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1 Introduction

Indices of abundance for SEDAR 21 encompass a wide range of gears, levels
of spatial coverage, and a combination of fishery dependent and independent
indices. In a recent review of SEDAR 21’s data workshop (DW) report for
sandbar, dusky, and blacknose sharks, Robin Cook (the Center for Independent
Experts [CIE] reviewer) stressed that it was important to determine whether
CPUE indices generated for these stocks were truly measuring changes in rela-
tive abundance rather than some other artifact (e.g., localized abundance trends,
changes in spatial distribution, etc.). He suggested using factor analysis as a
potential method for comparing similarities of trends among various indices.
The object of this working paper is to use a related approach - hierarchical
analysis - to accomplish the same goal. The approach used here is the one
described by Conn (2010), which assumes that each index is attempting to
estimate relative abundance, but is subject to both sampling and process error.
Sampling error is assumed to be captured by the standardization procedures
used to generate abundance indices (i.e., via the CV’s reported along withe
each index in the DW report). However, each index is assumed to also be
subject to process variation, which describes the degree to which a given index
measures ‘artifacts’ above and beyond relative abundance in the population (in
practice, process variance will also reflect differences in selectivity among the

various indices).

2 Methods

Let indices of abundance be given as Uj, where index ¢ is composed of {U;;} for
t € {ti1,...,tir}, where t is a time subscript and T gives the ending year of the

study. If p = pq, po, ..., ur represent a scaled abundance time series, where
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annual changes in pu; are reflective of changes of abundance at the population
scale (that is, puy = ¢N; for some unknown constant ¢), then lognormal process

and sampling error yield the model

log(Uit) ~ Normal(log(u:) +log(af), (o},)* + (7)),

where ¢ gives a scaling coefficient for index ¢ (relative to ), of, gives pro-

cess standard deviation (SD), and of, gives sampling standard deviation (Conn

2010). In this case, note that the relation o, = \/log([CV (U;;)]2 + 1) can be
used to convert index CVs into index SDs.

The model as described above is ill defined, as there is nothing constraining
the u; values. Since they are only required to be proportional to true abundance,
I imposed the constraint as in Conn (2010); namely, that the mean of In(u;)
equal In(100). This constraint is arbitrary but not capricious; other constraints
could have been used with equal effectiveness, and would be expected to yield
similar results as far as relative abundance.

I gathered relative abundance indices from the SEDAR 21 DW report to use
for analysis. I only included indices recommended for the ‘base run’ of the as-
sessment model, and elected to use indices that reflected relative abundance of
adults (juvenile abundance indices were omitted because the selectivity process
was substantially different). Each index was standardized to it’s mean prior
to analysis. Separate analyses were conducted for dusky, sandbar, south At-
lantic blacknose, and Gulf of Mexico blacknose (blacknose being split into two
stocks). Standardized indices and CVs for each analysis are provided in Tables
1-4. Each analysis was conducted in a Bayesian framework, using the same set
of prior distributions and MCMC configuration as described by Conn (2010).
Computation was performed using WinBUGS software (Lunn et al. 2000).

In addition to model fitting, I also calculated inverse variance weights for
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each index for all stocks under consideration. These weights are calculated

as w; = W}*(U;’)Z’)’ and then renormalized so that the weights sum to one.

These weights are intended as possible selectivity weights in the case that the

combined index is considered for use in a sensitivity run.

3 Results

A table including hierarchical index values and associated CVs for each stock is

provided in Table 5.

3.1 Dusky shark

For dusky shark, hierarchical analysis suggested that relative abundance de-
creased from the mid-1970s until the late 1990s or early 2000s, and that there
has been an uptick in recent years (Fig. 1). The model also suggested that
the bottom longline observer program (BLLOP) and large pelagic survey (LPS)
had the lowest level of process error (these levels were consistent with process
CVs on the order of 0.1) (Fig. 2). By contrast, the other indices had pro-
cess CVs ranging from around 1.7 (VIMS) to 6.0 (Northeast longline survey).
These estimates suggest that the VIMS, NE longline, and SEPLOP indices are
substantially more imprecise at measuring population abundance than the sam-
pling error CVs reported along with indices indicate (at least for dusky shark).
Inverse variance selectivity weightings were esetimated at 0.043 (VIMS), 0.043
(Northeast Longline), 0.322 (BLLOP), 0.071 (SEPLOP), and 0.520 (LPS).

3.2 Sandbar shark

Similar to dusky, relative abundance of sandbar sharks was estimated to have

decreased up until early 2000s, followed by an increase in more recent years (Fig.
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3). Process errors were estimated to be lowest for the BLLOP, VIMS survey, and
southeast bottom longline survey (Fig. 4), where process CV was close to 0.1. In
contrast, process variation was estimated to be highest for the northeast longline
suvey and South Carolina Coastspan survey (these process SDs translated into
process CVs in the 2.0-3.0 range). Inverse variance selectivity weights were
estimated as 0.207 (Southeast bottom longline), 0.101 (Coastspan age 1+), 0.140
(VIMS), 0.033 (Northeast longline), 0.027 (South Carolina coastspan), 0.087
(Red Drum), 0.271 (BLLOP), 0.052 (SEPLOP), and 0.082 (LPS).

3.3 GOM blacknose shark

For GOM blacknose shark, hierarchical analysis indicated that relative abun-
dance increased over the duration for which indices were available (Fig. 5).
However, the longest running index only went back to 1987, so it is difficult to
infer from these data how more recent relative abundance compares to relative
abundance at the time when other stocks seem to have been depleted (e.g. 1970s
and early-mid 1980s).

In this case, the model seemed to key in on the fishery independent series
(with the exception of the Dauphin lab survey (Fig. 6). In particular, the
Dauphin and BLLOP surveys had higher estimated process errors than the
other surveys (for reference, a value of process SD 0f 1.0 is approximately equal
to a process CV of 1.7).

Inverse variance selectivity weights were estimated as 0.113 (SEAMAP sum-
mer), 0.113 (SEAMAP fall), 0.225 (Panama City gillnet), 0.367 (Southeast bot-
tom longline), 0.096 (Mote), 0.044 (Dauphin Island survey), and 0.041 (BLLOP).
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3.4 South Atlantic blacknose shark

For SA blacknose shark, hierarchical analysis revealed a pattern very similar to
dusky and sandbar shark, with declines from the beginning of the time series
(1972) up until the early to mid 2000’s and an uptick in recent years (Fig. 7). In
this case, the model seemed to have a rather poor view of the southeast bottom
longline survey, with process variance quite high with SD = 4.5 (Fig. 8). This
is likely a function of two factors: (1) the index exhibited wild swings in relative
abundance from year to year which couldn’t be explained by sampling error
alone, and (2) the general pattern of large increase throughout the time series
wasn’t reconcilable with the other CPUE series.

Inverse variance selectivity weights were estimated as 0.004 (Southeast bot-
tom longline), 0.286 (SC red drum), 0.186 (UNC), 0.102 (GA red drum), 0.057
(BLLOP), 0.198 (DGOP), and 0.167 (CFL).

4 Discussion

This analysis provided evidence that there is a good deal of process variation
that is not accounted for by just modeling sampling error alone. For some
indices, process variation was estimated to be relatively minor (with CVs on
the order of 0.1). However, for others, it was quite high (process error CVs of 2
or greater). Thus, it appears that it would be a good idea to account for the fact
that some indices appear to be modeling ‘other stuff’ than relative abundance.
One way to do this would be to model ‘additional variance’ for indices within
assessment models (sensu Geromont and Butterworth 2001). For instance, this
can be done using the age structured catch-free model developed by Porch et
al. (2006), which has been suggested for use with dusky sharks.

There was relatively little consistency between surveys with regard to whether
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they resulted in estimates of process variance that were large or small. For ex-
ample, the model suggested that the BLLOP survey did a good job (low process
error) at indexing dusky and sandbar shark, but a relatively poor job for blac-
knose. Similarly, the southeast bottom longline index was estimated to perform
reasonably for sandbar and GOM blacknose, but extremely poorly with regard
to SA blacknose. Such seeming discrepancies may be do in part to differences
in life history, spatial distribution, etc. between stocks but may also be do in

part to inherent conflicts between indices that are difficult to explain.
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Figure 1: Relative abundance of dusky sharks as estimated via hierarchical
analysis using data from all CPUE indices recommended for the ‘base’ stock

assessment model. The black line represents the posterior mean, while dashed
lines represent 95% credible intervals. The time series were standardized to have

a mean of 1.0 prior to plotting.
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Figure 2: Process standard deviation as estimated for each ‘base run’ dusky
CPUE series.
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Figure 3: Relative abundance of sandbar sharks as estimated via hierarchical
analysis using data from all CPUE indices recommended for the ‘base’ stock
assessment model. The black line represents the posterior mean, while dashed
lines represent 95% credible intervals. The time series were standardized to have
a mean of 1.0 prior to plotting.
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Figure 4: Process standard deviation as estimated for each ‘base run’ Sandbar
CPUE series.
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Figure 5: Relative abundance of GOM blacknose sharks as estimated via hier-
archical analysis using data from all CPUE indices recommended for the ‘base’
stock assessment model. The black line represents the posterior mean, while
dashed lines represent 95% credible intervals. The time series was standardized
to have a mean of 1.0 prior to plotting.
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Figure 6: Process standard deviation as estimated for

blacknose CPUE series.
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Figure 7: Relative abundance of SA blacknose sharks as estimated via hierar-
chical analysis using data from all CPUE indices recommended for the ‘base’
stock assessment model. The black line represents the posterior mean, while
dashed lines represent 95% credible intervals. The time series was standardized
to have a mean of 1.0 prior to plotting.
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Figure 8: Process standard deviation as estimated for each ‘base run’ SA blac-

knose CPUE series.
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Year Dusky CV Sandbar CV GOM.BN CV SABN CV
1972 2.22 0.73
1973 347  0.62
1974 1.59 0.74
1975 213 0.87 2.05 0.55
1976  1.27  1.30 1.87  0.59
1977 0.74  1.06 2.92 0.48
1978 127 1.34 2.86 0.49
1979 127 1.32 1.81 0.50
1980 1.58 0.86 1.15 0.50
1981  1.43  0.88 0.70  0.61
1982 1.27 131 0.92 0.50
1983  1.26  1.29 0.80  0.51
1984  1.27  1.32 0.99 0.51
1985  1.26  1.27 0.66 0.58
1986  1.69 0.36 2.90 0.56 0.51 0.70
1987  1.69 0.36 1.14 0.58 0.74 0.54  0.76 0.62
1988 144  0.43 2.66 0.57 0.73 0.54 1.27  0.63
1989 148 0.38 3.10 0.56 0.99 049 064  0.66
1990 1.05 0.36 0.81 0.49 0.83 049  0.46 0.73
1991 1.05 0.36 1.22 0.51 0.94 0.48 0.73 0.61
1992  0.51 048 1.22 0.44 0.92 0.52 1.16 0.65
1993 1.01  0.38 1.03 0.44 0.86 048 0.77  0.52
1994  0.57  0.38 0.59 0.37 0.63 046  0.77  0.44
1995  0.69 0.35 0.69 0.29 0.75 0.36  0.38 0.49
1996 0.74 0.34 0.52 0.28 1.01 0.30  0.55 0.57
1997  1.01  0.37 0.75 0.26 0.76 0.30  0.29 0.63
1998  0.65 0.37 0.71 0.28 1.13 0.36  0.29 0.36
1999 0.88  0.40 0.56 0.29 0.76 0.33  0.38 0.37
2000  0.58  0.41 0.46 0.29 0.80 0.33  0.56 0.42
2001  0.45 0.39 0.76 0.25 0.93 0.29  0.41 0.35
2002  0.38  0.43 0.42 0.27 0.84 029 044 0.34
2003  0.30  0.36 0.49 0.28 1.24 0.27 044  0.36
2004  0.47 0.34 0.52 0.27 1.51 0.26  0.23 0.35
2005  0.56  0.36 0.46 0.29 1.26 0.30  0.51 0.40
2006 049 041 0.59 0.28 1.51 030 034  0.35
2007  0.76  0.34 0.61 0.29 0.91 0.28  0.56 0.38
2008  0.90 0.34 0.57 0.29 1.62 0.27  0.88 0.45
2009  0.90  0.32 1.23 0.28 1.32 0.28  0.66 0.44
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Table 5: Hierarchical relative abundance indices for dusky, sandbar, GOM blac-
knose, and SA blacknose stocks as estimated by the posterior mean of the hier-

archical analysis, together with associated estimates of coefficient of variation.
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