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1 Introduction

Researchers have recently identified stochastic stock reduction analysis (SSRA)

as an important tool in the suite of stock assessment methods available to

fisheries analysts (Walters et al., 2006). This approach works by starting the

population off at a range of values for initial biomass and productivity, and

asking how probable each of the initial conditions are given the history of

exploitation of the stock and how well simulated stock dynamics fit observed

data. In this manner, one can get a better handle on plausible values for

virgin recruitment (typically denoted R0) and steepness of the stock-recruit

curve (h; Mace and Doonan 1988), two of the more troublesome parameters

to estimate in stock assessments.

Although attractive, SSRA analyses are numerically intensive, and com-

putational ease is facilitated when there are few parameters to fit. For in-

stance, when indices are being fit within a SSRA, one must also estimate

catchability parameters, increasing the dimensionality of the problem and

adding computing time. Further, results seem to be sensitive to the numer-

ical method chosen for model fitting. For instance, there may be difficulty

estimating the scale of population dynamics when fitting to landings and

relative abundance indices alone.

Given the difficulties inherent in implementing SSRAs, I wanted to de-

velop and an algorithm that would work well with the data sources available

for our focal stock, south Altlantic Spanish mackerel. In particular, landings

data were available for a relatively long period of time (∼ 60 years) with
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indices of relative abundance only available for the last 23 years of the time

series. In this working paper, I start by introducing an approach for fitting

SSRA’s using a bootstrap particle filter (Gordon et al., 1993), as articulated

by Robert and Casella (2004, Algorithm A.59). This procedure is an adapta-

tion of sequential importance sampling (e.g., McAllister et al., 1994), where

filtering occurs after every iteration (i.e., year). I also introduce a procedure

for gradient fitting that removes the need to estimate catchability parameters,

and detail an approach for scaling the problem by including prior distribu-

tions for mortality rates. This approach is then applied to simulated data in

order to ensure that the model produces coherent results. Finally, I apply

this approach to Spanish mackerel in the south Atlantic (U.S.), providing

estimates of productivity parameters and posterior probabilities of relative

benchmarks.

2 Stochastic stock reduction analysis

2.1 Model structure

I describe a SSRA where uncertainty in population dynamics is described by

the parameter vector

θ = {R0, h, σR, ε1, ε2, . . . , εY },

where R0 gives average recruitment for an unexploited population, h gives

steepness, σR gives the standard deviation of recruitment deviations around

the stock recruit function, and εt gives the annual recruitment deviation in

year t. The inclusion of uncertainty in the εt parameters is the fundamen-

tal difference between deterministic and stochastic stock reduction analysis;
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inclusion of uncertainty in the latter is essential for adequately assessing pop-

ulation viability of a stock over the history of exploitation (McAllister et al.,

1994).

In addition to the parameters of the SSRA, I assume that there are a

number of inputs to the model, each of which is assumed to be known without

error. These are given by

φ = {M, s, l,w,m},

which represent age-specific vectors of natural mortality, selectivity of the

gear(s) used in the fishery, length, weight, and sexual maturity, respectively.

Several of these quantities (e.g., l, w, and m), are often easy to obtain from

published studies on life history. Quantities such as M and s are a bit more

problematic; estimates of s may be obtained from other assessment methods

(e.g., statistical catch-at-age models), while tagging studies or an appeal to

the theory of life history invariants (e.g., Charnov, 1993) may be needed to

come up with a plausible range of values for natural mortality.

Conditional on the values of θ and φ, I specify a deterministic population

model for stock dynamics as follows:

• For simplicity, the population is started at equilibrium. This is ac-

complished by letting the age-specific abundance vector in year 1 be

N1 = R0×
[
1, exp(−M1), exp(−(M1 + M2)), . . . , exp(

∑A−1
a=1 −Ma), pA

]
,

where pA = exp(
∑A

a=1−Ma)/(1− exp(−MA)).

• Assuming constant, continuous hazard rates for natural and fishing

mortality over the course of the year, I solve for the fishing mortality
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rate Ft such that

∑
a

Nta
exp(−Ftsa)

exp(−(Ftsa) ∗Ma)
(1− exp(−(Ftsa)))wa = Lt,

where Lt gives landings in weight in year t. The number of individuals

in a given age class after the year is complete is then given by

Nt+1,a = Nta exp(−(Ftsa + Ma)).

• The number of individuals alive at the middle of year t in age class a is

calculated as Nmid
ta = Nt,a exp(−(Ftsa +Ma)/2). This summary is used

to predict expected relative abundance in year t.

• The number of new recruits in year t + 1 is then generated as

Nt+1,1 = εt
0.8R0hSSBt+1

0.2Φ0R0(1− h) + (h− .2)SSBt+1

where SSBt gives spawning stock biomass at the beginning of year t:

SSBt =
∑

a

Ntamawa.

2.2 Fitting the model to data

Conditional on an abundance vector, landings provide the information neces-

sary to calculate annual fishing mortality rates. However, landings alone only

provide a minimum bound on abundance; additional information is needed

for the population model to be scaled correctly. One potential source of in-

formation that can help with this scaling is an index of relative abundance.

Under the assumption of constant catchability, it is often assumed that total

abundance is related to an index of abundance through an equation such as

It = q
∑

a

Nt,asawa,
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where q denotes a catchability parameter. To fit the population model to

such an index one would typically need to conduct simultaneous inference on

q (e.g., McAllister et al., 1994).

An alternative approach, which also assumes constant catchability, is to

conduct inference on λt = It+1/It, which is related to the finite rate of popula-

tion increase. This quantity is dimensionless, removing the need to estimate

q. This approach, sometimes termed gradient matching, has recently been

used to fit models to time series of dynamical systems (e.g., Ellner et al.,

2002). One possibility for for fitting the population model to time series esti-

mates of λt is to impose a probability model such as λpred
t ∼ Normal(λobs

t , σλ).

Here, one could use a hierarchical Bayesian analysis or simple calculation us-

ing the delta method (Seber, 1982) to get an approximate estimate of σλ

from index time series and accompanying measures of precision.

Owing to the large number of latent recruitment deviations in SSRAs,

classical maximum likelihood inference is problematic. An alternative in this

case is to use Bayesian inference. Posterior inference may be based on Markov

chain Monte Carlo (cf., Gelman et al., 2004), or alternatively on a population

Monte Carlo method such as sequential importance sampling (SIS). The

latter approach has been used in a number of fisheries applications (e.g.

McAllister et al., 1994; McAllister and Ianelli, 1997; Newman and Lindley,

2006), and involves sampling the initial state vector θ a large number of

times (say np), based on assumed prior distributions for parameters. Each

sample, termed a “particle,” is passed through the population model. The

probability of retaining a particle then depends on the fit to data; those

particles surviving this process then contribute to inference about the initial
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parameters.

There are many possible algorithms for performing sequential importance

sampling. However, simpler algorithms (e.g., McAllister et al., 1994) can

lead to problems with “threading the needle” (Walters et al., 2006) in the

context of SSRAs, whereby an extremely large sample of particles would

be needed to reasonably emulate observed changes in the population. In

contrast, relatively sophisticated algorithms may be needed when trying to

fit models with a large number of correlated parameters (e.g., Buckland et al.,

2004; Newman et al., 2006; Newman and Lindley, 2006). I settled on an

algorithm with moderate complexity known as the “bootstrap particle filter”

(Gordon et al., 1993), as described by Robert and Casella (2004, Algorithm

A.59). This algorithm, adapted for purposes of SSRA’s proceeds as follows:

• Step 1: Randomly sample np values from prior distributions for R0,

h, and σR. The ith draw from each distribution are associated with

particle i.

• Step 2: Initialize year, t = 1, and for each particle, generate initial

population vector

• Step 3: For each particle, generate a recruitment deviation εt ∼ lognormal(0, σR).

Propagate the population forward one time step.

• Step 4: Assign a weight wp to each particle, which equals 0 if land-

ings exceed abundance, and equals L(λt|θ) otherwise; L(λt|θ) gives the

likelihood (e.g., normal) for the observed value of population change.

• Step 5: Resample the particles with replacement, where the probability
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of selecting particle p is given by wp/
∑

p wp. Increment year, t = t + 1

• Step 6: Repeat steps 3 to 5 until the end of the study.

The collection of parameters in the final sample is then an approximation to

the posterior distribution of model parameters.

2.3 Scaling using independent estimates of mortality

Initial results using this approach indicated substantial positive bias in esti-

mates of R0 when there were a large number of years of landings preceding

the first observation of λ. Briefly, the problem appeared to be that particles

with lower values of R0 would often be removed from analysis because the

only criterion for filtering at the beginning of the time series was whether or

not landings exceeded abundance. To survive a period of high landings, a

low R0 population would need to have a sequence of high recruitment years,

which was increasingly unlikely the longer the period preceding λ estimates.

As a possible way to achieve the right scaling in estimates of R0, we

considered including auxiliary estimates of Zt, the cumulative instantaneous

mortality rate, and their standard errors, σz
t in the estimation procedure.

Such estimates are often available from catch curve analyses when the age

structure of harvests are also sampled. The basic idea was to impose ex-

tra structure on the F pred
t that were needed to produce landings in year t.

This was done by specifying a probability model for Zpred
t = F pred

t + M∗.

Specifically, we assumed that Zpred
t ∼ Normal(Zobs

t , σz
t ), so that the like-

lihood in Step 4 of the algorithm in section 2.2 was replaced by L(λt|θ) ×
L(Zpred

t |Zobs
t , σz

t ). Catch curve analysis often uses individuals greater or equal

to a threshold age for analysis (so that equal selectivity may be assumed); in
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this case, M∗ gives the values of natural mortality most appropriate for this

age grouping.

3 Simulation testing

For simulation testing, we assumed that there were a total of Y = 40 years

of data; landings in weight were available each year, but an index of abun-

dance was only available for the last 20 years of the study. In each case, we

set R0 = 30, 000, 000, h = 0.4, σR = 0.5, and F = −log(0.8) to generate

data. Recruitment deviations were simulated stochastically, but all other

calculations were deterministic. Values for selectivity, growth, maturity, and

weight at age were chosen to be similar to Spanish mackerel. Since Spanish

mackerel are sexually dimorphic, males and females were modeled differently,

with sex-specific vectors in each case. For simplicity a sex ratio of 0.5 was

assumed at the time of recruitment. With the plus group chosen to occur at

age A = 11, age-specific vectors were set to

sM = [0.1, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

sF = [0.1, 0.7, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

mF = [0.0, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

lM = [310, 394, 454, 497, 528, 550, 566, 578, 586, 592, 596],

lF = [310, 394, 454, 497, 528, 550, 566, 578, 586, 592, 596],

wM = [0.60, 1.19, 1.80, 2.34, 2.79, 3.15, 3.42, 3.63, 3.78, 3.89, 3.98], and

wF = [0.60, 1.19, 1.80, 2.34, 2.79, 3.15, 3.42, 3.63, 3.78, 3.89, 3.98].
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Here, M denotes males and F denotes females. Males did not contribute to

spawning stock biomass.

For estimation, we specified the following priors for model parameters:

[R0] : Uniform(10000000, 60000000)

[h] : Uniform(0.25, 0.95)

[σR] : Uniform(0.35, 0.80).

Observed estimates of λt were set to their true values, and a 0.05 standard

error was assumed for model fitting. The observed value for Zobs
t was set to

it’s true value, and a 0.05 standard error was assumed. A total of 200,000

particles was used in the estimation procedure.

Using this approach, estimated posterior samples of population trajecto-

ries were able to track changes in λt over time (Figure 1). Plots of posterior

distributions of model parameters were centered around the values used to

simulate data (Figure 2), and posterior plots for stock status in relationship

to management benchmarks were centered on true stock status (Figure 3).

Posterior summaries for stock status included uncertainty in both the true

value of maximum sustainable yield, as well as spawning stock biomass and

fishing mortality rate at the end of the time period. Thus, computing the

posterior probabilities of overfishing or of the stock being overfished are rel-

atively straightforward calculations.

4 Spanish mackerel analysis

I obtained Spanish mackerel landings data in weight from (SEDAR, 2008a)

for the period 1950-2007 off the Atlantic seaboard. These landings were ad-
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justed somewhat to account for unreported shrimp bycatch and intermittent

recreational landings at the beginning of the time series (SEDAR, 2008b,

Chapter 2). Although some commercial landings records existed for years

preceding 1950, they had a number of breaks; further, no recreational or by-

catch estimates were available for these years. We thus decided to employ an

initialization period of 50 years, whereby landings were linearly interpolated

back to zero in 1900 (Figure 4).

Estimates of λt were obtained from a Bayesian hierarchical analysis of

seven different gear types, and ran from 1982-2007 (SEDAR, 2008d). We

assumed a normal distribution for λt, using empirical estimates of standard

error from SEDAR (2008d) to characterize uncertainty (Figure 5). However,

standard errors of λ estimated below 0.05 were replaced with 0.05 in an effort

to prevent particle depletion. Similarly, we used estimates of total mortality

form catch-curve analysis (SEDAR, 2008c) to characterize prior distributions

for fishing mortality rate, Ft. We chose to base priors on Ft rather than

Zt because estimates of natural mortality varied by age (SEDAR, 2008a).

Estimates of Zt based on age 2 and older cohorts almost always fell between

0.5 and 1.4 for the years that age composition samples were available (1981-

2007; Figure 6). However, subtracting out M=0.35 (the Hoenig estimate of

natural mortality) led to a range for Ft that was approximately 0.15 to 1.05

for the period 1982-2003. We thus specified a Uniform(0.15, 1.05) prior on

Ft for the period 1982 to 2007. For the period 1950-1980, we knew less about

Ft because no age samples were available; for this period we admitted more

uncertainty by assuming that Ft ∼ Uniform(0.05, 2.0) was a reasonable

prior distribution. For the initialization period (1901-1949), we imposed an
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even less informative prior of Uniform(0.00,2.0). However, we set recruitment

deviations for the initialization period to zero to prevent lower values of R0

from being removed prematurely from the population of particles.

Model inputs (φ) were the same as for simulated data, with the following

exceptions:

lM = [291, 377, 431, 465, 486, 499, 507, 512, 515, 517, 518],

lF = [306, 404, 472, 519, 552, 575, 591, 602, 610, 616, 620],

wM = [0.49, 1.05, 1.550, 1.93, 2.19, 2.37, 2.48, 2.56, 2.60, 2.63, 2.65], and

wF = [0.57, 1.28, 2.01, 2.66, 3.19, 3.59, 3.89, 4.11, 4.26, 4.38, 4.46].

M = [0.50, 0.41, 0.36, 0.33, 0.31, 0.30, 0.29, 0.29, 0.29, 0.28, 0.28]

These values were recommended by the SEDAR 17 data workshop (SEDAR,

2008a). Similarly, prior distributions for R0, h, and σR were the same as

for simulations, reflecting a considerable degree of uncertainty about stock

dynamics.

A SSRA was fit to these data using the bootstrap particle filter (see

section 2.2) with 50,000 particles. Posterior estimates of stock-recruit pa-

rameters indicated that R0 was likely quite high (on the order of 60 million

fish), that steepness was close to 0.6, and that recruitment variability is pro-

nounced (Figure 7)

I also calculated posterior probabilities of population status in relation

to management benchmarks. This was accomplished by estimating Fmsy

and SSBmsy for each particle after the final filtering round, and by keep-

ing track of the terminal fishing mortality and spawning stock biomass for
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these particles. Posterior distributions for FT /Fmsy and SSBT /SSBmsy thus

incorporated uncertainty in parameter estimates (Figure 8). Results from

the SSRA suggest that the stock is overfished and that overfishing is occur-

ing. Relevant probabilities can be obtained by (1) integrating the posterior

for FT /Fmsy with limits taken from one to infinity, and (2) integrating the

posterior for SSBT /SSBmsy with limits taken from zero to one.

We urge caution in interpreting these results. It was evident that particle

depletion was a problem in this analysis, in that only a few combinations

of initial values survived the filtering process. Also, this analysis does not

incorporate data on the age structure of the population; thus statistical catch-

at-age analysis should be the preferred analysis. My(limited) experience with

fitting the SSRA to long time series indicates a tendency for populations with

low R0 to go extinct prematurely. This may be the case with the present

analysis.
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Figure 1: A plot of the predicted annual changes in relative abundance for
30 randomly selected particles from the posterior distribution (solid lines)
plotted against true (simulated) λt values. Filtered particles do a reasonable
job at tracking observed population changes.
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Figure 2: Histograms summarizing the posterior probability density func-
tion for key stock-recruit parameters (R0, h, and σR) from the analysis of
simulated data. Posterior plots were centered at true values (dashed lines).
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Figure 3: Posterior distributions for stock status in relation to relative man-
agement benchmarks from analysis of simulated data. True stock status
(dashed lines) is located close to posterior modes.
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Figure 4: Modeled landings for the stochastic stock reduction analysis of
U.S. Atlantic Spanish mackerel. The period 1901-1949 was treated as an
initialization period where landings were linearly interpolated back to zero.
Recruitment was constrained to follow a Beverton-Holt model exactly during
the initialization period (i.e., no recruitment deviations).
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Figure 5: Fitted trajectory of 30 randomly selected particles to λt. Error
bars give the estimates of λt ± 2SE that were used in the fitting process
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Figure 6: Catch-curve estimates of Zt used to derive a prior distributions
for Ft. Included are results from four fisheries: Commercial gillnet (“Comm
gillnet”); recreational (“MRFSS”); commercial castnet (“Comm castnet”);
and commercial handlines (“Comm HL”).
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Figure 7: Histograms representing posterior probabilities for model param-
eters. A larger number of particles would be needed to generate a smooth
distribution
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Figure 8: Histograms representing posterior predictions for stock status in
relation to management benchmarks.
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