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ABSTRACT 

A widely used management regulation in the grouper-snapper fishery of the Southeast 

United States is the use of minimum size limits. This approach assumes that under the size limit 

fish caught and returned experience minimal post-release mortality. However visible signs of 

decompression injury due to the expansion of gas within the swim bladder when fish are hooked 

and reeled quickly to the surface suggest potential mortality. Mortality rates of fishes that are 

caught and released are unknown. This study examined mortality rates and decompression injury 

in below or just legal sized red porgy (Pagrus pagrus), vermilion snapper (Rhomboplites 

aurorubens), red grouper (Epinephelus morio) and scamp grouper (Mycteroperca phenax) 

caught on hook and line then caged and returned to the water. The major objective was to 

determine mortality of these fishes on release. Secondary objectives were to look at the 

relationships between depth and mortality and size and mortality. The project was done in 

federal marine waters offshore of North Carolina in 1999 and 2000 in depths ranging from 33.6 – 

54.8 m. Mean mortality rates were conservatively estimated as 33% for E. morio, 39.5% for M. 

phenax, 30.35% for R. aurorubens, and 42.9% for P. pagrus. There were positive trends between 

depth and mortality in P. pagrus and M. phenax and depth caught was a significant factor in the 

mortality for R. aurorubens. Length was found to have a marginally significant positive 

correlation with mortality in P. pagrus. These results cast doubts on the use of size limits as an 

effective management tool for the snapper/grouper fishery. Various species-specific regulations 

and techniques are discussed as well as an ecosystem-based approach as an alternative to size 

limits for management of the snapper-grouper complex. 

SEDAR17-RD09



 iv

 

ACKNOWLEDGMENTS 

 

My deepest thanks go out to all of the commercial fishermen who were full-on partners in 

the fieldwork of this project. Ed McCabe and John Wasterval were available with ideas and time 

when I asked for it, but I would like to especially thank my good friend Captain Matt Tierney. 

He made the conclusion of the fieldwork for this project possible by his consistent efforts to 

work together as a team and patience under some occasionally trying circumstances. Being on 

the water was always more fun with Matt.  

 I thank my Committee Chair and advisor Dr. Ileana Clavijo who showed faith in me to 

take me on as a graduate student and then patiently allowed me to take my time as life became 

very busy.  

 I thank my committee for their guidance and ideas from beginning to end. Thanks also to 

Dr. Larry Cahoon from whom I learned a great deal and for whom I have the deepest respect. 

 I thank the excellent North Carolina Sea Grant Program who funded my project and gave 

me support throughout.  

 Finally I would like to thank my wife Judith for believing in me and encouraging me to 

finish when it was the most difficult to do so.  

SEDAR17-RD09



 v

LIST OF TABLES 

 
 

Table                                                   Page 
 
1.         Mortality rates, n observed, means, standard deviations and  

ranges of length and depth caught for species sampled in the  
experimental group.…………………………………………….…………….10 

 
2.  Mortality rates, n observed, means, standard deviations and  

ranges of length and depth caught for species sampled in the  
experimental group.…………………………………………….…………….16 

SEDAR17-RD09



 vi

LIST OF FIGURES 
 

Figure                                                  Page 
 
1. Number of fish of all species caught by depth………………………..…………11 
 
2. Logistic regression of probability of mortality vs. depth caught for R. 

aurorubens………………………………………………………………………………..12 
 
3.  Logistic regression of probability of mortality vs. length in P. pagrus…………..16 

SEDAR17-RD09



 vii

LIST OF APPENDICES 
 
 

Appendix                                               Page 
 
1. Individual experimental group observations in the order the fishes  

were sampled………………………………………………………………….…29 
 
2. Individual control group observations in the order the fishes were  

sampled. ………………………………………………………………………...35 
 

SEDAR17-RD09



 1

INTRODUCTION 
 

The snapper grouper complex is an important fishery extending from New York 

State to Florida along the eastern coast of the United States, the Gulf of Mexico, and 

California coastal waters. Some shared characteristics of these fishes have made them 

susceptible to overfishing. Typically fish of this complex are reef-associated and easy to 

find, particularly with the advancement of GPS and bottom imaging technology. They 

tend to be slow growing so populations do not quickly replace lost biomass. Life spans of 

some typical reef fishes are as high as 15 years in damselfishes (Kohda, 1996), 17 years 

in red porgy (Pagrus pagrus) (Hood and Johnson 2000), 40 years for wreckfish, 

(Polyprion americanus) (Sedberry et al. 1999), and 53 years in red snapper (Lutjanus 

campechanus). They also tend to be late maturing. Ages at first maturity range from less 

than 2 years in red porgy and vermilion snapper (Rhomboplites aurorubens) (Hood and 

Johnson  2000, Hood  and Johnson 1999) to 5-7 years in red snapper (Goodyear 1995). 

Fishing effort tends to be focused on the larger individuals, which are the more 

prodigious breeders in the population (Hood and Johnson 1999, Collins et al. 1998). At 

least some of these fishes aggregate to spawn (Coleman et al. 1996, Colin 1992, 

Luckhurst 1998), which makes them easy to target when the location of the aggregations 

are known. There are numerous commercially valuable species at any given location 

targeted by fishers so it is virtually impossible to attempt to target or exclude only one 

species. Finally, distributions of most of these fishes cross borders of neighboring 

management areas. 

 Management of snapper-grouper complex stocks has not been effective in 

keeping the resource from over-exploitation. In the southeastern U.S. alone, for example, 
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species currently either over-fished or in danger of being so include red porgy (Pagrus 

pagrus) (Harris and McGovern 1997), black sea bass (Centropristis striata) (Vaughan et 

al. 1995), gag (Mycteroperca microlepis) (McGovern et al. 1998), scamp (M. phenax), 

snowy grouper (Epinephelus niveatus) (Wyanski et al. 2000), red grouper (Epinephelus. 

morio) (Schirripa et al. 1999), Warsaw grouper (Epinephelus. nigritus), Nassau grouper 

(Epinephelus striatus) (Carter et al. 1994), speckled hind (Epinephelus drummondhayi), 

Goliath grouper (Epinephelus itajara) (Sadovy and Eklund 1999), red snapper (Lutjanus 

campechanus), vermilion snapper (Rhomboplites aurorubens) (Zhao and McGovern 

1997), white grunt (Haemulon plumieri), and tilefish (Lopholatilus chamaeleonticeps) 

(SAMFC 1993). Goliath and Nassau groupers have been so heavily overfished in the 

southeast U.S. that they are protected and are candidates for the Endangered Species List 

(Sadovy and Eklund 1999). Warsaw grouper and speckled hind are also protected with a 

limit of one per vessel per trip and are not legal to sell. The fishery for red porgy in the 

U.S. Atlantic was closed in 1999 because of extremely low spawning potential. The 

economic value of landings for the snapper-grouper fishery in 2002 was approximately 

21,000 metric tons at an estimated value of U.S. $76 million (NMFS) making the 

sustainability of the fishery a critical consideration for this region. 

The type of gear used in the snapper-grouper fishery is consistent over the 

southeast U.S. Since the 1992 banning of long lines in depths less than 50 fathoms, the 

gear used by southeast U.S. fishers has consisted of either a hand-held rod and electric 

reel commonly known as an electro-mate, or a motorized spool mounted to the gunwale, 

known as a “Bandit” or “Miami”.  Boats typically will anchor over a hard bottom reef 

area and fish from two to eight of these devices at once, with generally at least two hooks 
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per line, thus the name bandit boats. Because the feeding habits and habitats of many reef 

fishes overlap, this gear is effective for many different species and it is difficult or 

impossible to target only one species of fish.  Generally, a bandit boat will bring in from 

8 - 15 different species on each trip.  Because of the nature of the gear, regulation of a 

single overfished species is difficult or impossible, without infringing on the ability of 

commercial and recreational fishers to target less stressed species.  

The main regulatory control of the snapper-grouper complex in federal waters off 

the coast of North Carolina has been the use of size limits to return immature fish to the 

population, in order to maintain a sustainable population of breeding adults.  The goal is 

that all fish harvested would have reached maturity for at least one spawning season 

before being removed from the population by fishing. In 1992, amendment 4 to the 

Fishery Management Plan for the snapper-grouper fishery established minimum size 

limits for 22 species of reef fishes. These size limits were based on establishing a 

spawning stock biomass ratio of 30%, which the South Atlantic Fishery Management 

Council defined as the minimum necessary level for a sustainable fishery. Waters and 

Huntsman (1986) modeled yield per recruit for red snapper and showed that release 

mortality and minimum size limits were important parameters for achieving the 30% 

spawning stock biomass target. The size limits established for the species in this study 

were 50.8cm total length for E. morio and M. phenax, 35.6cm fork length for P. pagrus 

and 27.9cm fork length for R. aurorubens. This management practice assumes that below 

legal sized fish bycatch will survive after release and be subject to only natural mortality 

until they are of legal size.  Because the mortality rates of fish that are caught and 

released are not known, it is possible they have been underestimated in calculating 
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sustainable fishing effort levels. This information is essential to determine the efficacy of 

size limits as a management tool for the snapper-grouper complex fishery.  

Most reef fishes are physoclistous, meaning that they lack a duct leading from the 

swim bladder to the esophagus. This evolutionary development of the swim bladder has 

allowed otherwise negatively buoyant fishes to regulate their buoyancy. The main 

advantage is that they do not therefore need to be in motion in order to remain in the 

water column. The cost of this advantage is that due to changes of the volume of gas 

within the swim bladder as pressure changes with depth, the fish has a limited depth 

range within which it can quickly move. When physoclistous fishes are reeled from the 

bottom to the surface the gas within the swim bladder cannot be expelled as rapidly as it 

expands. Although there are variations among species in rates at which gas can be 

secreted into the swim bladder (Bently and Wiley, 1982) the speed at which the volume 

can be decreased in all species is limited by the rate at which the gas can diffuse back into 

the vasculature of the swim bladder wall. Almost certainly there are differences between 

species in resiliency of the gas bladder to expansion as life strategies vary, but the depth 

range through which these fishes move quickly during foraging or other activities is not 

fully documented. The following studies suggest that it may be quite narrow in shallower 

depths. Shasteen and Sheehan (1997) used an aquarium in which they could control the 

ambient pressure and found a mortality rate as high as 78% in a test group of largemouth 

bass (Micropterus salmoides) subjected to rapid depressurization from only 3.5m. This 

mortality was observed despite the fact that these fish were not subjected to hooking 

trauma. Depressurization was found to contribute to mortality in E. morio (Render and 

Wilson 1996, Wilson and Burns 1996) and yellow perch, Perca flavescens  (Keniry et 
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al.1996). Tytler and Blaxter (1973) found that cod (Gadus morhua) were only able to 

fully adapt to a pressure change from 2 atm. to 1 atm. after nearly 5 hrs.  

The amount of expansion of the gas contained in the swim bladder upon being 

brought to the surface is a function of the depth from which the fish are caught. Effects of 

this expansion include: the stomach everted through the mouth, the intestine prolapsed 

through the anus, bulging eyes, ruptured swim bladder, and inflated abdomens (personal 

observations). Often the fish will float on the surface upon release, unable to overcome 

the increased buoyancy.  Methods for deflating the swim bladder with a hypodermic 

needle, or other sharp tube, have been developed (Cribb 1994; Render and Wilson, 1996; 

Keniry et al. 1996; Shasteen and Sheehan 1997). Unfortunately, although most fishermen 

have heard of these methods, few if any practice them. Valid concerns about sterility of 

the instrument used and the safety of handling a hypodermic needle and a lively fish on a 

pitching deck limit the practicality of this technique among fishers. 

Neritic waters offshore of North Carolina’s east coast range in depth from 0 m to 

roughly 200 m. The effects of rapid depressurization in reef fishes caught on commercial 

fishing gear may have lethal consequences, especially as depth increases, further 

complicating management strategies. Wilson and Burns (1996) found that E. morio 

caught and released in waters shallower than 44 m had survival rates of 86-100%. A 

sample of 23 fish caught at a depth of 44 m had a 91% survival rate, but there were no 

survivors from the three fish caught in 54m and 75m. Render and Wilson (1996) found 

that survival of released L. campechanus caught at 21m was 80.3%. A possible bias 

towards high survival rates in these studies was the use of hand cranked recreational 

fishing reels, which may produce less extreme physiological effects from 
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depressurization than the electric reels used on commercial fishing vessels. The latter 

bring a hooked fish to the surface much more quickly. 

In this study, hooking mortality of commercial reef-associated fishes was 

assessed. The hypotheses tested were; that hook-and-line caught fish experience higher 

than natural mortality when subjected to rapid depressurization, that depth caught has an 

effect on mortality rates, and that fish length has an effect on mortality rates. The study 

concentrated on bycatch of species targeted in the North Carolina snapper-grouper 

fishery. The objectives were to develop and implement a method for determining 

mortality of reef fishes caught and released within the depth range of the fishery, to 

determine mortality rates for each species targeted, and to analyze whether depth caught 

or size had a significant influence on mortality of released fishes.  These data were then 

used to evaluate the efficacy of using size limits for the fishery.  
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METHODS 

Trips were conducted in Onslow Bay, North Carolina on the 9.75m commercial 

fishing vessel “Becky Sue”. We sampled on 32 days from May to August in 1998, and 8 

days in May and June of 1999, for a total of 40 days. Trip lengths ranged from one to 

four days, with trip lengths depending on weather conditions. All fishes were caught on a 

“Miami rig”, commonly used on reef fishing vessels. Two #10 sized J-hooks were 

attached by a 59 kg test monofilament leader less than 3m in length to a two-way barrel 

swivel. The barrel swivel was attached with a bungee cord to one point of a stainless steel 

triangle. A 2 kg lead weight was attached to the lowest point of the triangle. The wire 

leading to the reel was attached to the highest point of the triangle. The reel was an 

electrically powered plastic spool with a diameter of 0.5m. The hooks were fished 

directly under the boat within two meters of the bottom. When a fish was hooked, a 

toggle switch was pushed, and the fish was reeled to the surface by the electric motor. 

The retrieval speed ranged from 0.9 to 1.9m per second but was not recorded for 

individual fish caught.  

Four commonly caught reef species were sampled including: red porgy (P. 

pagrus), vermilion snapper (R. aurorubens), red grouper (E. morio), and scamp grouper 

(M. phenax). Fish caught measuring less than or close to (+ 8cm) the legal limit, as 

defined by federal fisheries regulations, were de-hooked, measured using either fork 

length or total length to the nearest 0.1cm, examined for any obvious signs of 

decompression (everted stomach, prolapsed anus, etc.), placed individually in a cage and 

lowered to the bottom. In order to decrease the variables confounding a depth/mortality 

relationship, only mouth-hooked fish were used in this study. Mortality has been found to 
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be higher for gill- or throat-hooked fish than mouth-hooked fish in brook trout Salvelinus 

fontinalus (Nufer and Alexander 1992) and spotted sea trout, Cynoscion nebulosis 

(Murphy et al. 1995). 

Cages were constructed by modifying commercial traps for black sea bass 

(Centropristus striata). These traps measured 0.61m x 0.61m x 0.61m, and were 

constructed with plastic-coated chicken wire with mesh size of approximately 5 cm, and a 

framework of 16 mm diameter steel re-bar on the bottom side. The modifications 

included the removal of the bait cage and interior divider, and the closure of all entrances. 

One seam along the top edge of the cage was left unattached to allow the caging and 

removal of a fish. After caging a fish, this entrance could be effectively sealed by a 

bungee cord attached to the top of the cage, stretched over the opening and hooked to the 

side. A 92 m rope was attached to each cage, leading to a Carlon MB8XX float (15cm x 

36cm). The float had a 1.5m long section of 25mm diameter PVC pipe through its center, 

with a nylon flag attached. This apparatus was used as a marking buoy. The weight of the 

cage was augmented by approximately 5 kg of lead weights, attached to the outside of the 

cage with plastic cable ties. The depth in meters, time of capture and location in latitude 

and longitude was noted. Sampling efforts were in a depth range of 33.6 – 70 m as 

measured by several models of Furuno depth sounders. 

Cages were left filled for a target time of 24 h. The actual mean time was 26.07 h 

with a standard deviation of 7.8 h, after which cages were hand retrieved by the rope 

attached to the marker buoy. Some cages were left with fish between trips for periods 

ranging from 48 - 336 h. Inter-trip time lengths depended on weather conditions and 

occasional boat maintenance. The length of time each fish had been caged and its 
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condition (whether alive or dead) was recorded. If alive, the fish was released. If dead, 

the fish was examined to determine whether the swim bladder was intact or ruptured. 

Cages were lost on several occasions due to current dragging on the marker buoy ropes 

either moving the cages or submerging the buoys. Adding weight to the cages solved this 

problem. One cage was destroyed by a 3.5m tiger shark (Galeocerdo cuvieri), which 

attacked the caged fish during retrieval. 

A control group of 49 fishes was subjected to the same caging conditions as the 

experimental group, but without the rapid depressurization experienced when reeled to 

the surface. These fishes were caught on three two-day trips in May 2000 using a chevron 

style fish trap with dimensions 1.5 m length x 1.5 m width x 0.7 m height. Species caught 

were M. phenax, R aurorubens and P. pagrus. No E. morio were caught for the control 

portion of this study.  

The trap was baited with Atlantic menhaden (Brevoortia tyrannus), dropped near 

a hard-bottom area, and allowed to soak for 120 min. The trap was then vertically 

retrieved at a rate of roughly 1.7 m per min. in order to avoid the trauma associated with 

rapid depressurization at faster retrieval rates. We conducted a trial test with an 18 min 

retrieval time using fish not included in the control sample, collected at roughly 31 m. All 

21 fish in this trial were able to swim to the bottom of a 1 m deep live well and orient 

themselves normally within the water column. None of these trial fish exhibited any signs 

of rapid depressurization, such as everted stomach or prolapsed intestine. This suggested 

that a retrieval rate of 1.7 m per min. avoided the effects of decompression and could be 

used for the caging control group. Fishes of the target species were caged and returned to 

the bottom for 24 h soak periods as in the non-control portion of this study. Some cages 
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were left with fish for the two between trip periods of 48 h and 55 h. Caging times ranged 

from 21 - 57 h. To insure exposure to the same predators and conditions, the shallowest 

control samples were in at least the depth of the shallowest experimental samples. 

Control sampling efforts were in depths ranging from 33-46 m. 

All statistical analyses were carried out with the SAS software program JmpIN 

version 3.2.1. A two sided t-test was used to test variance of mean depth between the 

control and experimental treatment groups. Contingency tables were used to test whether 

the mean mortality of these groups differed for each species. Logistic regressions were 

used to predict the probability of; mortality vs. depth caught, time in cage vs. depth 

caught and length vs. depth caught and interactive effects of these variables for each 

species.  E. morio was excluded from statistical analysis as there were only 3 fish caught. 

Significance levels were set at 0.05. 
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RESULTS 

Sampling resulted in 179 fishes of four species caged and retrieved (Table 1). 

Appendix 1 shows the individual observational data for all fishes caged and retrieved. Of 

the total fish sampled, 77 were dead upon cage retrieval, yielding an overall mortality of 

43% (Table 1). On examination, 29 fish, or 37.7%, of the dead fish were found to have 

ruptured swim bladders. For all fish sampled 16.2% had everted stomachs and 5.0% had 

distended eyes when initially caught. 

The number of fish sampled at each depth varied from 1 to 25. Most sampling 

time was spent targeting fishes at depths greater than 45 m in an attempt to obtain a more 

normally distributed sample (see discussion). The majority of fish were caught in the 

shallower range of depths sampled (Figure 1). 

The relationship between depth and mortality differed for each species. Logistic 

regression including a depth-time interaction term showed that there was no significant 

interaction between depth caught and time in cage when testing for their effect on 

mortality (P.pagrus p=0.4597, M. phenax p=0.3226, R. aurorubens p=0.2995). 

Therefore, these variables were tested independently for their effect on mortality. The 

sample size of only 3 E. morio less than or near to the legal size limit was considered too 

small for individual group analysis in this and all subsequent analyses. There was a 

statistically significant relationship between depth and mortality in R. aurorubens (p = 

0.0075, Figure 2).  This data set predicts that for R. aurorubens as depth increases, the 

mortality rate of caught and released fish increases.  There were positive non-significant 

relationships between depth and mortality for P. pagrus (p = 0.6961) and for M. phenax 

(p = 0.4166).  
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Table 1. –  Mortality rates, n observed, means, standard deviations and ranges of 

length and depth caught for species sampled in the experimental group.  
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Figure 1. - Number of fish (n) of all species caught by depth.  
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Figure 2. - Logistic regression of probability of mortality vs. depth caught for R. 

aurorubens. The line is a representation of the probability of mortality predicted by the 

data set. The probability of mortality (P) at any depth is the distance from the x-axis to 

the plotted line. 
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The null hypothesis, that depth caught will have no effect on mortality rates, could not be 

rejected for P. pagrus or M. phenax, but was rejected for R. aurorubens.  

Length vs. mortality was tested for P. pagrus, R. aurorubens, and M. phenax to 

determine whether larger fish may be more resilient to hooking and depressurization. 

Logistic regression analysis showed a marginally significant positive correlation between 

length in P. pagrus and observed mortality (p = 0.0555, Figure 3). Due to this marginal 

significance, the null hypothesis, that length of the fish caught will have no effect on 

mortality, could not be rejected. Resiliency to hooking and decompression actually 

decreased as the size increased. Length was not a good predictor of mortality for R. 

aurorubens (p = 0.9789) or for M. phenax (p = 0.8305). 

In order to test whether there was longer term mortality to released fishes as time since 

release increased, time caged vs. mortality was analyzed for each species group. There 

was a positive trend but not a statistically significant relationship between mortality and 

the length of time a fish is caged for each species group (M. phenax p=0.27, P. pagrus 

p=0.2025, R. aurorubens p=0.527). Between trip times were scheduled to be for no more 

than two days. There were several mechanical problems and weather events though 

which kept the vessel in port for longer periods. There were 148 fish left caged for less 

than 51 hours, no fish left caged for between 51 and 192 hours and 31 fish left caged for 

longer than 192 hours. The mean mortality rate of fishes caged less than 50 h was 40.2% 

and 54.8% for fish caged longer than 192 h. The overall mean mortality rate was 43% for 

all fishes sampled (Table 1). This suggests that initial mortality rates were high but 

continued to rise over time, or that a potential long term caging affect such as starvation 

may have occurred.  
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  None of the fish in the control group showed physical signs of stress due to 

depressurization. Appendix 2 shows the individual observational data for the control 

group. Only one instance of mortality was recorded during the control portion of this 

study (Table 2). The fish was a P. pagrus trapped at 39 m depth. Upon retrieval it showed 

some scale loss, frayed dorsal and pectoral fins and had been partially consumed just 

anterior to the 1st dorsal spine. It had very cloudy eyes and a strong rotten smell 

indicating it had been dead for the majority of its 21 h caging time. Its swim bladder was 

intact suggesting death was probably caused by predation rather than decompression 

injury.  This equates to a mortality rate of 2.04% from caging. However, two sampled t-

test showed that the means of caging time for the control group and experimental group 

differed significantly (p=0.0059), so the more conservative, “deaths per hour caging 

time”, was used for overall caging mortality. In the control group there was a rate of one 

death for 1499.5 h of caging time. Fish in the experimental group were caged for a total 

of 11,519.35 h. Extrapolating the control results indicated that caging could have caused 

7.7 deaths or 10% of all deaths seen in the experimental group. Therefore we found that 

the range of mortality likely to have resulted from caging was from 0 - 10%. 
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Figure 3. - Logistic regression comparing probability of mortality vs. length in P. pagrus. 

The line is a representation of the probability of mortality predicted by the data set. The 

probability of mortality (P) at any depth is the distance from the x-axis to the plotted line.  
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Table 2. –  Mortality rates, n observed, means, standard deviations and ranges of length 

and depth caught for species sampled in the control group.   
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A two tailed t-test showed that there was also a significant difference in means of depths 

of the experimental and control groups (p=0.0006). The mean depth was shallower for 

the control group than the experimental group. However, the depth at which the control 

fish were obtained should be irrelevant, considering that they were not subjected to a 

depressurization event, but were rather tested to determine whether caging was a factor in 

the mortality rate of the experimental sample. A chi-square test of contingency tables 

showed a strong significant relationship between the mortality rates of the experimental 

and control groups (p<0.0001). Mortality was higher for the experimental group 

(m=0.43) than the control group (m=0.02). The null hypothesis that fishes subjected to 

hooking and rapid depressurization showed no higher than natural mortality could not be 

supported.   
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DISCUSSION 

A mean mortality rate of 43% was found for all fish that were mouth hooked. A 

potential caging mortality of up to 10% was factored in, thus the mortality rate due to 

hooking and rapid decompression was determined to be at least 33%. It is important to 

note, and relevant to the implications for fisheries management that the overall mortality 

rate of 33% is the most conservative estimate that these findings suggest. For example, 

this result could have been skewed by those fishes caged for short time periods which 

would have died had they been observed for a longer time period. If the 54.8% mortality 

seen in fishes caged longer than 192 h was the true mortality of the whole sample set, 

then more than half of all returned fishes may be lost to recruitment. Moreover, the 

number of gut-, gill- and esophagus-hooked fish that were caught were not incorporated 

in this study. Approximately 10% of fish caught were so hooked, and had these fish been 

used, the observed mortality rate would have been substantially higher.  

Two caging effects, as well, may have caused the estimated mortality rate seen in 

this study to be lower than the true mortality rate of fishes subjected to hooking and rapid 

depressurization. The first effect is due to the expansion of gases within the swim 

bladder. Fishes that are returned to the water are sometimes unable to overcome the 

increased buoyancy in order to swim back down to the bottom. In the jargon of fishers, 

they are called “floaters”, because they simply float away from the boat drifting with the 

prevailing current. Shasteen and Sheehan (1997) found that largemouth bass were unable 

to swim down after depressurization from only 8.4 meters. Until these fish can regain 

negative or neutral buoyancy, they are subject to predation by pelagic predators, such as 

sharks or barracudas, and from birds. We observed both of these types of predators kill 
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released “floaters” of non-target species. There may be temperature stress as well, due to 

thermal stratification or to direct exposure to sunlight. Shasteen and Sheehan (1997) 

found that mortality of largemouth bass subjected to a depressurization event went from 

0% in 14o C water to 78% when held at 28o C. Anecdotal evidence from conversations 

with commercial long line fishers is that roughly half of the targeted tunas, swordfish and 

sharks are alive during retrieval while fishing the colder Grand Banks area of the 

Northeast but virtually no hooked fish of the same species are alive in the warmer waters 

around the Bahamas and Caribbean. Fishes with expanded swim bladders were placed in 

a weighted cage, which was then lowered to the bottom, thereby repressurizing and 

decreasing the volume of the gasses within their body cavity. By eliminating “floaters”, 

observed mortality was probably lower than true mortality of released fishes. The second 

effect that may help to increase survival of caged fishes is protection from predators that 

the cage provides to released fish during their return to the bottom. When a fish is 

released and is able to swim back to the bottom, it is probably stressed and exhausted. 

Under these circumstances, the released fishes are easy prey for mackerels, barracudas, 

and other pelagic predators, that inhabit the water column above the reef. Protection 

provided by cages used in this study could have also caused the observed mortality to be 

lower than the actual mortality of released fishes. 

 There was a very significant difference in the mortality rates of fishes caught in 

the experimental and control groups. Control group fishes were subjected to the same 

caging conditions as the experimental group but were not subjected to hooking or rapid 

depressurization. None of the fishes in the control group exhibited signs of 

depressurization stress, compared to 16.2% with everted stomachs and 5.0% with 
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distended eyes in the experimental group. The 37.7% swim bladder rupture rate in fish 

that did not survive the caging period indicates that rapid depressurization causes 

physical trauma to fishes caught with high-speed electric reels.  

This study shows that there is a statistically significant relationship between depth 

caught and mortality in R. aurorubens. For this species at least, the deeper fish are caught 

using standard commercial fishing gear, the more likely they are to die upon being 

released. This cannot be definitively said for other species, but positive trends between 

depth and mortality for M. phenax, P. pagrus indicate this is possible for those fish as 

well. The relationship between depth and mortality shown in R. aurorubens, and 

suggested in the other species tested, is a factor that complicates the already difficult job 

of determining the amount of sustainable fishing effort. A reasonable discard mortality 

figure for sustainable yield models would be difficult to determine, unless the modeler 

knew the amount of time each boat was spending targeting each depth, and the rate at 

which each of these boats catch below legal sized fish of each species and for each depth. 

Without this information, the proportion of recruitment lost due to mortality of caught 

and released fishes of various species can only be inaccurately estimated. Changing 

fishing conditions and techniques may even make discard mortality a dynamic factor. 

Log data on time spent fishing at various depths by fishers would help to determine 

actual mortality rates. This information, combined with a verified depth vs. mortality 

equation and catch history totals, may predict throwback mortality of a fleet. Also, future 

mortality studies using the methods of this experiment could be designed to concentrate 

on the range of depths most fished if this information was known. 
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The positive trend between time in the cage and mortality that was suggested may 

be due to the trauma of hooking and decompression, or from some effect caused by 

enclosure in the cage such as food limitation, or the inability to escape from predators 

able to enter the cage. Hooking trauma no doubt leads to some mortality and some 

injuries may take longer to kill a fish than others. A study by Warner (1978) and a review 

paper by Muoneke and Childress (1994) found that the majority of hooking mortality 

occurs within 24 h. Muoneke and Childress (1994) also concluded that observations over 

longer time periods provided a more complete picture of total mortality. Francesconi 

(personal communication) subjected fishes to depressurization and they appeared to swim 

normally, but died within two weeks if the swim bladder had been torn. Injuries from 

depressurization may include trauma to the swim bladder or trauma to any organ that is 

everted or prolapsed such as eyes, stomach or anus. Hook damage may occur to the jaw 

or other organs, making it difficult or impossible for a fish to feed. In this case the 

mortality is attributable to hooking but not immediately observable. Future studies of 

hooking mortality should include time from hooking to mortality, rather than simply 

whether the fish died or not.  If cumulative effects from trauma do not cause more than 

short-term death, the correlation between increased time in cages and increased mortality 

is either due to random chance or due to caging effects discussed above. 

An unexpected problem encountered in this study was the scarcity of below or 

just over legal sized fish caught in the deeper depths (>45m) sampled. Also, gag grouper 

(M. microlepis) was not included in this project, because not a single fish shorter than the 

legal size limit of 61 cm was caught. Yet, as anyone with commercial dayboat 

grouper/snapper experience will tell you, there are many below legal sized M. microlepis 
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caught in shallower depths. Below legal sized fish also make up a large percentage of the 

individuals of E. morio caught in depths up to roughly 40 m, but fewer are caught in 

deeper waters.  Most fish in this study were from shallower depths, despite the fact that a 

majority of time was spent fishing in water deeper than 42 meters in an attempt to obtain 

a sample from a more normally distributed depth range. Currents and generally larger 

wave sizes also affected sampling effort in these depth ranges, but also there were fewer 

below or just legal sized fish caught.  This could indicate that larger fish inhabit deeper 

water, or that larger fish are out-competing the smaller fish for  bait, and may tend to be 

fished faster, whereas in shallower water closer to shore, those larger more aggressive 

fish would have already been removed due to heavier fishing pressure. Anecdotally, in 40 

sampling days no gag were caught measuring smaller than the legal limit of 60.9 cm. 

North Carolina commercial day-boat fishers generally stay in water shallower than 36 m 

and can expect to catch at least several below legal sized gag every trip. This size-depth 

relationship may not be a naturally occurring phenomenon, but is more likely caused by 

the greater fishing pressure on those populations that are more easily accessed. If this 

relationship is true, discard mortality will be exacerbated by size limits on heavily fished 

populations as fishers must spend more time fishing and consequently produce more 

below legal sized bycatch in order to take their recreational limit or for the same 

commercial take. Also rates at which below legal sized fish are caught will be different 

for different depths and for heavily vs. non-heavily fished populations. Future studies 

may have greater success by focusing on obtaining larger data sets in the 25 – 45 m 

range, or by expanding the study to include larger than discard sized fishes, in order to 

increase sample size.  
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The results of this study cast doubts on the use of size limits as an efficient 

management tool for the exploitation of the snapper/grouper resource. The goal of size 

limits is to return juvenile, non-breeding fishes to the population, in order that they may 

grow large enough to contribute recruitment to the fishery. However if these released 

fishes, or a significant proportion of them, do not survive the post-release period then the 

effectiveness of the management tool is diminished or lost. If a size limit-based 

management strategy is to work, then either fishing effort must be further limited, or 

below legal target species catch rates must be reduced. The former of these solutions, 

reduction in fishing effort, would necessarily mean either reduction of the number of 

vessels allowed to partake in the fishery, or the closing of the snapper/grouper fishery for 

at least part of the year. The goal would be to reduce the amount of incidental bycatch to 

a point where mortality, with known hooking mortality rates factored in, is reduced to an 

acceptable and sustainable level. The latter of these two solutions, bycatch reduction, 

would be difficult or impossible to realize without a significant reduction in catches of 

legal sized fishes. If for example, hooks small enough to fit into the mouth of a juvenile 

red grouper were banned, then the hook and line fishery for vermilion snapper, grunt and 

black sea bass would be lost or greatly diminished. With current fishing techniques, 

disallowing the retention of a single species would not keep it from being caught and 

subjected to hooking mortality as fishers target other species that utilize the same habitat. 

Also, fishers rely on each of these species for part of their catch return, and in general 

would have difficulty making a profit targeting one or two species.  

Size limits may be especially ineffective in species that have a size dependent 

mortality as seen in P. pagrus. By mandating an increased size limit for this species an 
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unwanted effect is that discard mortality is actually increased. There was no length 

dependent mortality noted in M. phenax or R. aurorubens.  It would be surprising to find 

caging effects only in P. pagrus, which has a median life strategy, relative to the other 

sampled species. Here the life strategy is defined by, how far away from the reef and how 

high into the water column the fish forage, and presumably therefore how resilient they 

are to quick depth changes. M. phenax’s life strategy is more reef associated than P. 

pagrus, while R. aurorubens’ is more pelagic than P. pagrus (Hood and Johnson 1999, 

2000, Bullock and Murphy 1994).  

The findings of this study suggest that there may be enough waste of target 

species due to throwback mortality that a change to a more efficient management scheme 

should be considered. Disallowing the retention of a single over-fished species or size 

class does not keep it from being caught and subjected to hooking mortality as fishers 

target other species that utilize the same habitat. Given this fact, it is difficult to conceive 

of any species-specific management practice that mitigates the waste of throwback 

mortality, yet allows the achievement of harvesting the maximum sustainable yield of 

other species. For example, individual quotas would allow for the retention of undersized 

fishes, but once the quota for one species was filled, the fisher would continue to catch 

that species while working to reach his quota of other species using the same habitat. 

Seasonal closures for a single species are inefficient in that they either stop the fishers 

ability to target other healthier stocks using the same habitat, or the target species is 

caught and subjected to throwback mortality as other species are targeted. Gear 

restrictions likewise would be inefficient or ineffective as the hook sizes and bait 

selections for these fishes overlap. Possibly the use of fish traps with restrictions on 
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retrieval speed would mean that decompression injury could be mitigated as unwanted or 

undersized fishes could be graded out. Fish traps may have serious deleterious 

consequences on populations though, as they continue to be effective killing machines 

long after they are lost. The fish that are unable to escape the trap and die become the bait 

for the next victims in a cycle that only ends when the trap decays. (Breen 1990) 

An ecosystem-based approach to management of the snapper-grouper complex 

may be a better option than the current size limit-based approach. Marine protected areas 

(MPA), could remove the complications of trying to micro-manage individual species in 

a multi-species fishery by eliminating size limits or quotas. A secondary benefit is that an 

MPA eliminates bycatch and hooking mortality of target species by allowing the fisher to 

retain everything caught. The economic gain in keeping small fishes may offset the loss 

of access to protected areas. Whether MPAs would protect these populations is by no 

means proven and depends upon both larval settlement patterns and whether brood stocks 

of a protected species are site specific enough to remain within the no-take area. Nassau 

groupers, E. striatus, gag grouper, M. microlepis, and E. morio migrate to spawning areas 

(Colin 1992, Coleman et al. 1996) and during their movement would be exposed to 

fishing pressure outside the protected areas. Bohnsack, 1996, and Fogarty et al., 2000 

both argue that red snapper, Lutjanus campechanus are sedentary and might benefit from 

MPAs. However, tagging studies indicate that red snappers move away from tagging sites 

especially during extreme weather events (Watterson et al., 1998, Patterson et al. 2001). 

Information is lacking concerning the movements of vermilion snapper, red porgy or 

scamp. Not enough information on site specificity exists to predict the proportion of any 

population that would be protected by an MPA of a given size. MPAs as management 
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tools rely on some outflow of fishes into the harvestable population outside the protected 

area through both larval recruitment and migration of larger individuals as population 

within the MPA reaches carrying capacity. Even though gag grouper are known to 

migrate to spawning areas, not all mature individuals do this as gag can be caught year-

round in other areas. Perhaps enough individuals either spawn locally or remain site 

specific enough to make a properly placed MPA an effective conservation and fisheries 

tool. The implications of this study are that size limits may not be the best management 

strategy for exploiting the snapper/grouper complex stocks. In economic terms, the fish 

that is released and dies is both taken out of the breeding population, as well as out of the 

sum received from sale of the catch. The consequence is anthropogenic destruction of a 

resource with no economic gain.  

SEDAR17-RD09



 29

REFERENCES CITED 

1. Bently, T.B. and M.L. Wiley. 1982. Intra- and inter- specific variation in buoyancy of 

some estuarine fishes. Environmental Biology of Fishes. 7(1): 77-81 

2. Bohnsack, J.A. 1996. Marine reserves, zoning, and the future of management 

fisheries. Fisheries 21(9): 14-16. 

3. Breen, P.A. 1990. A review of ghost fishing by traps and gillnets. Proceedings of the 

Second International Conference on Marine Debris. NOAA. Tech. Memo NOAA-

TM-NMFS-SWFSC-154: 571-599  

4. Bullock, L.H. and M.D. Murphy. 1994 Aspects of the life history of the yellowmouth 

grouper, Mycteroperca interstitialis in the eastern Gulf of Mexico. Bulletin of Marine 

Science. 55(1): 30-45. 

5. Carter, J.G., G. Marrow and V. Pryor. 1994 Aspects of the ecology and reproduction 

of the Nassau grouper, Epinephelus striatus, off the coast of Belize, Central America. 

Proceedings of the Gulf and Carribean Fisheries Institute 43: 65-111 

6. Coleman, F.C., C.C. Koenig, and L.A. Collins. 1996 Reproductive styles of the 

shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the 

consequences of spawning aggregations. Environmental Biology of Fishes. 47: 129-

141. 

7. Colin, P.L. 1992. Reproduction of the Naussau grouper, Epinephelus striatus, (Pisces: 

Serranidae) and its relationship to environmental conditions. Environmental Biology 

of Fishes. 34: 357-377. 

8. Collins, L.A., A.G. Johnson, C.C. Koenig and M.S. Baker Jr. 1998. Reproductive 

patterns, sex ratio, and fecundity in the gag, a protogynous grouper (Serranidae: 

SEDAR17-RD09



 30

Mycteroperca microlepis) from the northeast Gulf of Mexico. Fisheries Bulletin 96: 

415-427.  

9. Cribb, A. 1994. Returned believed alive. Western Fisheries 46-51 

10. Fogarty, M.J., J.A. Bohnsack, and P.K. Dayton. 2000. Marine reserves and resource 

management. In: Sheppard, C (ed.) Seas at the Millenium. Elsevier Science Ltd. 

London. 

11. Francesconi, J. Artificial Reef Coordinator. North Carolina Division of Marine 

Fisheries. 3441 Arendell St., Morehead City. 

12. Goodyear, C.P. 1995. Red snapper in U.S. waters of the Gulf of Mexico: report for 

1990. National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, 

FL.  

13. Harris, P.J. and J.C. McGovern. 1997. Changes in the life history of red porgy 

Pagrus pagrus, from the southeastern United States, 1972-1994. Fishery Bulletin 

95(4): 732-747. 

SEDAR17-RD09



 31

14. Hood, P.B. and A.K. Johnson.  1999. Age, growth, mortality, and reproduction of 

vermilion snapper, Rhomboplites aurorubens, from the eastern Gulf of Mexico. 

Fishery Bulletin 97: 828-841. 

15. Hood, P.B. and A.K. Johnson. 2000. Age, growth, mortality, and reproduction of red 

porgy, Pagrus pagrus, from the eastern Gulf of Mexico. Fishery Bulletin 98(4): 723-

735. 

16. Keniry, M.J., W.A. Brofka, W.H. Horns and J.E. Mardsen. 1996. Effects of 

decompression and puncturing the gas bladder on survival of tagged yellow perch. 

North American Journal of Fisheries Management 16(1): 201-206 

17. Kohda, M.A. 1996. A damselfish living for more than 15 years: a longevity record 

for small reef fishes. Ichthyology Resources 43: 459-462 

18. Luckhurst, B.E. 1998. Site fidelity and return migration of tagged red hinds 

(Epinephelus guttatus) to a spawning aggregation site in Bermuda. Proceedings of the 

Gulf and Caribbean Fisheries Institute. 50: 750-763.  

19. McGovern, J.C., D.M. Wyanski, O. Pashuk, C.S. Manooch II and G.R. Sedberry. 

1998. Changes in the sex ratio and size at maturity of gag, Mycteroperca microlepis, 

from the Atlantic Coast of the Southeastern United States during 1976-1995. 

Fisheries Bulletin 96(4): 797-807. 

20. Muoneke, M.I. and W.M. Childress. 1994. Hooking mortality: a review for 

recreational fisheries. Reviews in Fisheries Science 2(2): 123-156 . 

21. Murphy, M.D., R.F. Heagey, V.H. Neugebauer, M.D. Gordon and J.L. Hintz. 1995. 

Mortality of spotted seatrout released from gill net or hook and line gear in Florida. 

North American Journal of Fisheries Management 15(4): 748-753. 

SEDAR17-RD09



 32

22. Nufer, A.J. and G.R. Alexander, 1992. Hooking mortality of trophy sized wild brook 

trout caught on artificial lures. North American Journal of Fisheries Management 

12(3): 634-644 

23. Patterson III, W.F., J.C. Watterson, R.L. Shipp, and J.H. Cowan. 2001 Movement of 

tagged red snapper in the northern Gulf of Mexico. Transactions of the American 

Fisheries Society. 130: 533-545.  

24. Render, J.H. and C.A. Wilson. 1996. Effects of gas bladder deflation on mortality of 

hook and line caught and released red snappers: implications for management. 

Biology, fisheries and culture of tropical groupers and snappers - ICLARM 

conference proceedings 48: 244–253. 

25. Render, J.H. and C.A. Wilson. 1996. Hook and Line mortality of caught and released 

red snapper around oil and gas platform structural habitat. Fifth International 

Conference on Aquatic Habitat Enhancement, Bulletin of Marine Science 55(2-3): 

1106-1111. 

26. Sadovy,Y. and A.M. Eklund. 1999. Synopsis of biological data on the Nassau 

grouper, Epinephelus striatus (Bloch, 1972), and the Jewfish, Epinephelus itajara 

(Lichtenstien, 1822). NOAA Technical Report NMFS 146. 

27. SAFMC (South Atlantic Fisheries Management Council). 1993. Amendment number 

6, regulatory impact review and final environmental impact statement for the snapper-

grouper fishery of the South Atlantic region. SAFMC Charleston S.C. 

28. Schirripa, M.J. 1999. Management trade-off between the directed and undirected 

fisheries of red snapper, Lutjanus campechanus, in the U.S. Gulf of Mexico. 

SEDAR17-RD09



 33

Proceedings of the International Conference on Integrated Fisheries Monitering 223-

230. 

29. Schirripa, M..J., K..M. Burns, and J.A. Bohnsack. 1993. Reef fish survival based on 

tag and recovery data. (Manuscript) 

30. Sedberry, G.R., C.A.P Andrade, J.L. Carlin, R.W. Chapman, B.E. Luckhurst, C.S. 

Manooch, II, G. Menezes, B. Thomsen, and G.F. Ulrich. 1999. Wreckfish Polyprion 

americanus in the North Atlantic: fisheries, biology, and management of a widely 

distributed and long-lived fish.  American Fisheries Society Symposium 23: 27-50. 

31. Shasteen, S.P. and R.J. Sheehan. 1997. Laboratory evaluation of artificial swim 

bladder deflation in largemouth bass: potential benefits for catch and release fisheries. 

North American Journal of Fisheries Management 17(1): 32-37. 

32. Tytler, P. and J.H.S. Blaxter. 1973. Adaptation by cod and saithe to pressure 

changes. Netherlands Journal of Sea Research 7: 31-45. 

33. Vaughn, D.S., M.R. Collins and D.J. Schmidt. 1995. Population characteristics of the 

black sea bass, Centropristus stiata, from the southeastern U. S. Bulletin of Marine 

Science 56(1): 250-267. 

34. Warner, K. 1978. Hooking mortality of lake dwelling landlocked Atlantic salmon, 

Salmo salar Transactions of the American Fisheries Society 107(4): 518–522. 

35. Waters J.R. and G.R. Huntsman. 1986. Incorporating mortality from catch and 

release into yield-per-recruit analysis of minimum size limits. North American 

Journal of Fisheries Management 6(4) 463-471. 

SEDAR17-RD09



 34

36. Watterson, J.C. W.F. Patterson III, R.L. Shipp, and J.H. Cowan Jr. 1998. Movement 

of Red Snapper, Lutjanus campechanus, in the north central Gulf of Mexico: Potential 

effects of hurricanes. Gulf of Mexico Science 1998(1): 92-104. 

37. Wilson, R.R. and K.M. Burns. 1996. Potential survival of released groupers caught 

deeper than 40m based on shipboard and in-situ observation, and tag recapture data. 

Bulletin of Marine Science. 58(1): 234-247. 

38. Wyanski, D.M., D.B. White and C.A. Barans. 2000. Growth, population age 

structure, and aspects of the reproductive biology of the snowy grouper, Epinephelus 

niveatus, off North Carolina and South Carolina. Fisheries Bulletin 98(1): 199-218. 

39. Zhao, B. and J.C. McGovern. 1997. Temporal variation in sexual maturity and gear 

specific sex ratio of the vermilion snapper, Rhomboplites aurorubens, in the South 

Atlantic Bight. Fisheries Bulletin 95(4): 837-848. 

SEDAR17-RD09



 35

APPENDIX 
 
 

Appendix 1. - Individual experimental group observations in the order the fishes were 
sampled. Recorded for each observation was the species, length of the fish in centimeters, 
depth caught in meters, the time in hours the fish was caged, and whether the fish was 
alive or dead (y = alive, n = dead). 
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Appendix 2. - Individual control group observations in the order the fishes were sampled. 
y = survived caging period, n = died during caging period.  
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