
SEDAR-17-AW-06

Methods for combining multiple indices into
one, with application to south Atlantic (U.S.)

Spanish mackerel

August 23, 2008

Prepared by Paul B. Conn
National Marine Fisheries Service

NOAA Center for Coastal Fisheries & Habitat Research
Beaufort, NC

1

SEDAR 17-AW06



1 Introduction

Fisheries analysts often want to fit population models to several indices. If

the selectivity associated with the gears for each index differ markedly, this

may be a reasonable thing to do, especially if the age or length composition

of the fishery changes over time. However, this is often difficult or impossible

with simpler assessment methods, as with surplus production models (cf.

Schaefer, 1954, 1957; Prager, 1994) or stock reduction analysis (Walters et al.,

2006). In these cases, it would be useful to perform inference with one

common index since the numerical routines used to fit these models and are

often sensitive to the quality (and quantity) of datasets available.

For Spanish mackerel on the Atlantic coast of the U.S., a total of nine

different indices of abundance had been computed, few of which correlated

well with each other (SEDAR, 2008a). Since population indices are supposed

to reflect relative abundance, we anticipated problems would arise because

each index told a different “story” with regard to whether the population

had been increasing or decreasing over the last 22 years.

In this working paper, we introduce a novel method for combining mul-

tiple indices into one common index. The method works by assuming that

observed relative abundance trends are sampled from a common population

trend, but subject to process and sampling error. Inference then focuses on

describing trends in the mean index. In particular, we give details on data

manipulations needed to perform the analysis on Spanish mackerel in the

south Atlantic (U.S.), and provide examples of how the models can be fitted
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to Spanish mackerel indices.

2 Methods for combining indices

I assume that the investigator has access to I different indices, denoted Ui =

{Uit}, where the i subscript gives the index, and t is a time subscript (t ∈
1, . . . , T ). Owing to differences in scale between indices, inference focuses on

changes in relative abundance each year, ∆it = Ui,t+1/Uit, which are related

to the finite rate of population increase (λ) in population ecology. Observed

changes in relative abundance for each index ∆i are assumed to be sampled

from a common underlying population trend, which we denote λ, where λ =

[λ1, λ2, . . . , λT−1]. Observed changes in each index are subject to both process

(σp
i ) and sampling (σs

i = [σs
i1, σ

s
i2, . . . , σ

s
i,T−1]) errors. The latter are easily

obtained as long as sampling errors are calculated and reported together

with each of the indices (for example, as a result of design-based sampling

or a byproduct of model fitting). For instance, assuming that indices are

constructed in such a manner that sampling covariance is negligible, a first

order Taylor series approximation gives

ˆV ar(Ui,t+1/Uit) =
ˆV ar(Ui,t+1)

U2
it

+
U2

i,t+1

U4
it

ˆV ar(Uit)

(Casella and Berger, 1990). In contrast, process errors are impossible to de-

tect given one index alone. However, they should often be expected in indices

due to annual changes in catchability (for example, because of differences in

spatial coverage, timing of migration, or due to age or length-based gear

selectivity).

To incorporate process and sampling error, I assume that ∆i and λ are
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connected through a sequence of latent population changes Li = [Li1, Li2, . . . , Li,T−1],

where the latent time series is subject to process error (but not sampling er-

ror). I specify a hierarchical model for the observed data as follows:

[∆it|λt, σ
p
i , σ

s
it] = [∆it|Lit, σ

s
it][Lit|σp

i , λt][λt][σ
p
i ].

Here the notation [X|Y ] specifies the conditional distribution of X given

Y . Note that I have implicitly assumed prior independence between the

population trend and process errors by assuming that [λt, σ
p
i ] = [λt][σ

p
i ].

Note also that the level of process error is dependent upon the index only

(i.e., does not change over time). I also assume the investigator has access

to index sampling errors, as output from index construction (through fitting

with delta GLM’s for example; cf., Lo et al. 1992, Maunder and Punt 2004).

Writing a model for the observed indices in this manner is useful because it

facilitates calculation of posterior distributions for λt and σp
i via Bayesian

analysis. Posterior prediction may also be used to generate densities for µt,

which can be interpreted as a “combined” index. This can be done by setting

the first value of the index to a constant (e.g., µ1 = 1), and then applying

estimated values of λt, so that µ̂ = [1, λ1, λ1λ2, . . . ,
∏

t λt].

Setting up a Bayesian analysis requires that one specify probability dis-

tributions for all likelihood components, as well as prior distributions for

[λt] and [σp
i ]. For purposes of this paper, I suggest that making likelihood

components normally distributed is a reasonable choice. As it is easier to

calculate Bayesian quantities when the model is specified in terms of preci-

sion (τ) than standard deviation (σ), I made the substitutions τ s
it = 1/(σs

it)
2
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and τ p
i = 1/(σp

i )
2), and then specified following probability models:

[∆it|Lit, τ
s
it] : Normal(∆it; Lit, 1/τ

s
it)

[Lit|λt, τ
p
i ] : Normal(Lit; λt, 1/τ

p
t ).

I also specified the priors

[σp
i ] : Gamma(σp

i ; α, β), and

[λt] : Uniform(a, b).

The gamma distribution is a logical choice in this case because it is the

conjugate prior for the precision parameter under a normal likelihood; thus

when sampling the posterior via Markov chain Monte Carlo (MCMC), this

parameter may be simulated directly without an accept/reject step. The

choice of a uniform prior on the mean index is somewhat arbitrary.

3 Spanish mackerel analysis

We gathered Spanish mackerel indices from the SEDAR 17 Data workshop

report (SEDAR, 2008a) for hierarchical analysis. We performed analysis

on seven of the nine indices, not electing to use SEAMAP indices because

these reflected the relative abundance of new recruits rather than population-

level relative abundance. Using the model specified above, we used a hybrid

MCMC sampler (see, e.g., Gelman et al., 2004) to approximate the posterior

distribution of population growth rates, latent gradients, and process errors.

Population growth rates and latent gradients were sampled individually using

Metropolis-Hastings steps with normally distributed proposals with mean

zero and a standard deviation chosen to give acceptance rates in the 30-40%
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range (Gelman et al., 2004). Conditional on the other parameters, process

precision parameters (τ p
i ) were available analytically and were simulated as

τ p
i ∼ Gamma

(
0.5

∑
t

Iit + α, 0.5
∑

t

Iit(Lit − λt)
2 + β

)
.

Here, the gamma distribution is referenced with a rate parameter rather than

a scale parameter, and Iit is an indicator variable that takes on the value 1.0 if

λit is defined in year t and zero otherwise. The values α = 0.01 and β = 0.01

were chosen to give a diffuse distribution for the prior precision. Similarly, a

diffuse Uniform(0.1,10.0) was chosen for population growth rates (λt). This

prior assumes that the population had zero probability of declining by more

than 90% or increasing it’s size tenfold in any given year. This seemed

reasonable given our knowledge of Spanish mackerel life history.

The MCMC analysis was coded in R (R Development Core Team, 2007),

and was run for 110,000 iterations with the the first 10,000 iterations thrown

out as a burn-in (Gelman et al., 2004). Standard MCMC diagnostics (Fig-

ure 1) suggested that the chain mixed well and had indeed converged to

the posterior distribution. Examination of posterior distributions for pro-

cess error (Figure 2) indicated that the best estimate of process error for

most indices was in the 0.1-0.3 range; an exception was the handline index

compiled from logbook entries; this index included enough noise that it was

virtually useless. Posterior estimates of λ indicated that the population in-

creased more than it decreased over the course of the study (Figure 3). The

“overall” index derived from λ (Figure 4, Table 1) confirmed this visually,

as relative abundance was predicted to increase over the course of the study.

In general, estimates of population level trends followed trends in indices
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with lower estimated levels of process error. Also available for comparison

were latent, index-specific estimates of λ, which included process error with

sampling error removed (Figure 5). The former are analogous to shrinkage

estimators in random effects models.
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Figure 1: Trace plots of three randomly selected parameters from the MCMC
analysis. The plot indicates good mixing and no indication of alternative
minima or maxima.
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Figure 2: Estimated posterior distributions for the process errors, σp
i . Shown

are values for CPUE indices derived from different gears, locations, and times:
Florida gillnet preceding net ban (FL.GN1), Florida gillnet after the net
ban (FL.GN2), Florida castnet (FL.CN), Florida handlines (FL.HL), the
Marine Recreational Fisheries Statistics Survey (MRFSS), logbook records
from gillnet fisheries north of Florida (LB.GN), and logbook records from
handline fisheries north of Florida (LB.HL). Large process errors indicate
that what is measured by a given index is not necessarily indicative of what
is going on at the population level.
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Figure 3: Estimates (posterior means) for the rate of population change,
1985-2006.
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Figure 4: Estimates of a single combined relative abundance index for Span-
ish mackerel based on posterior prediction.
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Figure 5: Posterior distributions for latent gradients (solid lines) versus those
calculated directly from the indices produced by the SEDAR 17 data work-
shop (dashed lines). Latent time series include process error, but have sam-
pling error removed.
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Table 1: Estimates of the combined index for U.S. Atlantic Spanish mackerel
(as given by the mean of posterior prediction), together with standard errors.
Also presented are posterior means and standard errors for λt, which is an
estimator for the change in annual abundance of exploitable biomass (λt =
Et+1/Et). This latter quantity was used to fit a stock reduction model to
Spanish mackerel (see accompanying working document).

Year µt CV(µt) λt SE(λt)
1985 0.571 0.000 1.338 0.061
1986 0.763 0.184 1.201 0.062
1987 0.915 0.279 1.194 0.036
1988 1.079 0.326 0.991 0.031
1989 1.071 0.356 0.912 0.024
1990 0.979 0.397 0.822 0.022
1991 0.807 0.445 1.027 0.023
1992 0.826 0.473 1.018 0.035
1993 0.851 0.506 1.185 0.040
1994 0.985 0.536 0.892 0.031
1995 0.882 0.580 1.124 0.037
1996 0.982 0.620 0.948 0.024
1997 0.933 0.646 1.101 0.037
1998 1.034 0.669 1.047 0.015
1999 1.089 0.685 1.014 0.011
2000 1.064 0.702 1.128 0.013
2001 1.188 0.711 1.027 0.013
2002 1.196 0.729 1.058 0.013
2003 1.292 0.742 0.912 0.012
2004 1.243 0.758 0.978 0.012
2005 1.161 0.756 0.926 0.013
2006 1.074 0.774 0.959 0.010
2007 1.005 0.785 N/A N/A
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