institute, Inc.). The final models were then run through the SAS GLIMMIX macro to allow fitting of the generalized linear mixed models using the SAS MIXED procedure (Wolfinger, SAS Institute, Inc), in which all interactions including the "year" factor were treated as a random effect. The standardized indices of abundance were based on the year effect least square means determined from the combined binomial and lognormal components.

## Results

## Total juvenile sandbar sharks

A total of 1117 juvenile sandbar sharks (including YOY) were caught during 503 longline sets from 2001 to 2009. The size range of juvenile sandbar sharks caught by year is
displayed in Figure 2. The proportion of sets with positive catch (at least one sandbar shark caught) was $53 \%$. The stepwise construction of each model and the resulting statistics for the mixed models are detailed in Table 1. Model diagnostic plots reveal that the model fit is acceptable (Figures 3a and 3b). The resulting indices of abundance based on the year effect least square means, associated statistics and nominal indices are reported in Table 2 and are plotted by year in Figure 4.

## Young of the year sandbar sharks

A total of 455 YOY sandbar sharks were caught during 503 longline sets from 2001 to 2009. The size range of YOY sandbar sharks caught by year is displayed in Figure 5. The proportion of sets with positive catch (at least one sandbar shark caught) was $24 \%$. The stepwise construction of each model and the resulting statistics for the mixed models are detailed in Table 3. Model diagnostic plots reveal that the model fit is acceptable (Figures 6a and 6b). The resulting indices of abundance based on the year effect least square means, associated statistics and nominal indices are reported in Table 4 and are plotted by year in Figure 7.

## Age 1+ sandbar sharks

A total of 661 juvenile sandbar sharks (age 1+) were caught during 503 longline sets from 2001 to 2009. The size range of age 1+ sandbar sharks caught by year is displayed in Figure 8. The proportion of sets with positive catch (at least one sandbar shark caught) was $48 \%$. The stepwise construction of each model and the resulting statistics for the mixed models are detailed in Table 5. Model diagnostic plots reveal that the model fit is acceptable (Figures 9a and 9 b ). The resulting indices of abundance based on the year effect least square means, associated statistics and nominal indices are reported in Table 6 and are plotted by year in Figure 10.

## References

Carlson, J.K. 2001. A fishery-independent assessment of stock abundance for small coastal species in the northeast Gulf of Mexico. Panama City Laboratory Contribution Series 01-06. 8pp.

Carlson J.K. 2002. A fishery-independent assessment of shark stock abundance for large coastal species in the northeast Gulf of Mexico. Panama City Laboratory Contribution Series 02-08. 26pp.

González-Ania, L.V., C.A. Brown, and E. Cortés. 2001. Standardized catch rates for yellowfin tuna (Thunnus albacares) in the 1992-1999 Gulf of Mexico longline fishery based upon observer programs from Mexico and the United States. Col. Vol. Sci. Pap. ICCAT 52:222-237.

Lo, N.C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2515-2526.

McCandless, C.T. 2005. Relative abundance trends for juvenile sandbar sharks in Delaware Bay from 2001 to 2005. LCS05/06-DW-30-V2. 23 pp.

Pennington, M. 1983. Efficient estimators of abundance for fish and plankton surveys. Biometrics 39:281-286.

Pennington, M. 1996. Estimating the mean and variance from highly skewed marine data. Fish. Bull. 94:498-505.

Simpfendorfer, C.A., R.E. Hueter, U. Bergman, and S.M.H. Connett. 2002. Standardization of catch and effort data in a spatially-structured shark fishery. Fish. Res. 45:129-145.

Table 1. Results of the stepwise procedure for development of the catch rate model for total juvenile sandbar sharks caught during the NMFS COASTSPAN survey. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model.

| PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FACTOR | DF | DEVIANCE | DEVIANCEIDF | \%DIFF | DELTA\% | CHISQ | PR>CHI |
| NULL | 502 | 694.8687 | 1.3842 |  |  |  |  |
| REGION | 494 | 621.3387 | 1.2578 | 9.1316 | 9.1316 | 73.53 | <. 0001 |
| YEAR | 494 | 640.4581 | 1.2965 | 6.3358 |  | 54.41 | <. 0001 |
| DEPTH | 499 | 686.0867 | 1.3749 | 0.6719 |  | 8.78 | 0.0323 |
| MONTH | 501 | 690.4359 | 1.3781 | 0.4407 |  | 4.43 | 0.0353 |
| REGION + |  |  |  |  |  |  |  |
| YEAR | 486 | 558.1565 | 1.1485 | 17.0279 | 7.8963 | 63.18 | <. 0001 |
| REGION + YEAR |  |  |  |  |  |  |  |
| REGION*YEAR | 422 | 469.6722 | 1.1130 | 19.5925 | 2.5647 | ative of Hessia | sitive definite |


|  |  |  | (-2) Res Log |
| :--- | :---: | :---: | :---: |
| FINAL MODEL | AIC | BIC | Likelihood |
| REGION + YEAR | 2252.6 | 2256.7 | 2250.6 |

Type 3 Test of Fixed Effects for Final Model = MONTH + YEAR

| Significance (Pr>Chi) of Type 3 | REGION | YEAR |
| :--- | :---: | :---: |
| test of fixed effects for each factor | $<.0001$ | $<.0001$ |
| DF | 8 | 8 |
| CHI SQUARE | 66.61 | 51.43 |


| POSITIVE CATCHES-LOGNORMAL ERROR DISTRIBUTION |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FACTOR | DF | DEVIANCE | DEVIANCE/DF | \%DIFF | DELTA\% | CHISQ |
| NULL | 268 | 231.8147 | 0.8650 |  |  |  |
| YEAR | 260 | 216.0137 | 0.8308 | 3.9538 | 9.5286 | 18.99 |
| REGION | 260 | 219.2055 | 0.8431 | 2.5318 | 0.0149 |  |
| DEPTH | 265 | 228.2378 | 0.8613 | 0.4277 | 0.0583 |  |
| MONTH | 267 | 231.4727 | 0.8669 | -0.2197 | 4.18 | 0.2424 |
|  |  |  |  |  | 0.40 |  |
|  |  |  |  |  |  |  |
| FINAL MODEL | (-2) Res Log |  |  |  |  |  |
| YEAR | 721.7 | 725.2 | Likelihood |  |  |  |

Type 3 Test of Fixed Effects for Final Model = YEAR

| Significance (Pr>Chi) of Type 3 | YEAR |
| :--- | :---: |
| test of fixed effects for each factor | 0.0826 |
| DF | 24 |
| CHI SQUARE | 34.12 |

Table 2. Total juvenile sandbar shark analysis number of sets per year (obs n), number of positive sets per year (obs pos), proportion of positive sets per year (obs ppos), nominal cpue as sharks per hook (obs cpue), resulting estimated cpue from the model (est cpue), the lower $95 \%$ confidence limit for the est cpue (LCL), the upper 95\% confidence limit for the est cpue (UCL), and the coefficient of variation for the estimated cpue (CV).

| year | n obs | obs pos | obs ppos | obs cpue | est cpue | LCI | UCI | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 56 | 36 | 0.6429 | 4.4286 | 5.7278 | 3.6063 | 9.0972 | 0.2345 |
| 2002 | 56 | 21 | 0.3750 | 2.3571 | 2.4572 | 1.2289 | 4.9133 | 0.3571 |
| 2003 | 56 | 36 | 0.6429 | 6.3571 | 6.1907 | 3.8978 | 9.8325 | 0.2345 |
| 2004 | 56 | 32 | 0.5714 | 5.2507 | 5.1643 | 3.0862 | 8.6418 | 0.2617 |
| 2005 | 56 | 31 | 0.5536 | 5.7394 | 5.9995 | 3.5361 | 10.1790 | 0.2690 |
| 2006 | 55 | 27 | 0.4909 | 3.3488 | 2.9235 | 1.6101 | 5.3082 | 0.3050 |
| 2007 | 56 | 31 | 0.5536 | 2.4211 | 2.8790 | 1.6971 | 4.8842 | 0.2690 |
| 2008 | 56 | 11 | 0.1964 | 1.0111 | 0.9009 | 0.3411 | 2.3795 | 0.5157 |
| 2009 | 56 | 44 | 0.7857 | 7.8322 | 8.2684 | 5.6866 | 12.0222 | 0.1888 |

Table 3. Results of the stepwise procedure for development of the catch rate model for young of the year sandbar sharks caught during the NMFS COASTSPAN survey. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION

| FACTOR | DF | DEVIANCE | DEVIANCE/DF | \%DIFF | DELTA\% | CHISQ | PR>CHI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NULL | 502 | 559.5862 | 1.1147 |  |  |  |  |
| REGION | 494 | 489.1254 | 0.9901 | 11.1779 | 11.1779 | 70.46 | <. 0001 |
| DEPTH | 499 | 528.4931 | 1.0591 | 4.9879 |  | 31.09 | <. 0001 |
| YEAR | 494 | 537.3809 | 1.0878 | 2.4132 |  | 22.21 | 0.0045 |
| MONTH | 501 | 559.2901 | 1.1163 | -0.1435 |  | 0.30 | 0.5864 |
| REGION + |  |  |  |  |  |  |  |
| DEPTH | 491 | 461.3810 | 0.9397 | 15.6993 | 4.5214 | 27.74 | <. 0001 |
| YEAR | 486 | 464.8390 | 0.9565 | 14.1922 |  | 24.29 | 0.0021 |
| REGION + DEPTH |  |  |  |  |  |  |  |
| YEAR | 483 | 434.8187 | 0.9002 | 19.2428 | 3.5436 | 26.56 | 0.0008 |
| REGION + DEPTH + YEAR + |  |  |  |  |  | Negative of Hessian not positive definite |  |
| REGION*YEAR | 419 | 350.4950 | 0.8365 | 24.9574 | 5.7145 |  |  |
| REGION*DEPTH | 467 | 398.8012 | 0.8540 | 23.3875 |  | Negative of Hessian not positive definite |  |
| DEPTH*YEAR | 459 | 411.9007 | 0.8974 | 19.4940 |  | Negative of Hessian not positive definite |  |
|  |  |  | (-2) Res Log |  |  |  |  |
| FINAL MODEL | AIC | BIC | Likelihood |  |  |  |  |
| REGION + DEPTH + YEAR | 2303.5 | 2307.6 | 2301.5 |  |  |  |  |

Type 3 Test of Fixed Effects for Final Model = MONTH + YEAR

| Significance (Pr>Chi) of Type $\mathbf{3}$ | REGION | DEPTH | YEAR |
| :--- | :---: | :---: | :---: |
| test of fixed effects for each factor | $<.0001$ | $<.0001$ | 0.0253 |
| DF | 7 | 3 | 8 |
| CHI SQUARE | 33.60 | 24.84 | 17.50 |


| FACTOR | DF | DEVIANCE | DEVIANCEIDF | \%DIFF | DELTA\% | CHISQ | $\mathrm{PR}>\mathrm{CHI}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NULL | 122 | 126.8550 | 1.0398 |  |  |  |  |
| YEAR | 114 | 110.8375 | 0.9723 | 6.4916 | 3.9538 | 16.60 | 0.0345 |
| REGION | 115 | 112.0488 | 0.9743 | 6.2993 |  | 15.27 | 0.0327 |
| DEPTH | 119 | 123.1011 | 1.0345 | 0.5097 |  | 3.69 | 0.2964 |
| MONTH | 121 | 126.6134 | 1.0464 | -0.6347 |  | 0.23 | 0.6282 |
| YEAR + |  |  |  |  |  |  |  |
| REGION | 107 | 95.9016 | 0.8963 | 13.8007 | 7.3091 | 17.80 | 0.0129 |
| YEAR + REGION + |  |  |  |  |  |  |  |
| YEAR*REGION | 73 | 52.5032 | 0.7192 | 30.8329 | 17.0321 | 74.10 | <. 0001 |
|  |  |  | (-2) Res Log |  |  |  |  |
| MIXED MODELS | AIC | BIC | Likelihood |  |  |  |  |
| YEAR + REGION | 330.9 | 333.6 | 328.9 |  |  |  |  |
| YEAR + REGION + YEAR*REGION | 222.0 | 224.3 | 220.0 |  |  |  |  |

Type 3 Test of Fixed Effects for Final Model = YEAR + REGION + YEAR*REGION

| Significance (Pr>Chi) of Type 3 | YEAR | REGION | YEAR*REGION |
| :--- | :---: | :---: | :---: |
| test of fixed effects for each factor | 0.0002 | 0.0010 | 0.0036 |
| DF | 8 | 7 | 34 |
| CHI SQUARE | 30.23 | 24.31 | 60.34 |

Table 4. Young of the year sandbar shark analysis number of sets per year (obs n), number of positive sets per year (obs pos), proportion of positive sets per year (obs ppos), nominal cpue as sharks per hook (obs cpue), resulting estimated cpue from the model (est cpue), the lower 95\% confidence limit for the est cpue (LCL), the upper 95\% confidence limit for the est cpue (UCL), and the coefficient of variation for the estimated cpue (CV).

| year | n obs | obs pos | obs ppos | obs cpue | est cpue | LCI | UCI | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 56 | 17 | 0.3036 | 1.3214 | 3.2400 | 1.7900 | 5.8649 | 0.3034 |
| 2002 | 56 | 12 | 0.2143 | 1.1786 | 0.9271 | 0.4645 | 1.8504 | 0.3561 |
| 2003 | 56 | 19 | 0.3393 | 3.2500 | 2.9196 | 1.7556 | 4.8553 | 0.2585 |
| 2004 | 56 | 15 | 0.2679 | 1.7822 | 2.8208 | 1.3779 | 5.7747 | 0.3700 |
| 2005 | 56 | 17 | 0.3036 | 2.4217 | 3.0284 | 1.7428 | 5.2624 | 0.2816 |
| 2006 | 55 | 13 | 0.2364 | 1.2298 | 0.9556 | 0.4969 | 1.8378 | 0.3359 |
| 2007 | 56 | 10 | 0.1786 | 0.7161 | 0.5964 | 0.2825 | 1.2588 | 0.3869 |
| 2008 | 56 | 3 | 0.0536 | 0.4863 | 0.5618 | 0.1444 | 2.1860 | 0.7658 |
| 2009 | 56 | 17 | 0.3036 | 3.4340 | 4.5242 | 2.3721 | 8.6286 | 0.3314 |

Table 5. Results of the stepwise procedure for development of the catch rate model for juvenile sandbar sharks (age 1+) caught during the NMFS COASTSPAN survey. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model.

| PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FACTOR | DF | DEVIANCE | DEVIANCE/DF | \%DIFF | DELTA\% | CHISQ | PR>CHI |
| NULL | 502 | 696.4291 | 1.3873 |  |  |  |  |
| REGION | 494 | 633.4754 | 1.2823 | 7.5687 | 7.5687 | 62.95 | <. 0001 |
| YEAR | 494 | 644.8611 | 1.3054 | 5.9036 |  | 51.57 | <. 0001 |
| MONTH | 501 | 689.4903 | 1.3762 | 0.8001 |  | 6.94 | 0.0084 |
| DEPTH | 499 | 691.9207 | 1.3866 | 0.0505 |  | 4.51 | 0.2115 |
| REGION + |  |  |  |  |  |  |  |
| YEAR | 486 | 574.6436 | 1.1824 | 14.7697 | 7.2010 | 58.83 | <. 0001 |
| REGION + YEAR |  |  |  |  |  |  |  |
| REGION*YEAR | 422 | 493.8113 | 1.1702 | 15.6491 | 0.8794 | ative of Hessia | sitive definite |


|  |  |  | (-2) Res Log |
| :--- | :---: | :---: | :---: |
| FINAL MODEL | AIC | BIC | Likelihood |
| REGION + YEAR | 2236.9 | 2241.0 | 2234.9 |

Type 3 Test of Fixed Effects for Final Model = MONTH + YEAR

| Significance (Pr>Chi) of Type 3 | REGION | YEAR |
| :--- | :---: | :---: |
| test of fixed effects for each factor | $<.0001$ | $<.0001$ |
| DF | 8 | 8 |
| CHI SQUARE | 57.76 | 48.85 |


| FACTOR | DF | DEVIANCE | DEVIANCE/DF | \%DIFF | DELTA\% | CHISQ | PR>CHI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NULL | 240 | 154.5920 | 0.6441 |  |  |  |  |
| YEAR | 232 | 146.1700 | 0.6300 | 2.1891 | 9.5286 | 13.50 | 0.0958 |
| REGION | 232 | 150.2762 | 0.6477 | -0.5589 |  | 6.82 | 0.5558 |
| DEPTH | 237 | 154.4875 | 0.6518 | -1.1955 |  | 0.16 | 0.9833 |
| MONTH | 239 | 154.2421 | 0.6454 | -0.2018 |  | 0.55 | 0.4600 |
|  |  |  | (-2) Res Log |  |  |  |  |
| FINAL MODEL | AIC | BIC | Likelihood |  |  |  |  |
| YEAR | 582.2 | 585.6 | 580.2 |  |  |  |  |

Type 3 Test of Fixed Effects for Final Model = YEAR

| Significance (Pr>Chi) of Type 3 | YEAR |
| :--- | :---: |
| test of fixed effects for each factor | 0.0998 |
| DF | 8 |
| CHI SQUARE | 13.37 |

Table 6. Juvenile sandbar shark (age 1+) analysis number of sets per year (obs n), number of positive sets per year (obs pos), proportion of positive sets per year (obs ppos), nominal cpue as sharks per hook (obs cpue), resulting estimated cpue from the model (est cpue), the lower 95\% confidence limit for the est cpue (LCL), the upper 95\% confidence limit for the est cpue (UCL), and the coefficient of variation for the estimated cpue (CV).

| year | n obs | obs pos | obs ppos | obs cpue | est cpue | $\mathbf{L C I}$ | UCI | CV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 56 | 34 | 0.6071 | 3.1071 | 3.6544 | 2.3319 | 5.7268 | 0.2275 |
| 2002 | 56 | 15 | 0.2679 | 1.1786 | 1.2643 | 0.5739 | 2.7850 | 0.4108 |
| 2003 | 56 | 32 | 0.5714 | 3.0714 | 3.4478 | 2.1442 | 5.5438 | 0.2409 |
| 2004 | 56 | 28 | 0.5000 | 3.5042 | 3.4316 | 2.0180 | 5.8352 | 0.2702 |
| 2005 | 56 | 30 | 0.5357 | 3.2819 | 3.5605 | 2.1550 | 5.8826 | 0.2551 |
| 2006 | 55 | 24 | 0.4364 | 2.1191 | 1.8436 | 1.0092 | 3.3678 | 0.3082 |
| 2007 | 56 | 26 | 0.4643 | 1.7051 | 1.9247 | 1.0976 | 3.3748 | 0.2864 |
| 2008 | 56 | 11 | 0.1964 | 0.5248 | 0.5959 | 0.2363 | 1.5025 | 0.4883 |
| 2009 | 56 | 41 | 0.7321 | 4.3982 | 4.7730 | 3.2936 | 6.9168 | 0.1871 |

Figure 1: Bathymetric map of Delaware Bay showing the nine geographic regions and the four depth strata used during this study


Figure 2. Fork lengths (cm) of total juvenile sandbar sharks caught by year


Figure 3a. Total juvenile sandbar shark model diagnostic plots for the binomial component.
Deita lognomal CPUE incex $=$ SANDBAR shark 2000-2009
Chisg Resicuals proportion positive


Figure 3a continued. Total juvenile sandbar shark model diagnostic plots for the binomial component.

Delta lognomal CPUE index = SANDB4R shark 2000-2009
Chisq Residuals proportion positive


Delta lognormal CPUE index = SANDBAR shark 2000-2009
Dagnostic plots: 3 Obs vs PTed CPUE of Post ond


Figure 3b. Total juvenile sandbar shark model diagnostic plots for lognormal component.

Delta lognormal CPUE index $=$ SANDBAR shark 2000-2009 Residuals positive CPUE Distribution


Delta lognormal CPUE index = S4NDBAR shark 2000-2009
Residuals positive CPUEs*Year


Figure 3b continued. Total juvenile sandbar shark model diagnostic plots for lognormal component.

Delta lognomal CPUE index = SANDBAR shark 2000-2009
QQplot residuals Positive CPUE rates


Figure 4. Total juvenile sandbar shark nominal (obscpue2) and estimated (STDCPUE2) indices divided by the maximum values with 95\% confidence limits (LCL2, UCL2).

Deita lognormal CPUE index = SANDBAR shark 2000-2009
Observed and Standardized CPUE $95 \% \mathrm{C}$ divided by max


Figure 5. Fork lengths (cm) of young of the year sandbar sharks caught by year


Figure 6a. Young of the year sandbar shark model diagnostic plots for the binomial component.

Deita lognomal CPUE inciex = YOY SANDBAR shark 2000-2009
Chisq Residuals proportion positive


Figure 6a continued. Young of the year sandbar shark model diagnostic plots for the binomial component.


Deita lognomal CPUE indox = YOY SANDBAR shark 2000-2009 Diagnostio plots: 1 Obs vs Pred Proport Posit
ppos


- obs ppos $\quad \ominus-\diamond$ pred ppos

Figure 6b. Young of the year sandbar shark model diagnostic plots for the lognormal component.

Delta lognomal CFUE hodex = YOY SANDBAR shark 2000-2009 Residuals positive CPUE Distibution


Delta lognomal CPUE index = YOY SANDBAR shark 2000-2009
Residuals positive CPUEs*Year


Figure 6b continued. Young of the year sandbar shark model diagnostic plots for the lognormal component.

Delta lognomal CPUE index = YOY SANDBAR shark 2000-2009 QQplot residuals Positive CPUE rates


Figure 7. Young of the year sandbar shark nominal (obscpue2) and estimated (STDCPUE2) indices divided by the maximum values with $95 \%$ confidence limits (LCL2, UCL2).

Delta lognomal CPUE index $=$ YOY SANDBAR shark 2000-2009 Observed and Standardized CPUE (95\% Cl) divided by max


Figure 8. Fork lengths (cm) of age $1+$ sandbar sharks caught by year


Figure 9a. Age $1+$ sandbar shark model diagnostic plots for the binomial component.

Deita lognomal CPUE index $=J U V E N I L E$ SANDBAR shark 2000-2009
Chisq Residuals proportion positive


Figure 9a continued. Age 1+ sandbar shark model diagnostic plots for the binomial component.

Deita lognormal CPUE index = JUVENLE SANDBAR shark 2000-2009
Chisq Residuals proportion positive


Delta lognormal CPUE index = JUVENILE SANDBAR shark 2000-2009
Diagnostio piots: Obs vs Pred Proport Posit
ppos


Figure 9b. Age 1+ sandbar shark model diagnostic plots for the lognormal component.

Deita lognormal CPUE index $=$ JUVENILE SANDBAR shark 2000-2009
Residuals positive CPUE Distribution


Delta lognormal CPUE index = JUVENLE SANDBAR shark 2000-2009 Residuals positive CPUEs*Year


Figure 9b continued. Age 1+ sandbar shark model diagnostic plots for the lognormal component.

Deita lognomal CPUE index = JUVENILE SANDBAR shark 2000-2009 QQpiot residuals Positive CPUE rates


Figure 10. Age 1+ sandbar shark nominal (obscpue2) and estimated (STDCPUE2) indices divided by the maximum values with 95\% confidence limits (LCL2, UCL2).

Delta lognomal CPUE index = JUVENLLE SANDBAR shark 2000-2009 Observed and Standardized CPUE $195 \%$ CI divided by max

STDCPUE?


