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Researchers often use multiyear tag- al., 1995) and other related measures 
recovery studies to assess fish popu- such as quasilikelihood AIC (Akaike, 
lations; yet deriving useful stock as- 1985). Although these measures are 
sessment parameter estimates from informative about overall model fit, 
the resulting data can be difficult. The they do not provide any information 
reliability of those parameter esti- about why a model fit is poor or which 
mates generally depends on data qual- assumption(s) is (are) possibly in viola­
ity and meeting the assumptions in- tion. To remedy this problem, Latour et 
herent to the models used for analysis. al. (2001a) conducted a series of simu-
As a result, practical application of lations and demonstrated that distinct 
multiyear tag-recovery models gener- patterns in model residuals will be 
ally requires that a large portion of evident if particular assumptions are 
the data analysis involve investigation violated. They discussed in detail the 
and evaluation of biases due to poten- residuals associated with the time­
tial assumption violation. specific parameterizations of the Se-

Brownie et al. (1985) developed a ber (1970) and Brownie et al. (1985) 
class of models that has become widely models, as well as the time-specific 
used for the analysis of multiyear tag- instantaneous rates model developed 
recovery data. These models constitute by Hoenig et al. (1998). 
a generalization of the class of models The genesis of the work by Latour 
developed by Seber (1970), which have et al. (2001a) can be traced to two par-
recently been resurrected as an impor- ticular applications of multiyear tag­
tant tool for the analysis of multiyear recovery models. Specifically, Latour et 
tag-recovery data by the development al. (2001b) analyzed tag-recovery data 
of the software program MARK (White of red drum (Sciaenops ocellatus) in 
and Burnham, 1999). Although these South Carolina and found systematic 
models are fairly simple and robust, in patterns along the diagonals in the 
practical situations at least one of the upper right corner of the residuals 
assumptions is often not supported by matrix. Frusher and Hoenig (2001) ap­
the data. plied a series of tag-recovery models to 

Approaches that are commonly used Australian rock lobster (Jasus edward­
to assess the fit of multiyear tag-recov- sii) data and found consistent patterns 
ery models include the formal good- in the columns of the residuals matrix. 
ness-of-fit test, Akaike’s information In both instances, the researchers 
criterion (AIC) (Akaike, 1973; Burn- could only speculate as to the cause of 
ham and Anderson, 1992; Burnham et these patterns in residuals. Although 

the simulations conducted by Latour 
et al. (2001a) have since provided 
reasonable explanations for the ob­
served patterns, the development of 
those diagnostic procedures led to the 
discovery that the residuals associated 
with the time-specific Seber (1970) and 
Brownie et al. (1985) models are sub­
ject to several constraints. 

This note contains a series of simple 
mathematical arguments that verify 
the assertions made by Latour et al. 
(2001a) about the residuals of the 
time-specific parameterizations of the 
Seber (1970) and Brownie et al. (1985) 
models. Unfortunately, the constraints 
inherent to the residuals of those 
models partially cloud a researcher’s 
ability to assess the existence of a pat-
tern. As such, knowledge of the inher­
ent properties of the residuals of these 
models is of particular importance, 
especially because the time-specific 
parameterizations are commonly used 
for the analysis of tag-recovery data. 

Materials and methods 

Multiyear tag-recovery models 

Multiyear tagging data are generally 
represented by an upper triangular 
matrix of tag recoveries. For example, 
the matrix for a study with I years of 
tagging and J years of tag-recovery 
would be, when I = J, 

r r12 L r1J 11 

r = 

 − r22 Lr2J 

 

 M M O M   
, (1)


 

 − − − rIJ 


where rij = the number of tags recov­
ered in year j that were 
released in year i (note, i = 
1, … , I; j=i, … , J). 

Application of multiyear tag-recov­
ery models generally involves con­
structing a matrix of expected values 
and comparing them to the observed 
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data. The matrix of expected values corresponding to the 
time-specific parameterization of Brownie et al. (1985), 
which is referred to as model 1, takes the form 

1 1  N1S1f2 L N S1 LSJ −1) fJ N f  1( 

2 2  L N S2 L SJ −1) fJ E =

 − N f  2(  

r  M M O M  
, (2) 

  
 − − − N fI J   

where Ni = the number tagged in year i; 
fi = the tag recovery rate in year i; and 
Si = the survival rate in year i. 

As stated above, the Brownie et al. (1985) models 
constitute a generalization of those developed by Seber 
(1970). The only difference lies in the definition of the tag 
recovery rate. Specifically, Seber (1970) modeled the tag 
recovery rate in year i as fi = (1 – Si)ri, where ri is the rate 
at which tags are reported from killed fish in year i re­
gardless of the source of mortality. The matrix of expected 
values associated with time-specific parameterization of 
the Seber (1970) models, which we will refer to as model 
1*, takes the form (when I = J) 

 N1(1 − S1)r1 N1S1(1 − S2)r2 L N S1 L SJ−1) (1 − SJ )rJ 1( 

E =

 − N2(1 − S2)r2 L N S2 L SJ −1) (1 − SJ )rJ 




 . (3)2( 

r  M M O M 
  
 − − − N1(1 − SJ )rJ  

The data in each row of Equation 1 follow a multinomial 
distribution and maximum likelihood estimation can be 
used to derive parameter estimates from either model 1 
or model 1*. Program MARK has emerged as the leading 
software package for deriving these estimates (White and 
Burnham, 1999). 

Patterns in residuals 

Latour et al. (2001a) manipulated a hypothetical perfect 
data set (i.e. the observed number of tag recoveries was 
equal to the expected number of tag recoveries) to simulate 
four specific forms of assumption violation for multiyear 
tag-recovery models. For each scenario, they analyzed the 
modified data with model 1, model 1*, and a time-specific 
parameterization of the instantaneous rates (IR) models 
(Hoenig et al., 1998) and noted any patterns in the residu­
als matrix that resulted from each particular assumption 
violation. Specifically, they found the following: 1) the 
presence of nonmixing (which violates the assumption 
that the tagged population is representative of the target 
population) leads to consistent patterns on the main and 
super diagonals of the residuals matrix (the main diago­
nal contains the (1,1),(2,2),…,(I,I) cells and the first super 
diagonal contains the (1,2),(2,3),…(I–1,I) cells in a square 
matrix); 2) permanent emigration from the study area of 
individuals within a tagged cohort (which violates the 
assumption that all tagged fish within a cohort are subject 
to the same annual survival and tag-recovery rates) leads 

to a pattern of negative residuals along the diagonals of 
the upper right corner of the residuals matrix; 3) tag-
induced mortality or immediate loss of tags due to poor 
tagging (which violates the assumptions that tags are not 
lost and survival rates are not affected by tagging) leads 
to row patterns in the residuals matrix (note that these 
patterns are detectable only in the residuals matrix of the 
IR model); and 4) a change in the natural mortality rate 
(which violates the frequently imposed assumption that 
natural mortality is constant over time) leads to column 
patterns in the residuals matrix (again, this only applies 
to the IR model). 

Constraints on residuals of model 1 and model 1* 

Latour et al. (2001a) asserted without proof that the 
residuals associated with model 1 and model 1* are sub­
ject to several constraints. Specifically, they stated that 
the relationship EII = rII always holds, regardless of the 
number of years of tagging and tag-recovery (note that Eij 
is the expected number of tags recovered in year j that 
were released in year i). This implies that the observed 
data and the expected value associated with the (1,1) cell 
are always identical and that the residual for that cell is 
always equal to zero. They also stated that the residuals 
associated with the implicit “never seen again” category 
are also always equal to zero (recall that under a multino­
mial formulation, one of the possible outcomes is to never 
recapture a tagged fish). Collectively, these constraints 
imply that the residuals matrix derived from using model 
1 or model 1* to analyze data from a study with I years of 
tagging and J years of tag-recovery takes the form 

.0 00 (r12 − E12 ) L (r1J − E1J ) 0.00 

resid =

 − (r22 − E22 ) L (r2J − E2J ) 0 00

 . 
 M M O M 0 00 

,  (4) 
. 

  
 − − L (rIJ − EIJ ) 0 00. 

where rij and Eij are as defined previously and the last 
column of the matrix represents the residuals associated 
with the “never seen again” category. 

In addition to the aforementioned zero residuals, Latour 
et al. (2001a) stated that the sum of each row and each 
column of the residuals matrix must equal zero and that 
for the case when I = J (i.e. the recovery matrix is square), 
the constraint that EII = rII is also present (i.e. the residual 
associated with the (I, I) cell is always equal to zero). 

In the context of searching for patterns in residuals, 
these constraints have the following implications. First, 
the presence of residuals that are constrained to be zero 
essentially reduces the total number of values that are 
available for inspection and ultimately forces conclusions 
about the existence of a pattern to be based on the signs 
of fewer residuals. For short-term tagging studies (e.g. 
3–4 years), the loss of residuals for inspection makes it 
extremely difficult to evaluate model performance because 
each row, column, and diagonal of the residuals matrix al­
ready contains only a few values. Second, because the sum 
of each row of the residuals matrix must total zero, and 
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because the residuals corresponding to the “never seen 
again” cells are zero, it is not possible for a row pattern to 
be expressed in the residuals matrices of either model 1 or 
model 1.* This constraint renders it very difficult to detect 
assumption violations that are cohort-specific—the most 
common being tag-induced and handling mortality and 
short-term tag loss. 

Results 

To verify that the aforementioned constraints about the 
structure of the residuals matrices associated with model 
1 and model 1* are true, we offer the following mathemati­
cal arguments. The proofs simply involve algebraic manip­
ulation of equations involving the analytical formulae for 
the maximum likelihood parameter estimates (MLE) of 
model 1. The formulae for the MLEs were originally devel­
oped by Seber (1970) and can be applied to both to model 
1 and model 1* (because ri can be expressed as a function 
of Si and fi, the invariance property of MLEs implies that 
an MLE of ri can be obtained by the transform). Hence, 
the proofs are developed for model 1, and we note that 
similar arguments could be constructed for the residuals 
of model 1*. 

Recall that the analytical solutions for the maximum 
likelihood estimates of fi and Si from Seber (1970) and 
Brownie et al. (1985) are given by 

i i  i −f̂  
i = 

R C  
and Ŝ 

i = 
Ri (T Ci ) Ni+1 ,

N Ti i  Ni Ti Ri+1 

where Ri and Ci are the row and column totals of the 
observed data in year i; and 

that the difference between the observed and estimated 
expected values in that cell is always zero. Hence, we 
have 

ˆ ˆ rII − EII = rII − NI fI 

 R CI I   
= rII − NI  N T   (substituting for f̂  

I ) 
I I  

= rII − RI (because TI = CI ) 

= rII − rII = 0 (because the row total in the 

final recovery year is rII ). 

Column sums when I = J 

To show that the column sums of the residuals matrix 
equal zero, we must demonstrate the column sum of the 
observed data equals that of the expected values. Consider 
the sum of the expected values associated with the Ith 

column of the recovery matrix, that is 

=Q E1I + E2 I + L + EII = N1(Ŝ1 LŜ 
I−1) f̂

 
I + 

( ˆN S2 LŜ 
I−1) f̂

 
I + L + NI−1Ŝ

 
I−1 f̂

 
I + NI f̂  

I .2 

ˆ ˆNow substitute for fi and Si on the right hand side: 

 R1 (T1 − C1) N2  
=Q N1 

 N1 T1 R2 
 L 

I I  

 + 
 RI −1 (TI −1 − CI −1) NI   R C   

 NI−1 TI −1 RI 

  N TI I  

 R2 (T2 − C2) N3  
L 

 RI−1 (TI −1 − CI −1) NI   R C  
 +

I I   
T1 = R1 

N2 
 N2 T2 R3 

  NI −1 TI−1 RI 

  N TI I  

Ti = Ri + Ti–1 – Ci–1 i = 2, … , I 

TI+j = TI+j–1 – CI+j–1 j = 1, … , J – I if J > I.  RI −1 (TI −1 − CI −1) RI   R C    R CI I  I I  

 + NI  N T   . 
I I  I I  

L + NI −1  NI −1 TI−1 NI 
  N T  

The (1,1) cell 

To show that the residual associated with the (1,1) cell Cancel terms and factor out the term 
CI :


is always zero, we must demonstrate that the difference TI


between the observed and estimated expected value in the 

first cell is always zero. Hence, we have Q =

 CI  

 R T1 − C1)   T2 − C2 


 
L 


 

TI −1 − CI −1 
 +
1( 

ˆ ˆ  TI 
 

 T1   T2 TI−1 
r11 − E11 = r11 − N1 f1 

 R C  = r11 − N1  
1 1   

(substituting for f̂1)  R T2 − C2)  T3 − C3  
L 

 TI −1 − CI −1 





 

+N T  2( 
1 1   

 T   T   T 
= r11 − C1 (since T1 = R1) 

= r11 − r11 = 0 (because the column total 

in the first recovery year is r11). 

The (I,I ) cell when I = J 

To show that the residual associated with the (I,I) cell 
is always zero when I = J, again we must demonstrate 

2 3 I−1  

+L +
 CI   RI −1(TI−1 − CI−1)

 + RI 
 
. 

 TI 
 



 TI−1  

Systematically factor out terms of the form 
(Ti − Ci ) (re-

call that T1 = R1): 
Ti 
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 CI  
 TI −1 − CI −1  

 TI −2 − CI −2 Q = 
 TI 

 

 TI−1   TI−2  

  
L 

 T2 − C2 
 (R1 − C1 + R2) + R3 



 
+ R4 



 

+ L + RI−1
 

+ RI 

 

. 
  T2   

Utilize the definition of Ti = Ri + Ti–1 – Ci–1 to systemati­
cally simplify and cancel starting with the innermost par­
enthetic expression: 

 CI   TI −1 − CI−1   
Q = 

 TI 
 



 TI −1  TI −1 + RI 

 

 CI  
= 

 TI 
 [TI −1 − CI−1 + RI ]

=
 CI  

TI = CI = r1I + r2I + L + rIJ , TI 
 

which demonstrates that the column sum of expected 
values equals the column sum of observed recoveries, as 
desired for the Ith column. Similar arguments hold for the 
other columns. 

Column sums when I > J 

The proof that the column sums of the residuals matrix 
equal zero when the recovery matrix is nonsquare is simi­
lar to the proof above except for making use of the defini­
tion TI+j = TI+j–1 – CI+j–1. 

Row sums when I = J 

To show that the row sums (excluding the “never seen 
again” cell) of the residuals matrix equal zero, we must 
demonstrate the sum of the observed data equals that of the 
expected values. Consider the sum of the expected values 
associated with the first row of the recovery matrix: 

=Q E11 + E12 + L + E1I = N1 f̂1 + N1Ŝ1 f̂2 + L + N1(Ŝ1 LŜ 
I−1) f̂

 
I . 

ˆ ˆNow substitute for fi and Si on the right hand side: 

1 1    R1 (T1 − C1) N2   R C R C  2 2   
=Q N1  N T   + N1  N1 T1 R2 

  N T   +
1 1  2 2  

  R1 (T1 − C1) N2  
L + N1 

  N1 T1 R2 
 L 

 RI −1 (TI −1 − CI −1) NI    R C  I I  . 
 NI−1 TI −1 RI 

 
  N T   

I I  

Cancel and factor out the term T1 – C1 (recall that T1 – 
R1): 

 R C
Q = 

 
1 1  


 

+ (T1 − C1) 
 C2 + 


 T2 − C2 

 + 
T1  T2 T2 

 T2 − C2   T C3 3   
L 

 TI −1 − CI −1   CI   
.L + 

 T2   T3   TI −1   TI 



 

i −Systematically factor out terms of the form 
(T Ci ) :

Ti 

 R C
Q = 

 
1 1  


 

+ (T1 − C1)T1 

 C2  T2 − C2  
 
C3 + L + 

 CI−1 +
 TI −1 − CI −1    CI 

 
L 




 .


 T2  T2  
 T3  TI−1  TI −1  



 TI  



The expression inside the innermost square brackets is 
equal to 1 (recall TI = CI). Hence, we have 

1 1   1 1  + R T1 − R C
Q = 


 

R C  
 + (T1 − C1) = 

R C  1 1 1  = R1T1 T1 

= r11 + r12 + L + r1I , 

which shows the sum of the expected values in row 1 is 
equal to the sum of the observed data. Similar arguments 
hold for the other rows. 

Row sums when I > J 

As with the proof of the column sums when I > J, the defin­
tion TI+j = TI+j–1 – CI+j–1is needed to show the row sum of a 
nonsquare matrix (excluding the “never seen again” cells) 
are zero. 

“Never seen again” cells 

The likelihood function for the Brownie-type model is a 
product multinomial and the parameters for each row are 
constrained to sum to one. Therefore, the expected values 
in a row are simply an apportionment of the number 
tagged to the years of recovery and the “never seen again” 
category. Hence, the sum of the estimated expected values 
has to equal the row sum (including the “never seen again” 
cell), which implies the residuals of the “never seen again” 
cells are always equal to zero. 

Discussion 

The residuals of multiyear tag-recovery models can be very 
helpful for evaluating model performance. Unfortunately, 
examining the residuals matrix for patterns is not a com­
monly employed procedure for assessing model fit in practi­
cal situations.The work by Latour et al. (2001a) was intended 
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to demonstrate the insight a researcher can acquire by using 
residuals as a diagnostic probe to gauge the possibility of 
assumption violation. Similarly, the work presented here is 
intended to further guide researchers by explicitly delineat­
ing the properties of the residuals associated with two com­
monly applied multiyear tag-recovery models. 

Model 1 and model 1* represent parameterizations of 
only two classes of tag-recovery models. Properties of the 
residuals associated with other classes of models (e.g. move­
ment models, age-structured tag-recovery models, capture-
recapture models) have not been studied. We feel strongly 
that similar types of insight about model performance and 
model fit can be acquired by examining the residuals for 
patterns. As such, we recommend that the residuals from 
other classes of models be more thoroughly investigated. 
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