SMALL COASTAL SHARK 2007 SEDAR DATA WORKSHOP DOCUMENT

Standardized catch rates of small coastal sharks from the South Carolina COASTSPAN and SCDNR red drum surveys

Camilla T. McCandless NOAA/NMFS/NEFSC Apex Predators Investigation 28 Tarzwell Drive Narragansett, RI 02882

Glenn F. Ulrich Carrie Hendrix Bryan Frazier South Carolina Department of Natural Resources Marine Resources Division 217 Ft. Johnson Rd Charleston, SC 29412

> cami.mccandless@noaa.gov ulrichg@dnr.sc.gov hendrixc@dnr.sc.gov frazierbr@dnr.sc.gov

January, 2007

Workshop Draft not to be cited without permission of authors

SEDAR 13-DW-30-V3

Summary

In an effort to examine the use of South Carolina's estuarine waters as nursery areas for coastal shark species the South Carolina Department of Natural Resources SCDNR) Marine Resources Division, in collaboration with the National Marine Fisheries Service's (NMFS) Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) Survey began sampling for sharks using longline and gillnet methods in several estuaries within South Carolina. In addition to the estuarine areas sampled specifically for sharks, the SCDNR also samples the shark bycatch from a long-term longline survey designed to monitor adult red drum *Sciaenops ocellatus* in the coastal waters of South Carolina. Data from these surveys were used to look at the trends in small coastal shark abundance in South Carolina's estuarine and nearshore waters from 1998 to 2005. Catch per unit effort (CPUE) in number of sharks per hook hour for longline sets and in number of sharks per hour for gillnet sets were examined from March through December. The CPUE was standardized using a modified two-step approach originally proposed by Lo et al (1992) that models the zero catch separately from the positive catch.

Methods

Sampling Gear and Data Collection

COASTSPAN estuarine sampling locations were selected in the lower reaches of estuaries in depths which would facilitate the deployment and retrieval of gillnets and hand deployed longlines (i.e. current velocity, tidal range, vessel traffic). All estuarine sampling occurred inside of inlets and sampling locations varied with regard to distance from nearshore waters. Estuarine sampling was conducted primarily from April through October with the majority of the effort occurring between May and September. Nearshore sampling stations were those previously selected for adult red drum sampling. Nearshore sampling occurred from immediately outside of the surf zone to 8 km offshore with depths ranging from 3–15 m. These sites were primarily live-bottom areas with low relief, consisting of rock or marl outcrops that were encrusted with sessile invertebrates such as sponges, gorgonians and bryozoans. Nearshore sampling occurred throughout the year with the exception of February; however, nearshore sampling was most intense from September through mid-December (Table 1). The locations of the fixed estuarine and nearshore sampling areas are shown in Figure 1.

The COASTSPAN gillnet used in this study was 231 m long and 3 m deep and was constructed of #177 monofilament twine with a stretched mesh of 10.3 cm. The net was set and inspected for catch at approximately 20-minute intervals to reduce mortality. The COASTSPAN longline gear consisted of 305 m of 0.64 cm braided nylon mainline which supported the use of 50 gangions. Each gangion consisted of a 0.5 m 91 kg test monofilament leader, size120 stainless steel longline snap, 4/0 swivel and a 12/0 circle hook. Prior to the 2000 sampling year the COASTSPAN longline was allowed to soak for 45-60 minutes and then retrieved. After retrieval the gear was either reset or moved to a new location, depending on catch. High bait loss was noted on most sets and therefore the sampling strategy was modified in 2000 and the handline was under run at 15-20 minute intervals. Red drum longline gear consisted of a 272 kg test monofilament mainline that was 1829 m in length and had 30.5 m buoy lines attached at each end. The mainline was equipped with stop sleeves at 30.5 m intervals to prevent gangions from sliding together when a large fish was captured. The gangions were the same as those used on the COASTSPAN longline with the exception that 14/0 and 15/0 circle hooks were employed. A full set consisted of 120 hooks, although conditions in certain sampling areas dictated that 914 m of mainline and 60 gangions be used. Soak times for red drum longline sets were limited to 45 minutes unless conditions or events dictated otherwise.

Station location, water temperature, salinity, and time of day were recorded for each set for all gear types. The sex, weight, fork length, total length, and umbilical scar condition of all sharks were recorded. Umbilical scar condition was recorded in six categories: "umbilical remains," "fresh open," "partially healed," "mostly healed," "well healed," and none. Sharks were then tagged with either a NMFS blue rototag or steel tipped dart tag (M-tag) and released.

Data Analysis

Catch per unit effort (CPUE) in number of sharks per hook hour for longline sets and in number of sharks per hour for gillnet sets were used to examine the relative abundance of small coastal sharks in South Carolina's estuarine and nearshore waters from 1998 to 2005. The CPUE was standardized using the Lo et al. (2002) method which models the proportion of positive sets separately from the positive catch. This analysis was done for the following dependent variables where the data was appropriate: the small coastal shark complex CPUE, Atlantic sharpnose shark CPUE, bonnethead shark CPUE, finetooth shark CPUE, and blacknose shark CPUE. After initial exploratory analysis, factors considered as potential influences on the CPUE for these analyses were year (1998-2005), month (March – December) and area (each of the estuaries, off beaches and nearshore stations) for all gear types.

The proportion of sets with positive CPUE values was modeled assuming a binomial distribution with a logit link function and the positive CPUE sets were modeled assuming a Poisson distribution with a log link function. Models were fit in a stepwise forward manner adding one potential factor at a time after initially running a null model with no factors included (Gonzáles-Ania et al. 2001, Carlson 2002). Each potential factor was ranked from greatest to least reduction in deviance per degree of freedom when compared to the null model. The factor resulting in the greatest reduction in deviance was then incorporated into the model providing the effect was significant at $\alpha = 0.05$ based on a Chi-Square test, and the deviance per degree freedom was reduced by at least 1% from the less complex model. This process was continued until no additional factors met the criteria for incorporation into the final model. All models in the stepwise approach were fitted using the SAS GENMOD procedure (SAS Institute, Inc.). The final models were run through the SAS GLIMMIX macro to allow fitting of the generalized linear mixed models using the SAS MIXED procedure (Wolfinger, SAS Institute, Inc). The factor "year" was kept in all final models, regardless of its significance, to allow for calculation of indices. The standardized indices of abundance were based on the year effect least square means determined from the combined binomial and Poisson components.

Results

Small coastal shark complex

A total of 3208, 1276, and 5440 small coastal sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 SCDNR red drum longline sets, respectively from 1998 to 2005 (Table 1). The nominal and relative nominal CPUE by year for each time series are reported in Table 1.

The percentage of sets with zero small coastal shark catch was 6.7% for gillnet, 30.8% for COASTSPAN longline and 30.7% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a small coastal shark and the

Poisson model of positive small coastal shark catch sets for gillnet and both longline time series are detailed in Tables 2-4, respectively. The final binomial model for the gillnet series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the gillnet time series was "positive small coastal shark sets = month + year". The final binomial model for the COASTSPAN longline series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the COASTSPAN longline time series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the COASTSPAN longline time series was "positive small coastal shark sets = year + area + month". The final binomial model for the red drum longline series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the red drum longline series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the red drum longline time series was "proportion positive small coastal shark sets = month + year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for small coastal sharks for the gillnet and both longline series are reported in Table 5 and are illustrated in Figure 6.

Atlantic sharpnose sharks

A total of 1171, 998, and 4740 Atlantic sharpnose sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 SCDNR red drum longline sets, respectively from 1998 to 2005 (Table 6). Of these Atlantic sharpnose sharks, 1166, 996, and 4707 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These Atlantic sharpnose sharks ranged in size from 20.4 to 90.3, 23.0 to 92.1, and 21.9 to 103.0 cm fork length for gillnet COASTSPAN longline and SCDNR longline surveys, respectively (Figure 2). The nominal and relative nominal CPUE by year for each time series are reported in Table 6.

The percentage of sets with zero Atlantic sharpnose shark catch was 39.4% for gillnet, 39.5% for COASTSPAN longline and 32.3% for red drum longline sets. The stepwise construction of the binomial model of the probability of catching an Atlantic sharpnose shark and the Poisson model of positive Atlantic sharpnose shark catch sets for gillnet and both longline time series are detailed in Tables 7-9, respectively. The final binomial model for the gillnet series was "proportion positive Atlantic sharpnose shark sets = month + year" and the final Poisson model for the gillnet time series was "positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the COASTSPAN longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the year" and the final Poisson model for the area series was "positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the coastract sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets = month + year" and the final Poisson model for the red drum longline ti

resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for Atlantic sharpnose sharks for the gillnet and both longline series are reported in Table 10 and are illustrated in Figure 7.

Bonnethead sharks

A total of 1207, 56, and 31 bonnethead sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 11). Of these bonnethead sharks, 1210, 56, and 31 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These bonnethead sharks ranged in size from 37.1 to 107.4, 41.5 to 99.6, and 64.1 to 100.0 cm fork length for gillnet COASTSPAN longline and SCDNR longline surveys, respectively (Figure 3). The nominal and relative nominal CPUE by year for each time series are reported in Table 11.

The percentage of sets with zero bonnethead shark catch was 30.3% for gillnet, 91.6% for COASTSPAN longline and 97.4% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a bonnethead shark and the Poisson model of positive bonnethead shark catch sets for gillnet and both longline time series are detailed in Tables 12-14, respectively. The final binomial model for the gillnet series was "proportion positive bonnethead shark sets = area + month + year" and the final Poisson model for the gillnet time series was "positive bonnethead shark sets = area + month + year". The final binomial model for the COASTSPAN longline series was "proportion positive bonnethead shark sets = year" and the final Poisson model for the COASTSPAN longline time series was "positive bonnethead shark sets = year" and the final Poisson model for the red drum longline series was "proportion positive bonnethead shark sets = year" and the final Poisson model for the red drum longline series was "proportion positive bonnethead shark sets = year" and the final Poisson model for the red drum longline series was "proportion positive bonnethead shark sets = year". The final binomial model for the red drum longline series was "proportion positive bonnethead shark sets = year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for bonnethead sharks for the gillnet and both longline series are reported in Table 15 and are illustrated in Figure 8.

Finetooth sharks

A total of 826, 220, and 52 finetooth sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 16). Of these finetooth sharks, 829, 218, and 49 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These finetooth sharks ranged in size from 34.7 to 150.0, 42.0 to 98.7, and 50.6 to 127.0 cm fork length for gillnet COASTSPAN longline and SCDNR longline surveys, respectively (Figure 4). The nominal and relative nominal CPUE by year for each time series are reported in Table 16.

The percentage of sets with zero finetooth shark catch was 45.6% for gillnet, 79.2% for COASTSPAN longline and 95.5% for red drum longline sets. The stepwise construction of the binomial model of the probability of catching a finetooth shark and the Poisson model of positive bonnethead shark catch sets for gillnet and both longline time series are detailed in Tables 17-19, respectively. The final binomial model for the gillnet series was "proportion positive finetooth shark sets = area + month + year" and the final Poisson model for the gillnet time series was "positive finetooth shark sets = month + area + year". The final binomial model for the COASTSPAN longline series was "proportion positive finetooth shark sets = year" and the final Poisson model for the coASTSPAN longline series was "proportion positive finetooth shark sets = month + year". The final binomial model for the final Poisson model for the COASTSPAN longline time series was "positive finetooth shark sets = month + year". The final binomial model for the red drum longline series was "proportion positive finetooth shark sets = year" and the final Poisson model for the red drum longline time series was "proportion positive finetooth shark sets = was "positive finetooth shark sets = year". The final binomial model for the red drum longline time series was "proportion positive finetooth shark sets = year" and the final Poisson model for the red drum longline time series was "positive finetooth shark sets = year" and the final Poisson model for the red drum longline time series was "proportion positive finetooth shark sets = year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for finetooth sharks for the gillnet and both longline series are reported in Table 20 and are illustrated in Figure 9.

Blacknose sharks

A total of 4, 2, and 617 blacknose sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 21). The blacknose sharks caught during the gillnet (96.5, 101.0, 102.0, and 113.0 cm fork length) and COASTSPAN longline (102.0 and 108.0 cm fork length) were included in the small coastal shark complex analyses, but were not analyzed separately. The measured blacknose sharks (595) caught during the red drum longline survey ranged in size from 48.1 to 117.0 cm fork length (Figure 5). The nominal and relative nominal CPUE by year for blacknose sharks from the red drum longline time series are reported in Table 21.

The percentage of sets with zero blacknose shark catch was 73.2% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a blacknose shark and the Poisson model of positive blacknose shark catch sets for the red drum longline time series are detailed in Table 22. The final binomial model for the red drum longline series was "proportion positive blacknose shark sets = year" and the final Poisson model for the red drum longline time series was "positive blacknose shark sets = month + year + area". The resulting relative indices of abundance based on the standardized year effects obtained from the

Lo et al. method for blacknose sharks for the red drum longline series are reported in Table 23 and are illustrated in Figure 10.

References

Carlson J.K. 2002. A fishery-independent assessment of shark stock abundance for large coastal species in the northeast Gulf of Mexico. Panama City Laboratory Contribution Series 02-08. 26pp.

González-Ania, L.V., C.A. Brown, and E. Cortés. 2001. Standardized catch rates for yellowfin tuna (*Thunnus albacares*) in the 1992-1999 Gulf of Mexico longline fishery based upon observer programs from Mexico and the United States. Col. Vol. Sci. Pap. ICCAT 52:222-237.

Lo, N.C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2515-2526.

Table 1. Nominal and nominal relative (CPUE/mean) abundance indices for the small coastal sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

gillnet

Sumer							
			REL				
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
1998	161	0.3216	0.7842	0.5367	1.0317	1.6700	28
1999	101	0.3188	0.7773	0.6628	0.8918	0.7066	23
2000	204	0.2725	0.6646	0.5786	0.7505	0.7200	31
2001	590	0.4318	1.0530	0.9248	1.1812	1.2655	108
2002	520	0.5247	1.2795	0.9601	1.5989	2.0735	69
2003	1023	0.8854	2.1590	1.6956	2.6223	2.0247	89
2004	73	0.1739	0.4240	0.2654	0.5827	1.4968	16
2005	536	0.3521	0.8585	0.7733	0.9437	0.8185	68

COASTSPAN longline

		_		REL					
	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν	
	1998	28	0.0017	0.6974	0.3590	1.0358	1.8792	15	
	1999	142	0.0019	0.7887	0.5991	0.9782	1.0196	18	
	2000	166	0.0034	1.3914	0.9217	1.8611	2.9040	74	
	2001	394	0.0057	2.3411	2.0855	2.5967	0.9264	72	
	2002	106	0.0015	0.6178	0.5216	0.7140	1.0674	47	
	2003	152	0.0021	0.8614	0.7248	0.9979	1.1211	50	
	2004	131	0.0020	0.8273	0.6926	0.9621	1.1633	51	
	2005	157	0.0012	0.4750	0.4048	0.5452	1.5568	111	

N 43
13
15
28
12
25
70
05
49

Table 2. Results of the stepwise procedure for development of the catch rate model for the small coastal complex for gillnet sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	431	212.6737	0.4934					-
MONTH	426	183.1318	0.4299	12.8699	12.8699	-91.5659	29.54	<.0001
YEAR	424	194.5722	0.4589	6.9923		-97.2861	18.1	0.0115
AREA	428	206.8253	0.4832	2.0673		-103.4127	5.85	0.1192
MONTH +								
YEAR	419	174.8301	0.4173	15.4236	2.5537	-87.4151	8.3	0.3067
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	2445.3							
Schwartz's Bayesian criterion	2449.3							
(-2) Res Log likelihood	2443.3							
	Туре 3	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
test of fixed effects for each factor		0.0091	0.4494					
DF		4	6					
CHI SQUARE		13.50	5.77					
POSITIVE CATCHES-POISSON ER	ROR DIST	RIBUTION						
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	402	2994.9451	7.4501					
MONTH	397	2857.7012	7.1982	3.3812	3.3812	3216.779	137.24	<.0001
YEAR	395	2854.0608	7.2255	3.0147		3218.5992	140.88	<.0001
AREA	399	2949.4903	7.3922	0.7772		3170.8845	45.45	<.0001
MONTH +								
	390	2724.7150	6.9864	6.2241	2.8429	3283.2722	129.35	<.0001
MONTH + YEAR FINAL MODEL: MONTH + YEAR	390	2724.7150	6.9864	6.2241	2.8429	3283.2722	129.35	<.0001

Schwartz's Bayesian criterion	1363.7	
(-2) Res Log likelihood	1357.7	
	Type 3 Test of Fixed Effe	cts
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	0.0581	0.0890
DF	5	7
CHI SQUARE	10.68	12.37

Table 3. Results of the stepwise procedure for development of the catch rate model for the small coastal shark complex for COASTSPAN longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	437	541.0775	1.2382					
IONTH	431	471.8188	1.0947	11.5894	11.5894	-235.9094	69.26	<.0001
'EAR	430	493.0002	1.1465	7.4059		-246.5001	48.08	<.0001
REA	429	505.6855	1.1788	4.7973		-252.8427	Negative of Hessian n	not positive definite
10NTH +								
′EAR	424	424.5248	1.0012	19.1407	7.5513	-212.2624	47.29	<.0001
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	2078.6							
Schwartz's Bayesian criterion	2082.7							
-								
-2) Res Log likelihood	2076.6							
	Туре 3	Test of Fixed I						
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		<.0001	<.0001					
DF		5	7					
CHI SQUARE		43.65	37.55					
POSITIVE CATCHES-POISSON ERF	ROR DIST	RIBUTION						
ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	302	890.0955	2.9473					
'EAR	295	690.2107	2.3397	20.6155	20.6155	626.5799	199.88	<.0001
REA	295	841.3961	2.8522	3.2267		550.9872	48.70	<.0001
IONTH	297	853.3483	2.8732	2.5142		545.0111	36.75	<.0001
/EAR +								
	000		0.0040	05 4000	4 5000	054 0040	55.00	0004
DEA					4.5839	654.2248	55.29	<.0001
	288	634.9209	2.2046	25.1993	4.0000			
	288 290	634.9209 649.9497	2.2046 2.2412	23.9575	4.0000	646.7104	40.26	<.0001
NONTH					4.0000		40.26	<.0001
/ONTH /EAR + AREA +					3.1928		40.26 37.65	<.0001
MONTH YEAR + AREA + MONTH	290 283	649.9497	2.2412	23.9575		646.7104		
MONTH YEAR + AREA + MONTH FINAL MODEL: YEAR + AREA + MC	290 283 DNTH	649.9497	2.2412	23.9575		646.7104		
MONTH YEAR + AREA + MONTH FINAL MODEL: YEAR + AREA + MC	290 283	649.9497	2.2412	23.9575		646.7104		
AREA MONTH YEAR + AREA + MONTH FINAL MODEL: YEAR + AREA + MC Akaike's information criterion Schwartz's Bayesian criterion	290 283 DNTH	649.9497	2.2412	23.9575		646.7104		
//ONTH /EAR + AREA + //ONTH FINAL MODEL: YEAR + AREA + MC Akaike's information criterion Schwartz's Bayesian criterion	290 283 DNTH 791.5	649.9497	2.2412	23.9575		646.7104		
MONTH YEAR + AREA + MONTH FINAL MODEL: YEAR + AREA + MC Akaike's information criterion	290 283 DNTH 791.5 795.1 789.5	649.9497	2.2412 2.1105	23.9575		646.7104		
//ONTH /EAR + AREA + //ONTH FINAL MODEL: YEAR + AREA + MC Akaike's information criterion Schwartz's Bayesian criterion -2) Res Log likelihood	290 283 DNTH 791.5 795.1 789.5	649.9497 597.2684	2.2412 2.1105	23.9575		646.7104		
/ONTH /EAR + AREA + /ONTH /INAL MODEL: YEAR + AREA + MC /kaike's information criterion // Area and the state of the state	290 283 DNTH 791.5 795.1 789.5 Type 3	649.9497 597.2684 Test of Fixed I	2.2412 2.1105 Effects	23.9575 28.3921		646.7104		
//ONTH /EAR + AREA + //ONTH FINAL MODEL: YEAR + AREA + MC Akaike's information criterion Schwartz's Bayesian criterion	290 283 DNTH 791.5 795.1 789.5 Type 3	649.9497 597.2684 Test of Fixed B YEAR	2.2412 2.1105 Effects AREA	23.9575 28.3921 MONTH		646.7104		

Table 4. Results of the stepwise procedure for development of the catch rate model for the small coastal shark complex for SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	946	1168.4314	1.2351					
MONTH	936	1100.7050	1.1760	4.7850	4.7850	-550.3525	67.73	<.0001
YEAR	939	1119.7707	1.1925	3.4491		-559.8853	48.66	<.0001
AREA	929	980.9009	1.0559	14.5089		-490.4505	Negative of Hessian r	not positive definit
MONTH +								
YEAR	929	1041.2616	1.1208	9.2543	4.4693	-520.6308	59.44	<.0001
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	4101.5							
Schwartz's Bayesian criterion	4106.3							
(-2) Res Log likelihood	4099.5							
	Type 3	B Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		0.0001	<.0001					
DF		9	7					
CHI SQUARE		34.21	54.49					
ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
FACTOR	DF 655	DEVIANCE 5621.3272	8.5822					
FACTOR NULL MONTH	DF 655 645	DEVIANCE 5621.3272 4282.6900	8.5822 6.6398	22.6329	DELTA% 22.6329	5040.7171	1338.64	<.0001
FACTOR NULL MONTH YEAR	DF 655 645 648	DEVIANCE 5621.3272 4282.6900 4893.9906	8.5822 6.6398 7.5525	22.6329 11.9981		5040.7171 4735.0668	1338.64 727.34	<.0001 <.0001
FACTOR NULL MONTH YEAR	DF 655 645	DEVIANCE 5621.3272 4282.6900	8.5822 6.6398	22.6329		5040.7171	1338.64	<.0001
FACTOR NULL MONTH YEAR AREA	DF 655 645 648	DEVIANCE 5621.3272 4282.6900 4893.9906	8.5822 6.6398 7.5525	22.6329 11.9981		5040.7171 4735.0668	1338.64 727.34	<.0001
FACTOR NULL MONTH YEAR AREA MONTH +	DF 655 645 648	DEVIANCE 5621.3272 4282.6900 4893.9906	8.5822 6.6398 7.5525	22.6329 11.9981		5040.7171 4735.0668	1338.64 727.34	<.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH YEAR AREA MONTH + AREA YEAR	DF 655 645 648 638	DEVIANCE 5621.3272 4282.6900 4893.9906 5083.1341	8.5822 6.6398 7.5525 7.9673	22.6329 11.9981 7.1648	22.6329	5040.7171 4735.0668 4640.4950	1338.64 727.34 538.19	<.0001 <.0001 <.0001
FACTOR NULL MONTH YEAR AREA MONTH + AREA	DF 655 645 648 638 628	DEVIANCE 5621.3272 4282.6900 4893.9906 5083.1341 3880.9581	8.5822 6.6398 7.5525 7.9673 6.1799	22.6329 11.9981 7.1648 27.9917	22.6329	5040.7171 4735.0668 4640.4950 5241.5831	1338.64 727.34 538.19 401.73	<.0001 <.0001 <.0001

FINAL	MODEL:	MONTH +	AREA +	YEAR
-------	--------	---------	--------	------

Akaike's information criterion	1995.6
Schwartz's Bayesian criterion	2000.0
(-2) Res Log likelihood	1993.6

(-2) Res Log likelihood	1
-------------------------	---

	Type 3 Test of Fixed Effects									
Significance (Pr>Chi) of Type 3	MONTH	AREA	YEAR							
test of fixed effects for each factor	<.0001	<.0001	<.0001							
DF	10	17	7							
CHI SQUARE	143.46	78.68	71.86							

Table 5. Relative (index/mean) standardized abundance indices for the small coastal shark complex caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

gillnet

- 1	Sumer							
			REL					
	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν	
	1998	19.4117	0.6713	0.1912	1.1514	0.3649	28	
	1999						23	
	2000	24.3004	0.8404	0.3575	1.3232	0.2932	31	
	2001	30.9372	1.0699	0.7402	1.3996	0.1572	108	
	2002	26.9742	0.9328	0.6226	1.2430	0.1697	69	
	2003	43.6883	1.5108	1.1362	1.8855	0.1265	89	
	2004	29.0766	1.0055	-0.0055	2.0166	0.5130	16	
	2005	28.0288	0.9693	0.6093	1.3293	0.1895	68	

COASTSPAN longline

			REL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.1772	0.7456	-7.0645	8.5556	5.3445	15
	1999	0.3810	1.6030	-7.3872	10.5931	2.8615	18
	2000	0.3763	1.5835	-3.8938	7.0607	1.7648	74
	2001	0.4920	2.0700	-0.9988	5.1389	0.7564	72
	2002	0.1433	0.6028	-3.5351	4.7407	3.5021	47
	2003	0.1362	0.5729	-3.6789	4.8247	3.7866	50
	2004	0.1302	0.5480	-3.0789	4.1749	3.3767	51
	2005	0.0652	0.2742	-2.3507	2.8992	4.8837	111

			REL				
	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
-	1998	0.1564	0.9681	-0.4097	2.3459	0.7261	143
	1999	0.0931	0.5762	-0.6825	1.8349	1.1145	115
	2000	0.1487	0.9208	-0.9725	2.8141	1.0490	128
	2001	0.2404	1.4885	-0.8357	3.8128	0.7966	112
	2002	0.2485	1.5385	-1.0738	4.1508	0.8663	125
	2003	0.1969	1.2189	-0.7579	3.1958	0.8274	170
	2004	0.0706	0.4369	-1.8269	2.7006	2.6439	105
	2005	0.1376	0.8520	-4.2067	5.9107	3.0293	49

Table 6. Nominal and nominal relative (CPUE/mean) abundance indices for Atlantic sharpnose sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

gillnet

Sumer							
			REL				
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
1998	88	0.1301	0.9563	0.6259	1.2868	1.8284	28
1999	30	0.0905	0.6652	0.5048	0.8256	1.1565	23
2000	67	0.0830	0.6100	0.4781	0.7420	1.2043	31
2001	125	0.0776	0.5705	0.4341	0.7069	2.4843	108
2002	129	0.0772	0.5672	0.4455	0.6889	1.7820	69
2003	574	0.4979	3.6592	2.4971	4.8212	2.9960	89
2004	13	0.0408	0.2999	0.0712	0.5286	3.0503	16
2005	145	0.0914	0.6716	0.5741	0.7690	1.1969	68

COASTSPAN longline

	1 1 1 1 1 1 UII 5	mit						
	_		REL					
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν	
1998	28	0.0017	0.9125	0.4698	1.3553	1.8792	15	
1999	141	0.0019	1.0195	0.7694	1.2695	1.0405	18	
2000	95	0.0020	1.1057	0.6471	1.5642	3.5674	74	
2001	314	0.0041	2.2072	1.9451	2.4694	1.0079	72	
2002	74	0.0010	0.5576	0.4525	0.6628	1.2929	47	
2003	118	0.0016	0.8624	0.7075	1.0173	1.2697	50	
2004	98	0.0015	0.8044	0.6493	0.9595	1.3771	51	
2005	130	0.0010	0.5307	0.4434	0.6180	1.7335	111	

SCDNR red drum longline

				REL				
_	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
-	1998	965	0.0014	1.0116	0.8946	1.1285	1.3823	143
	1999	567	0.0007	0.4991	0.4328	0.5654	1.4247	115
	2000	821	0.0021	1.4429	1.2745	1.6113	1.3205	128
	2001	614	0.0023	1.6113	1.3191	1.9034	1.9189	112
	2002	624	0.0017	1.2129	1.0261	1.3996	1.7211	125
	2003	859	0.0018	1.2743	1.1051	1.4435	1.7311	170
	2004	209	0.0006	0.4506	0.3583	0.5429	2.0999	105
	2005	81	0.0007	0.4974	0.3608	0.6341	1.9230	49

חרו

Table 7. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during gillnet sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIA	L ERROR	DISTRIBUTION DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	431	579.1357	1.3437	/00111	DELIAM	L		
IONTH	426	513.9147	1.2064	10.2181	10.2181	-256.9574	65.22	<.0001
'EAR	424	553.2686	1.3049	2.8875	10.2101	-276.6343	25.87	0.0005
AREA	428	576.2552	1.3464	-0.2009		-288.1276	2.88	0.4104
	.20	01012002		0.2000		20011210	2.00	011101
IONTH	440	E01 7001	4 4074	40.0070	0.000	250 0502	10.04	0.0007
ΈΑR	419	501.7004	1.1974	10.8878	0.6698	-250.8502	12.21	0.0937
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	1901.6							
Schwartz's Bayesian criterion	1905.6							
-2) Res Log likelihood	1899.6							
	Type 3	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		<.0001	0.1119					
)F		4	7					
CHI SQUARE		42.26	11.67					
OSITIVE CATCHES-POISSON ER	ROR DIST	RIBUTION						
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	402	2378.2726	5.9161					
IONTH	397	1945.8153	4.9013	17.1532	17.1532	296.1646	432.46	<.0001
'EAR	395	1976.5580	5.0039	15.4189		280.7932	401.71	<.0001
REA	399	2193.0848	5.4965	7.0925		172.5298	185.19	<.0001
MONTH +								
/EAR	390	1689.6490	4.3324	26.7693	9.6161	424.2477	256.91	<.0001
AREA	394	1779.0992	4.5155	23.6744		379.5226	166.72	<.0001
MONTH + YEAR								
AREA	387	1502.7228	3.8830	34.3655	7.5962	517.7108	186.93	<.0001
FINAL MODEL: YEAR + MONTH +	AREA							
Akaike's information criterion	903.7							
Schwartz's Bayesian criterion	907.2							
-2) Res Log likelihood	901.7							
-		3 Test of Fixed	Effects					
	Type ?							
	Type 3			ARFA				
ignificance (Pr>Chi) of Type 3		MONTH	YEAR	AREA				
Significance (Pr>Chi) of Type 3 est of fixed effects for each factor		MONTH 0.0001	YEAR <.0001	0.0217				
ignificance (Pr>Chi) of Type 3		MONTH	YEAR					

Table 8. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during COASTSPAN longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	437	587.7281	1.3449					
IONTH	431	509.6574	1.1825	12.0752	12.0752	-254.8287	78.07	<.0001
EAR	430	553.6725	1.2876	4.2605		-276.8362	34.06	<.0001
REA	429	549.3712	1.2806	4.7810		-274.6856	Negative of Hessian	not positive definit
ONTH								
EAR	424	469.1808	1.1066	17.7188	5.6435	-234.5904	40.48	<.0001
INAL MODEL: MONTH + YEAR								
kaike's information criterion	1999.9							
chwartz's Bayesian criterion	2004.0							
-2) Res Log likelihood	1997.9							
	Туре	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		<.0001	<.0001					
)F		5	7					
HI SQUARE		55.11	32.20					
OSITIVE CATCHES-POISSON ERF							011100	
ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	264	690.4923	2.6155	00 55 44	00 55 44	400 4000	450.40	0004
EAR	257	534.0274	2.0779	20.5544	20.5544	430.4923	156.46	<.0001
IONTH	259	631.1729	2.4370	6.8247		381.9195	59.32	<.0001
REA	257	626.6943	2.4385	6.7673		384.1588	63.80	<.0001
′EAR +								
MONTH	252	462.4860	1.8353	29.8299	9.2755	466.263	71.54	<.0001
REA	250	495.9077	1.9836	24.1598		449.5521	38.12	<.0001
′EAR + MONTH +								
REA	245	430.2823	1.7563	32.8503	3.0205	482.3648	32.20	<.0001
FINAL MODEL: YEAR + MONTH + A	AREA							
Akaike's information criterion	671.5							
Schwartz's Bayesian criterion	675.0							
-2) Res Log likelihood	669.5							
-		3 Test of Fixed	Efforte					
	ivue.	D TESL OF FIXED		AREA				
Significance (Pr. Chi) of Time 2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VEAD						
• • • •		YEAR	MONTH					
Significance (Pr>Chi) of Type 3 est of fixed effects for each factor		<.0001	<.0001	0.0396				
• • • •								

Table 9. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR		DISTRIBUTION						
	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	946	1191.7106	1.2597					
IONTH	936	1119.3907	1.1959	5.0647	5.0647	-559.6953	72.32	<.0001
′EAR	939	1139.3255	1.2133	3.6834		-569.6628	52.39	<.0001
AREA	929	984.1673	1.0594	15.9006		-492.0837	Negative of Hessian	not positive definite
/ONTH +								
′EAR	929	1056.4814	1.1372	9.7245	4.6598	-528.2407	62.91	<.0001
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	4086.5							
Schwartz's Bayesian criterion	4091.3							
-2) Res Log likelihood	4084.5							
	Type 3	B Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each facto	or	<.0001	<.0001					
DF		9	7					
DF CHI SQUARE		9 35.33	7 56.99					
	RROR DIST DF	35.33 RIBUTION	56.99	%DIFF	DELTA%	L	CHISQ	PR>CHI
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR	DF	35.33 RIBUTION DEVIANCE	56.99 DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR	DF 655	35.33 RIBUTION DEVIANCE 5727.8012	56.99 DEVIANCE/DF 8.7447					
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH	DF 655 645	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588	56.99 DEVIANCE/DF 8.7447 6.8043	22.1894	DELTA% 22.1894	4934.6627	1339.04	<.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH /EAR	DF 655 645 648	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174	22.1894 11.7477		4934.6627 4628.6148	1339.04 726.95	<.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH /EAR	DF 655 645	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588	56.99 DEVIANCE/DF 8.7447 6.8043	22.1894		4934.6627	1339.04	<.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI	DF 655 645 648	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174	22.1894 11.7477		4934.6627 4628.6148	1339.04 726.95	<.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH (EAR AREA MONTH +	DF 655 645 648	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174	22.1894 11.7477		4934.6627 4628.6148	1339.04 726.95	<.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH YEAR AREA MONTH + AREA	DF 655 645 648 638	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545 5190.9991	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174 8.1364	22.1894 11.7477 6.9562	22.1894	4934.6627 4628.6148 4533.5425	1339.04 726.95 536.80	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH YEAR AREA	DF 655 645 648 638 628	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545 5190.9991 3974.6590	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174 8.1364 6.3291	22.1894 11.7477 6.9562 27.6236	22.1894	4934.6627 4628.6148 4533.5425 5141.7126	1339.04 726.95 536.80 414.10	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH (EAR AREA MONTH + AREA (EAR	DF 655 645 648 638 628	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545 5190.9991 3974.6590	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174 8.1364 6.3291	22.1894 11.7477 6.9562 27.6236	22.1894	4934.6627 4628.6148 4533.5425 5141.7126	1339.04 726.95 536.80 414.10	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON EI FACTOR NULL MONTH (EAR AREA MONTH + AREA (EAR MONTH + AREA +	DF 655 645 648 638 628 638 628 638	35.33 RIBUTION DEVIANCE 5727.8012 4388.7588 5000.8545 5190.9991 3974.6590 4049.5180	56.99 DEVIANCE/DF 8.7447 6.8043 7.7174 8.1364 6.3291 6.3472	22.1894 11.7477 6.9562 27.6236 27.4166	22.1894 5.4341	4934.6627 4628.6148 4533.5425 5141.7126 5104.2831	1339.04 726.95 536.80 414.10 339.24	<.0001 <.0001 <.0001 <.0001 <.0001

Schwartz's Bayesian criterion 1941.3

(-2) Res Log likelihood 1934.9

	Type 3 Test of Fixed Ef	fects	
Significance (Pr>Chi) of Type 3	MONTH	AREA	YEAR
test of fixed effects for each factor	<.0001	<.0001	<.0001
DF	10	17	7
CHI SQUARE	133.76	72.93	72.95

Table 10. Relative (index/mean) standardized abundance indices for the Atlantic sharpnose sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

gillnet

1	8		DEI				
			REL				
	YEAR	INDEX	INDEX	LCL	UCL	CV	N
	1998	21.9111	1.8051	0.4646	3.1455	0.3789	28
	1999	13.2995	1.0956	-0.6066	2.7979	0.7927	23
	2000	8.3603	0.6887	-0.0365	1.4139	0.5372	31
	2001	8.5581	0.7050	0.2314	1.1787	0.3428	108
	2002	6.5162	0.5368	0.1820	0.8917	0.3373	69
	2003	23.3457	1.9232	1.3114	2.5351	0.1623	89
	2004	6.4137	0.5284	-0.7844	1.8412	1.2677	16
	2005	8.7049	0.7171	0.2550	1.1792	0.3288	68

COASTSPAN longline

			REL				
-	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.1704	0.8722	-5.3492	7.0936	3.6393	15
	1999	0.2626	1.3440	-5.2761	7.9641	2.5130	18
	2000	0.3971	2.0328	-4.2586	8.3242	1.5790	74
	2001	0.3879	1.9859	-1.2006	5.1724	0.8187	72
	2002	0.0967	0.4952	-3.2003	4.1906	3.8077	47
	2003	0.0973	0.4981	-3.1786	4.1748	3.7658	50
	2004	0.0913	0.4671	-2.7049	3.6390	3.4647	51
	2005	0.0595	0.3047	-2.0840	2.6933	4.0002	111

			REL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.1570	0.9955	-0.1711	2.1622	0.5979	143
	1999	0.0905	0.5740	-0.4959	1.6439	0.9509	115
	2000	0.1471	0.9327	-0.6829	2.5483	0.8838	128
	2001	0.2340	1.4841	-0.5095	3.4776	0.6854	112
	2002	0.2267	1.4377	-0.8141	3.6894	0.7991	125
	2003	0.1976	1.2531	-0.4092	2.9154	0.6768	170
	2004	0.0689	0.4372	-1.4824	2.3568	2.2401	105
	2005	0.1397	0.8857	-3.3552	5.1266	2.4429	49

Table 11. Nominal and nominal relative (CPUE/mean) abundance indices for bonnethead sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

gillnet

				REL				
_	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	38	0.0853	0.5677	0.3269	0.8085	2.2443	28
	1999	53	0.1793	1.1937	0.9537	1.4337	0.9642	23
	2000	93	0.1207	0.8038	0.6846	0.9230	0.8255	31
	2001	243	0.1861	1.2396	1.0382	1.4410	1.6885	108
	2002	188	0.1460	0.9722	0.7555	1.1888	1.8511	69
	2003	251	0.1845	1.2283	0.8821	1.5745	2.6593	89
	2004	46	0.0987	0.6573	0.3529	0.9617	1.8525	16
	2005	295	0.2008	1.3374	1.1316	1.5433	1.2694	68

_ _ .

COASTSPAN longline

				REL				
_	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0	0.0000	0.0000				15
	1999	1	2.31E-05	0.1698	0.0000	0.3396	4.2426	18
	2000	6	0.0006	4.2315	0.2676	8.1954	8.0584	74
	2001	6	7.59E-05	0.5569	0.3038	0.8100	3.8570	72
	2002	1	1.42E-05	0.1041	0.0000	0.2081	6.8557	47
	2003	10	0.0001	0.9396	0.5908	1.2883	2.6247	50
	2004	15	0.0002	1.2316	0.7742	1.6889	2.6518	51
	2005	17	0.0001	0.7666	0.5029	1.0304	3.6243	111

	cu ul ulli	ionsinc					
			REL				
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
1998	0	0.0000	0.0000				143
1999	3	5.05E-06	0.4140	0.0669	0.7612	8.9906	115
2000	0	0.0000	0.0000				128
2001	0	0.0000	0.0000				112
2002	11	3.34E-05	2.7376	1.6887	3.7865	4.2836	125
2003	13	3.89E-05	3.1906	2.0834	4.2978	4.5245	170
2004	2	7.14E-06	0.5860	0.1711	1.0010	7.2560	105
2005	2	1.31E-05	1.0718	0.3151	1.8284	4.9423	49

Table 12. Results of the stepwise procedure for development of the catch rate model for the bonnethead sharks caught during gillnet sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

	FRROP							
PROPORTION POSITIVE-BINOMIAL FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	431	528.4628	1.2261	700111	DELINA	L	ornog	
AREA	428	502.6337	1.1744	4.2166	4.2166	-251.3168	25.83	<.0001
MONTH	426	498.6815	1.1706	4.5265	1.2100	-249.3408	29.78	<.0001
YEAR	424	506.2683	1.1940	2.6181		-253.1342	22.19	0.0024
	12.1	000.2000	1.1010	2.0101		200.1012	22.10	0.0021
AREA +								
MONTH	423	473.3782	1.1191	8.7269	4.5102	-236.6891	29.26	<.0001
YEAR	421	479.5469	1.1391	7.0957		-239.7734	23.09	0.0016
AREA + MONTH +								
YEAR	416	459.4335	1.1044	9.9258	1.1989	-229.7168	13.94	0.0522
FINAL MODEL: AREA + MONTH + Y	'EAR							
Akaike's information criterion	2022.2							
Schwartz's Bayesian criterion	2026.3							
(-2) Res Log likelihood	2020.2							
	Туре	3 Test of Fixed I						
Significance (Pr>Chi) of Type 3		AREA	MONTH	YEAR				
test of fixed effects for each factor		<.0001	0.0071	0.0868				
DF		3	5	7				
CHI SQUARE		21.40	15.93	12.45				
POSITIVE CATCHES-POISSON ERF								
FUSITIVE CATCHES-FUISSON ERI								
FACTOR	DE		DEVIANCE/DE	%DIFF		1	CHISO	PR\CHI
	DF 301	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	301	DEVIANCE 1167.0118	3.8771					
NULL AREA	301 298	DEVIANCE 1167.0118 986.9249	3.8771 3.3118	14.5805	DELTA% 14.5805	429.3361	180.09	<.0001
NULL AREA MONTH	301 298 296	DEVIANCE 1167.0118 986.9249 1004.3006	3.8771 3.3118 3.3929	14.5805 12.4887		429.3361 420.6482	180.09 162.71	<.0001 <.0001
NULL AREA	301 298	DEVIANCE 1167.0118 986.9249	3.8771 3.3118	14.5805		429.3361	180.09	<.0001
NULL AREA MONTH YEAR	301 298 296	DEVIANCE 1167.0118 986.9249 1004.3006	3.8771 3.3118 3.3929	14.5805 12.4887		429.3361 420.6482	180.09 162.71	<.0001 <.0001
NULL AREA MONTH YEAR AREA +	301 298 296 294	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474	3.8771 3.3118 3.3929 3.7703	14.5805 12.4887 2.7546	14.5805	429.3361 420.6482 368.5615	180.09 162.71 58.54	<.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH	301 298 296 294 293	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421	3.8771 3.3118 3.3929 3.7703 2.9653	14.5805 12.4887 2.7546 23.5176		429.3361 420.6482 368.5615 488.3774	180.09 162.71 58.54 118.08	<.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA +	301 298 296 294	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474	3.8771 3.3118 3.3929 3.7703	14.5805 12.4887 2.7546	14.5805	429.3361 420.6482 368.5615	180.09 162.71 58.54	<.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR	301 298 296 294 293	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421	3.8771 3.3118 3.3929 3.7703 2.9653	14.5805 12.4887 2.7546 23.5176	14.5805	429.3361 420.6482 368.5615 488.3774	180.09 162.71 58.54 118.08	<.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH +	301 298 296 294 293 293	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR	301 298 296 294 293	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421	3.8771 3.3118 3.3929 3.7703 2.9653	14.5805 12.4887 2.7546 23.5176	14.5805	429.3361 420.6482 368.5615 488.3774	180.09 162.71 58.54 118.08	<.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH +	301 298 296 294 293 291 286	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR	301 298 296 294 293 291 286	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y	301 298 296 294 293 291 286 7EAR	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion	301 298 296 294 293 291 286 7EAR 948.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion	301 298 296 294 293 291 286 YEAR 948.8 952.5	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690 842.537	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459	14.5805 12.4887 2.7546 23.5176 16.3498	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690 842.537	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459	14.5805 12.4887 2.7546 23.5176 16.3498 24.0180	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood Significance (Pr>Chi) of Type 3	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690 842.537 842.537 3 Test of Fixed I AREA	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459 2.9459	14.5805 12.4887 2.7546 23.5176 16.3498 24.0180 YEAR	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood Significance (Pr>Chi) of Type 3 test of fixed effects for each factor	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690 842.537 842.537 3 Test of Fixed I AREA <.0001	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459 2.9459 Effects MONTH 0.0003	14.5805 12.4887 2.7546 23.5176 16.3498 24.0180 YEAR 0.5359	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001
NULL AREA MONTH YEAR AREA + MONTH YEAR AREA + MONTH + YEAR FINAL MODEL: AREA + MONTH + Y Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood Significance (Pr>Chi) of Type 3 test of fixed effects for each factor DF	301 298 296 294 293 291 286 YEAR 948.8 952.5 946.8	DEVIANCE 1167.0118 986.9249 1004.3006 1108.474 868.8421 943.7690 842.537 3 Test of Fixed I AREA <.0001 3	3.8771 3.3118 3.3929 3.7703 2.9653 3.2432 2.9459 2.9459 Effects MONTH 0.0003 5	14.5805 12.4887 2.7546 23.5176 16.3498 24.0180 YEAR 0.5359 7	14.5805 8.9371	429.3361 420.6482 368.5615 488.3774 450.914	180.09 162.71 58.54 118.08 43.16	<.0001 <.0001 <.0001 <.0001 <.0001

Table 13. Results of the stepwise procedure for development of the catch rate model for bonnethead sharks caught during COASTSPAN longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

437 430 431 429	253.6588 242.3382 244.9109 248.6868	0.5805 0.5636 0.5682 0.5797	2.9113 2.1189 0.1378	2.9113	-121.1691 -122.4555 -124.3434	11.32 8.75 Negative of Hessian	0.1252 0.1883
431	244.9109	0.5682	2.1189	2.9113	-122.4555	8.75	0.1883
429	248.6868	0.5797	0.1378		-124.3434	Negative of Heasien	
						Negative of Hessian	not positive definit
2321.9							
2325.9							
2319.9							
Type 3	Test of Fixed	Effects					
	YEAR						
	0.3033						
	6						
	7.19						
32	21.4706	0.6710	1.0470	1.0470	-36.3239	2.94	0.5679
31	21.7499	0.7016	-3.4656		-36.4636	2.66	0.7521
30	22.4856	0.7495	-10.5294		-36.8314	1.92	0.9265
123.8							
125.2							
121.8							
Type 3	Test of Fixed	Effects					
	YEAR						
	0.0001						
	0.9981						
	0.9981						
	2325.9 2319.9 Type 3 COR DISTIN DF 36 32 31 30 123.8 125.2 121.8	2325.9 2319.9 Type 3 Test of Fixed YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE 36 24.4106 32 21.4706 31 21.7499 30 22.4856 123.8 125.2 121.8 Type 3 Test of Fixed	2325.9 2319.9 Type 3 Test of Fixed Effects YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE DEVIANCE/DF 36 24.4106 0.6781 32 21.4706 0.6710 31 21.7499 0.7016 30 22.4856 0.7495 123.8 125.2 121.8 Type 3 Test of Fixed Effects	2325.9 2319.9 Type 3 Test of Fixed Effects YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE DEVIANCE/DF %DIFF 36 24.4106 0.6781 32 21.4706 0.6710 1.0470 31 21.7499 0.7016 -3.4656 30 22.4856 0.7495 -10.5294 123.8 125.2 121.8 Type 3 Test of Fixed Effects	2325.9 2319.9 Type 3 Test of Fixed Effects YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE DEVIANCE/DF %DIFF DELTA% 36 24.4106 0.6781 32 21.4706 0.6710 1.0470 1.0470 31 21.7499 0.7016 -3.4656 30 22.4856 0.7495 -10.5294 123.8 125.2 121.8 Type 3 Test of Fixed Effects	2325.9 2319.9 Type 3 Test of Fixed Effects YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE DEVIANCE/DF %DIFF DELTA% L 36 24.4106 0.6781 32 21.4706 0.6710 1.0470 1.0470 -36.3239 31 21.7499 0.7016 -3.4656 -36.4636 30 22.4856 0.7495 -10.5294 -36.8314 123.8 125.2 121.8 Type 3 Test of Fixed Effects	2325.9 2319.9 Type 3 Test of Fixed Effects YEAR 0.3033 6 7.19 ROR DISTRIBUTION DF DEVIANCE DEVIANCE/DF %DIFF DELTA% L CHISQ 36 24.4106 0.6781 32 21.4706 0.6710 1.0470 1.0470 -36.3239 2.94 31 21.7499 0.7016 -3.4656 -36.4636 2.66 30 22.4856 0.7495 -10.5294 -36.8314 1.92 123.8 125.2 121.8 Type 3 Test of Fixed Effects

Table 14. Results of the stepwise procedure for development of the catch rate model for bonnethead sharks caught during SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	946	231.0553	0.2442					
YEAR	939	197.6539	0.2105	13.8002	13.8002	-98.8269	33.40	<.0001
AREA	929	171.6796	0.1848	24.3243		-85.8398	Negative of Hessian	not positive definite
MONTH	936	185.752	0.1985	18.7142		-92.876	Negative of Hessian	not positive definite
FINAL MODEL: YEAR								
Akaike's information criterion	3473.0							
Schwartz's Bayesian criterion	3477.4							
(-2) Res Log likelihood	3471.0							
	Type 3	Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		YEAR						
test of fixed effects for each factor		0.2310						
lest of fixed effects for each factor								
		4						
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF		5.60 RIBUTION	DEVIANCE/DE	%DIFF	DEI TA%	I	CHISO	PR>CHI
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR	DF	5.60 RIBUTION DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL	DF 24	5.60 RIBUTION DEVIANCE 9.4307	0.3929					
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA	DF 24 18	5.60 RIBUTION DEVIANCE 9.4307 5.2793	0.3929 0.2933	25.3500	DELTA% 25.3500	-25.3219	4.15	0.6562
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH	DF 24 18 20	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236	0.3929 0.2933 0.3362	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH	DF 24 18	5.60 RIBUTION DEVIANCE 9.4307 5.2793	0.3929 0.2933	25.3500		-25.3219	4.15	0.6562
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR	DF 24 18 20	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236	0.3929 0.2933 0.3362	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR	DF 24 18 20	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236	0.3929 0.2933 0.3362	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR	DF 24 18 20 20	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236	0.3929 0.2933 0.3362	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR Akaike's information criterion	DF 24 18 20 20 45.4	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236	0.3929 0.2933 0.3362	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood	DF 24 18 20 20 45.4 46.4 43.4	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236 6.8988 6.8988 8 Test of Fixed	0.3929 0.2933 0.3362 0.3449	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood	DF 24 18 20 20 45.4 46.4 43.4	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236 6.8988	0.3929 0.2933 0.3362 0.3449	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR Akaike's information criterion Schwartz's Bayesian criterion (-2) Res Log likelihood Significance (Pr>Chi) of Type 3	DF 24 18 20 20 45.4 46.4 43.4	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236 6.8988 6.8988 8 Test of Fixed	0.3929 0.2933 0.3362 0.3449	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080
DF CHI SQUARE POSITIVE CATCHES-POISSON ERF FACTOR NULL AREA MONTH YEAR FINAL MODEL: YEAR Akaike's information criterion Schwartz's Bayesian criterion	DF 24 18 20 20 45.4 46.4 43.4	5.60 RIBUTION DEVIANCE 9.4307 5.2793 6.7236 6.8988 6.8988 8 Test of Fixed YEAR	0.3929 0.2933 0.3362 0.3449	25.3500 14.4312		-25.3219 -26.0441	4.15 2.71	0.6562 0.6080

Table 15. Relative (index/mean) standardized abundance indices for bonnethead sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

gillnet

Sumer						
		REL				
YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
1998	5.1129	0.4019	-0.3266	1.1304	0.9248	28
1999	13.2331	1.0402	0.1106	1.9698	0.4559	23
2000	12.3695	0.9723	0.1836	1.7611	0.4139	31
2001	13.0919	1.0291	0.5528	1.5055	0.2362	108
2002	10.3156	0.8109	0.3533	1.2684	0.2879	69
2003	14.2988	1.1240	0.6048	1.6432	0.2357	89
2004	17.2291	1.3543	-0.5384	3.2470	0.7130	16
2005	16.1206	1.2672	0.7149	1.8195	0.2224	68

COASTSPAN longline

			NEL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998				•		15
	1999	0.0023	0.2816	-129.7470	130.3106	235.6186	18
	2000	0.0058	0.6995	-86.5948	87.9937	63.6753	74
	2001	0.0076	0.9299	-99.6766	101.5364	55.1975	72
	2002	0.0014	0.1725	-102.5230	102.8681	303.6872	47
	2003	0.0128	1.5552	-101.6650	104.7756	33.8639	50
	2004	0.0176	2.1398	-103.1590	107.4386	25.1068	51
	2005	0.0100	1.2216	-73.0978	75.5409	31.0407	111

		REL				
 YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
1998						143
1999	0.2162	0.2162	-100.2520	100.6841	237.1248	115
2000						128
2001						112
2002	1.7380	1.7380	-142.0810	145.5566	42.2187	125
2003	1.9086	1.9086	-131.5500	135.3674	35.6767	170
2004	0.4034	0.4034	-151.4140	152.2203	192.0291	105
2005	0.7339	0.7339	-202.9010	204.3687	141.5693	49

Table 16. Nominal and nominal relative (CPUE/mean) abundance indices for finetooth sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

gillnet

				REL				
_	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	35	0.1062	0.8597	0.4401	1.2794	2.5827	28
	1999	18	0.0490	0.3965	0.2621	0.5310	1.6257	23
	2000	44	0.0688	0.5570	0.3546	0.7595	2.0238	31
	2001	220	0.1667	1.3491	1.0938	1.6043	1.9660	108
	2002	203	0.3016	2.4408	1.5496	3.3321	3.0331	69
	2003	198	0.2031	1.6436	1.2434	2.0437	2.2967	89
	2004	14	0.0344	0.2783	0.1702	0.3863	1.5530	16
	2005	94	0.0587	0.4749	0.3971	0.5528	1.3519	68

_ _ .

COASTSPAN longline

CONDIC		Sinc						
	_	-	REL					
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν	
1998	0	0.0000	0.0000				15	
1999	0	0.0000	0.0000				18	
2000	65	0.0007	1.7285	1.2365	2.2206	2.4488	74	
2001	72	0.0015	3.4422	2.2845	4.5998	2.8537	72	
2002	31	0.0005	1.0411	0.7456	1.3367	1.9462	47	
2003	24	0.0004	0.8374	0.5004	1.1744	2.8460	50	
2004	18	0.0003	0.8033	0.5269	1.0797	2.4575	51	
2005	10	6.38E-05	0.1475	0.0961	0.1989	3.6714	111	

SCDNR red drum longline

				REL				
	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
_	1998	1	1.30E-06	0.0771	1.26E-17	0.1543	11.9583	143
	1999	14	1.69E-05	1.0065	0.6587	1.3542	3.7054	115
	2000	6	1.42E-05	0.8477	0.5022	1.1933	4.6119	128
	2001	8	2.94E-05	1.7524	1.0533	2.4514	4.2216	112
	2002	17	5.72E-05	3.4091	2.3560	4.4623	3.4538	125
	2003	5	1.26E-05	0.7495	0.3092	1.1899	7.6596	170
	2004	1	2.65E-06	0.1576	0.0000	0.3152	10.2470	105
	2005	0	0.0000	0.0000				49

חרו

Table 17. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during gillnet sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL	ERROR DIS	STRIBUTION						
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	431	595.5322	1.3817					
AREA	428	526.7597	1.2307	10.9286	10.9286	-263.3798	68.77	<.0001
MONTH	426	570.0731	1.3382	3.1483		-285.0366	25.46	0.0001
YEAR	424	584.2823	1.3780	0.2678		-292.1411	11.25	0.1281
AREA +								
MONTH	423	473.6771	1.1198	18.9549	8.0263	-236.8385	53.08	<.0001
/EAR	421	516.8823	1.2277	11.1457		-258.4411	9.88	0.1956
AREA + MONTH								
	446	460 0059	1 1 2 7 0	18.3687	0 5960	-234.6129	4.45	0.7266
/EAR	416	469.2258	1.1279	10.3007	-0.5862	-234.0129	4.45	0.7200
FINAL MODEL: AREA + MONTH + Y	EAR							
Akaike's information criterion	1907.2							
Schwartz's Bayesian criterion	1911.2							
(-2) Res Log likelihood	1905.2							
	Туре	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		AREA	MONTH	YEAR				
est of fixed effects for each factor		<.0001	<.0001	0.7367				
DF		2	4	7				
		-						
		65.64	27.74	4.37				
CHI SQUARE POSITIVE CATCHES-POISSON ERR		BUTION						
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR	DF	BUTION DEVIANCE	DEVIANCE/DF	4.37 %DIFF	DELTA%	L	CHISQ	PR>CHI
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL	DF 234	BUTION DEVIANCE 1107.4938	DEVIANCE/DF 4.7329	%DIFF				
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH	DF 234 230	BUTION DEVIANCE 1107.4938 999.9139	DEVIANCE/DF 4.7329 4.3475	%DIFF 8.1430	DELTA% 8.1430	116.6067	107.58	<.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH	DF 234	BUTION DEVIANCE 1107.4938	DEVIANCE/DF 4.7329	%DIFF				
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA	DF 234 230	BUTION DEVIANCE 1107.4938 999.9139	DEVIANCE/DF 4.7329 4.3475	%DIFF 8.1430		116.6067	107.58	<.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR	DF 234 230 232	BUTION DEVIANCE 1107.4938 999.9139 1008.5367	DEVIANCE/DF 4.7329 4.3475 4.3471	%DIFF 8.1430 8.1515		116.6067 112.2953	107.58 98.96	<.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH +	DF 234 230 232 227	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658	%DIFF 8.1430 8.1515 5.6435	8.1430	116.6067 112.2953 109.6965	107.58 98.96 93.76	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA /EAR MONTH + AREA	DF 234 230 232 227 228	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870	%DIFF 8.1430 8.1515 5.6435 22.0985		116.6067 112.2953 109.6965 196.2476	107.58 98.96 93.76 167.90	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA	DF 234 230 232 227	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658	%DIFF 8.1430 8.1515 5.6435	8.1430	116.6067 112.2953 109.6965	107.58 98.96 93.76	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA (EAR MONTH + AREA (EAR	DF 234 230 232 227 228	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870	%DIFF 8.1430 8.1515 5.6435 22.0985	8.1430	116.6067 112.2953 109.6965 196.2476	107.58 98.96 93.76 167.90	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA (EAR MONTH + AREA (EAR MONTH + AREA +	DF 234 230 232 227 228 228 223	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430	116.6067 112.2953 109.6965 196.2476	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR	DF 234 230 232 227 228 223 223 221	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870	%DIFF 8.1430 8.1515 5.6435 22.0985	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YI	DF 234 230 232 227 228 223 223 221 EAR	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YEAR	DF 234 230 232 227 228 223 221 EAR 908.0	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YI Akaike's information criterion Schwartz's Bayesian criterion	DF 234 230 232 227 228 223 221 EAR 908.0 911.4	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YEAR CARAINE'S information criterion Schwartz's Bayesian criterion	DF 234 230 232 227 228 223 221 EAR 908.0	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YI Akaike's information criterion Schwartz's Bayesian criterion	DF 234 230 232 227 228 223 221 EAR 908.0 911.4 906.0	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409 3.3047	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA //EAR MONTH + AREA + //EAR FINAL MODEL: MONTH + AREA + YI Akaike's information criterion Schwartz's Bayesian criterion -2) Res Log likelihood	DF 234 230 232 227 228 223 221 EAR 908.0 911.4 906.0	BUTION DEVIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268 730.3486	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409 3.3047	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA /EAR MONTH + AREA + /EAR FINAL MODEL: MONTH + AREA + YI Akaike's information criterion Schwartz's Bayesian criterion -2) Res Log likelihood Significance (Pr>Chi) of Type 3	DF 234 230 232 227 228 223 221 EAR 908.0 911.4 906.0	BUTION DE VIANCE 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268 730.3486 730.3486	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409 3.3047 Effects	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597 30.1760	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR NONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YE Akaike's information criterion Schwartz's Bayesian criterion -2) Res Log likelihood Significance (Pr>Chi) of Type 3 est of fixed effects for each factor	DF 234 230 232 227 228 223 221 EAR 908.0 911.4 906.0	BUTION <u>DEVIANCE</u> 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268 730.3486 3 Test of Fixed MONTH <.0001	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409 3.3047 Effects AREA 0.0022	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597 30.1760 30.1760	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001
CHI SQUARE POSITIVE CATCHES-POISSON ERR FACTOR NULL MONTH AREA YEAR MONTH + AREA YEAR MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YEAR FINAL MODEL: MONTH + AREA + YEAR	DF 234 230 232 227 228 223 221 EAR 908.0 911.4 906.0	BUTION <u>DEVIANCE</u> 1107.4938 999.9139 1008.5367 1013.7344 840.6321 834.2268 730.3486 730.3486 3 Test of Fixed MONTH	DEVIANCE/DF 4.7329 4.3475 4.3471 4.4658 3.6870 3.7409 3.3047 BEffects AREA	%DIFF 8.1430 8.1515 5.6435 22.0985 20.9597 30.1760	8.1430 13.9555	116.6067 112.2953 109.6965 196.2476 199.4503	107.58 98.96 93.76 167.90 165.69	<.0001 <.0001 <.0001 <.0001 <.0001

Table 18. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during COASTSPAN longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	437	447.6159	1.0243					
YEAR	430	408.1965	0.9493	7.3221	7.3221	-204.0982	39.42	<.0001
MONTH	431	427.7820	0.9925	3.1046		-213.8910	19.83	0.0030
AREA	429	427.1919	0.9958	2.7824		-213.5959	Negative of Hessian r	ot positive definite
YEAR +								
MONTH	424	390.3429	0.9206	10.1240	2.8019	-195.1715	Negative of Hessian r	ot positive definite
FINAL MODEL: YEAR								
Akaike's information criterion	1918.0							
Schwartz's Bayesian criterion	1922.0							
(-2) Res Log likelihood	1916.0							
	Туре	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		YEAR						
test of fixed effects for each factor		0.0030						
DF		5						
CHI SQUARE		17.98						

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION

FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	90	221.2603	2.4584					
MONTH	86	159.1598	1.8507	24.7193	24.7193	-30.8096	62.10	<.0001
YEAR	85	177.2727	2.0856	15.1643		-39.8660	43.99	<.0001
AREA	87	202.2770	2.3250	5.4263		-52.3681	18.98	0.0003
MONTH +								
YEAR	81	141.7804	1.7504	28.7992	4.0799	-22.1199	17.38	0.0038
AREA	83	151.4218	1.8244	25.7891		-26.9405	7.74	0.0517

FINAL MODEL: MONTH + YEAR

Significance (Pr>Chi) of Type 3	MONTH	YE
	Type 3 Test of Fixed E	ffects
(-2) Res Log likelihood	263.4	
Schwartz's Bayesian criterion	267.8	
Akaike's information criterion	265.4	

	Type 5 Test of Fixed E	necis
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	0.0093	0.2827
DF	4	5
CHI SQUARE	13.45	6.25

Table 19. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	946	349.9378	0.3699					
YEAR	939	317.9995	0.3387	8.4347	8.4347	-158.9997	31.94	<.0001
MONTH	936	299.8134	0.3203	13.4090		-149.9067	Negative of Hessian n	ot positive definite
AREA	929	295.3657	0.3179	14.0579		-147.6828	Negative of Hessian n	ot positive definite
FINAL MODEL: YE	AR							
Akaike's informa	5681.7							
Schwartz's Baye	5686.5							
(-2) Res Log lik∉	5679.7							
	Туре 3	Test of Fixed	Effects					
Significance (Pr>C	Chi) of Type 3	YEAR						
	s for each fact	0.0045						
test of fixed effect	S IOI Cacil lact							
test of fixed effect DF	S IOI Cacil lact	6						
DF		6 18.82	UTION					
DF CHI SQUARE POSITIVE CATCHI		6 18.82	UTION DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
DF CHI SQUARE	ES-POISSON EF	6 18.82 RROR DISTRIB		%DIFF	DELTA%	L	CHISQ	PR>CHI
DF CHI SQUARE POSITIVE CATCHI FACTOR NULL	ES-POISSON EF DF	6 18.82 RROR DISTRIB DEVIANCE	DEVIANCE/DF	%DIFF 34.1567	DELTA% 34.1567	L -43.6559	CHISQ 7.50	PR>CHI 0.1863
DF CHI SQUARE POSITIVE CATCHI FACTOR	ES-POISSON EF DF 42	6 18.82 RROR DISTRIB DEVIANCE 17.8533	DEVIANCE/DF 0.4251					

FINAL MODEL: YEAR

Akaike's	informa	79.3

Schwartz's Baye	80.9
-----------------	------

(-2) Res Log like 77.3

Type 3 Test of Fixed Effects

Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each fact	0.0493
DF	6
CHI SQUARE	12.63

Table 20. Relative (index/mean) standardized abundance indices for finetooth sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

gillnet

Sumer						
		REL				
YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
1998	6.3027	0.7656	-0.5106	2.0419	0.8505	28
1999	4.8784	0.5926	-0.8791	2.0644	1.2670	23
2000	6.4227	0.7802	-0.4169	1.9774	0.7829	31
2001	13.0242	1.5822	0.7026	2.4617	0.2836	108
2002	12.7509	1.5490	0.5060	2.5919	0.3435	69
2003	13.7536	1.6708	0.6490	2.6925	0.3120	89
2004	2.8640	0.3479	-1.0118	1.7076	1.9939	16
2005	5.8580	0.7116	0.0102	1.4131	0.5029	68

COASTSPAN longline

		NEL				
YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
1998						15
1999						18
2000	0.0737	1.4119	-15.1701	17.9939	5.9920	74
2001	0.0901	1.7281	-14.0979	17.5542	4.6724	72
2002	0.0560	1.0743	-16.7551	18.9036	8.4678	47
2003	0.0471	0.9029	-19.8877	21.6935	11.7478	50
2004	0.0389	0.7460	-17.2009	18.6930	12.2737	51
2005	0.0071	0.1368	-9.6559	9.9294	36.5340	111

			KEL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.0001	0.0775	-52.6116	52.7666	346.8456	143
	1999	0.0017	1.0088	-54.6868	56.7044	28.1674	115
	2000	0.0014	0.8251	-68.6478	70.2980	42.9575	128
	2001	0.0021	1.2346	-71.8853	74.3546	30.2161	112
	2002	0.0051	3.0436	-78.7224	84.8096	13.7065	125
	2003	0.0011	0.6520	-71.3102	72.6141	56.3160	170
	2004	0.0003	0.1583	-75.1019	75.4186	242.5173	105
	2005	•					49

Table 21. Nominal and nominal relative (CPUE/mean) abundance indices for blacknose sharks caught by SCDNR red drum longline in South Carolina's nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

	cu ui uiii	Supunc					
		-	REL				
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
1998	75	0.0001	0.5213	0.4341	0.6086	2.0017	0.5213
1999	50	0.0001	0.2942	0.2219	0.3665	2.6343	0.2942
2000	148	0.0004	1.6151	1.2972	1.9329	2.2264	1.6151
2001	43	0.0002	0.7885	0.4798	1.0972	4.1436	0.7885
2002	99	0.0003	1.3326	1.0446	1.6206	2.4164	1.3326
2003	122	0.0003	1.1499	0.9647	1.3351	2.1001	1.1499
2004	41	0.0001	0.5940	0.4553	0.7328	2.3937	0.5940
2005	39	0.0004	1.7044	1.0260	2.3828	2.7863	1.7044

Table 22. Results of the stepwise procedure for development of the catch rate model for blacknose sharks caught during SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIA	L ERROR	DISTRIBUTION						
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	946	1101.3151	1.1642					
ΈAR	939	1081.3917	1.1516	1.0823	1.0823	-540.6959	19.92	0.0057
MONTH	936	962.7825	1.0286	11.6475		-481.3913	Negative of Hessian	
AREA	929	1018.9379	1.0968	5.7894		-509.4689	Negative of Hessian	not positive definite
FINAL MODEL: YEAR								
Akaike's information criterion	4274.0							
Schwartz's Bayesian criterion	4278.9							
-2) Res Log likelihood	4272.0							
	Type 3	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		YEAR						
est of fixed effects for each factor		0.0095						
DF		7						
		40.00						
CHI SQUARE POSITIVE CATCHES-POISSON ER		18.60 RIBUTION						
POSITIVE CATCHES-POISSON ER FACTOR	DF	RIBUTION DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
POSITIVE CATCHES-POISSON ER FACTOR NULL	DF 253	RIBUTION DEVIANCE 562.3976	2.2229					
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH	DF 253 245	RIBUTION DEVIANCE 562.3976 406.3131	2.2229 1.6584	25.3948	DELTA% 25.3948	-59.4691	156.08	<.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH YEAR	DF 253 245 246	RIBUTION DEVIANCE 562.3976 406.3131 416.4655	2.2229 1.6584 1.6929	25.3948 23.8427		-59.4691 -64.5454	156.08 145.93	<.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH /EAR	DF 253 245	RIBUTION DEVIANCE 562.3976 406.3131	2.2229 1.6584	25.3948		-59.4691	156.08	<.0001
POSITIVE CATCHES-POISSON ER FACTOR JULL MONTH (EAR AREA	DF 253 245 246	RIBUTION DEVIANCE 562.3976 406.3131 416.4655	2.2229 1.6584 1.6929	25.3948 23.8427		-59.4691 -64.5454	156.08 145.93	<.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH (EAR AREA MONTH +	DF 253 245 246	RIBUTION DEVIANCE 562.3976 406.3131 416.4655	2.2229 1.6584 1.6929	25.3948 23.8427		-59.4691 -64.5454	156.08 145.93	<.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH (EAR AREA MONTH + (EAR	DF 253 245 246 241	RIBUTION DEVIANCE 562.3976 406.3131 416.4655 494.7043	2.2229 1.6584 1.6929 2.0527	25.3948 23.8427 7.6567	25.3948	-59.4691 -64.5454 -103.6647	156.08 145.93 67.69	<.0001 <.0001 <.0001
	DF 253 245 246 241 238	RIBUTION DEVIANCE 562.3976 406.3131 416.4655 494.7043 331.6626	2.2229 1.6584 1.6929 2.0527 1.3935	25.3948 23.8427 7.6567 37.3116	25.3948	-59.4691 -64.5454 -103.6647 -22.1439	156.08 145.93 67.69 74.65	<.0001 <.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR JULL MONTH FEAR JREA MONTH + FEAR JREA	DF 253 245 246 241 238	RIBUTION DEVIANCE 562.3976 406.3131 416.4655 494.7043 331.6626	2.2229 1.6584 1.6929 2.0527 1.3935	25.3948 23.8427 7.6567 37.3116	25.3948	-59.4691 -64.5454 -103.6647 -22.1439	156.08 145.93 67.69 74.65	<.0001 <.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR NULL MONTH YEAR AREA MONTH + YEAR AREA	DF 253 245 246 241 238 233 226	RIBUTION DEVIANCE 562.3976 406.3131 416.4655 494.7043 331.6626 354.7870	2.2229 1.6584 1.6929 2.0527 1.3935 1.5227	25.3948 23.8427 7.6567 37.3116 31.4994	25.3948 11.9169	-59.4691 -64.5454 -103.6647 -22.1439 -33.7061	156.08 145.93 67.69 74.65 51.53	<.0001 <.0001 <.0001 <.0001 <.0001
POSITIVE CATCHES-POISSON ER FACTOR JULL MONTH FEAR MONTH + FEAR MONTH + YEAR + MONTH + YEAR + MREA	DF 253 245 246 241 238 233 226	RIBUTION DEVIANCE 562.3976 406.3131 416.4655 494.7043 331.6626 354.7870	2.2229 1.6584 1.6929 2.0527 1.3935 1.5227	25.3948 23.8427 7.6567 37.3116 31.4994	25.3948 11.9169	-59.4691 -64.5454 -103.6647 -22.1439 -33.7061	156.08 145.93 67.69 74.65 51.53	<.0001 <.0001 <.0001 <.0001 <.0001

(-2) Res Log likelihood 627.4 Type 3 Test of Fixed Effects

Significance (Pr>Chi) of Type 3	MONTH	YEAR	AREA
test of fixed effects for each factor	<.0001	<.0001	0.0016
DF	8	7	12
CHI SQUARE	64.94	49.90	31.66

Table 23. Relative (index/mean) standardized abundance indices for blacknose sharks caught during SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

			REL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.0155	0.6906	-3.3926	4.7737	3.0166	143
	1999	0.0077	0.3431	-3.3906	4.0769	5.5520	115
	2000	0.0334	1.4873	-3.7690	6.7436	1.8031	128
	2001	0.0162	0.7208	-5.3579	6.7994	4.3029	112
	2002	0.0347	1.5446	-4.3956	7.4847	1.9622	125
	2003	0.0226	1.0086	-3.2143	5.2316	2.1361	170
	2004	0.0152	0.6771	-4.9448	6.2989	4.2364	105
	2005	0.0343	1.5280	-9.2465	12.3024	3.5977	49

A

Figure 4. Length frequencies for finetooth sharks caught during A) gillnet, B) COASTPAN longline and C) SCDNR red drum longline sets. Note that scales differ.

B

Figure 5. Length frequency for blacknose sharks caught during SCDNR red drum longline sets.

Figure 6. Relative (index/mean) indices of abundance by year for the small coastal shark complex CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

Figure 7. Relative (index/mean) indices of abundance by year for Atlantic sharpnose shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

Figure 8. Relative (index/mean) indices of abundance by year for bonnethead shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

Figure 9. Relative (index/mean) indices of abundance by year for the finetooth shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

С

Figure 10. Relative (index/mean) indices of abundance by year for blacknose shark CPUE caught during the SCDNR red drum survey

Addendum to SEDAR 13-DW-30, by Camilla T. McCandless

After initial review of this document it was requested to pull out the young-of-the-year from the species/gear combinations that were recommended for base indices in the age structured analyses. There was one species recommended as a base index for the age structured model and contained young-of-the-year, Atlantic sharpnose sharks. The results are presented here.

Table 1. Nominal and nominal relative (CPUE/mean) abundance indices for Atlantic sharpnose sharks minus young-of-the-year caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed for the nominal relative abundance indices.

8			REL				
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν
1998	39	1.3929	0.8591	0.5493	1.1688	1.9079	28
1999	30	1.3044	0.8045	0.6014	1.0076	1.2108	23
2000	54	1.6875	1.0408	0.7760	1.3056	1.4393	31
2001	99	0.9167	0.5654	0.4497	0.6810	2.1257	108
2002	104	1.5073	0.9296	0.7981	1.0611	1.1749	69
2003	376	4.2247	2.6057	2.2073	3.0040	1.4423	89
2004	7	0.4375	0.2698	0.1109	0.4288	2.3561	16
2005	102	1.5000	0.9252	0.7851	1.0652	1.2485	68

SCDNR red drum longline

gillnet

				REL					
_	YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	Ν	
	1998	959	6.7063	1.4482	1.2931	1.6033	1.2805	143	
	1999	567	4.9304	1.0647	0.9305	1.1989	1.3517	115	
	2000	820	6.4063	1.3834	1.2192	1.5476	1.3429	128	
	2001	607	5.4196	1.1704	1.0242	1.3165	1.3214	112	
	2002	624	4.9920	1.0780	0.9076	1.2484	1.7669	125	
	2003	846	4.9765	1.0747	0.9264	1.2229	1.7988	170	
	2004	206	1.9619	0.4237	0.3223	0.5251	2.4526	105	
	2005	81	1.6531	0.3570	0.2676	0.4464	1.7531	49	

_ _ .

Table 2. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks minus young-of-the-year caught during gillnet sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL	ERROR	DISTRIBUTION						
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
NULL	432	594.2446	1.3756					
MONTH	427	546.6858	1.2803	6.9279	6.9279	-273.3429	47.56	<.0001
YEAR	425	569.4837	1.3400	2.5880		-284.7418	24.76	0.0008
AREA	429	591.4079	1.3464	2.1227		-288.1276	2.88	0.4104
MONTH								
YEAR	420	533.0157	1.2691	7.7421	0.8142	-266.5079	13.67	0.0574
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	1868.3							
Schwartz's Bayesian criterion	1872.4							
(-2) Res Log likelihood	1866.3							
	Туре	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		<.0001	0.0697					
DF		4	7					
CHI SQUARE		28.14	13.10					
POSITIVE CATCHES-POISSON ERF								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
JULL	241	823.6637	3.4177					
/EAR	234	671.3501	2.8690	16.0547	16.0547	210.6534	152.31	<.0001
MONTH	236	728.4460	3.0866	9.6878		182.1054	95.22	<.0001
AREA	238	774.2521	3.2532	4.8132		159.2024	49.41	<.0001
YEAR +								
MONTH	229	615.5659	2.6881	21.3477	5.2930	238.5455	55.78	<.0001
AREA	231	642.3149	2.7806	18.6412		225.1710	29.04	<.0001
YEAR + MONTH								
AREA	226	586.7834	2.5964	24.0308	2.6831	252.9367	28.78	<.0001
FINAL MODEL: YEAR + MONTH + A	REA							
Akaike's information criterion	774.1							
Schwartz's Bayesian criterion	777.5							
	777.5 772.1							
Schwartz's Bayesian criterion	772.1	3 Test of Fixed	Effects					
Schwartz's Bayesian criterion -2) Res Log likelihood	772.1	3 Test of Fixed YEAR	Effects MONTH	AREA				
Schwartz's Bayesian criterion -2) Res Log likelihood Significance (Pr>Chi) of Type 3	772.1	YEAR	MONTH					
Schwartz's Bayesian criterion -2) Res Log likelihood Significance (Pr>Chi) of Type 3 est of fixed effects for each factor	772.1	YEAR 0.0003	MONTH 0.0378	0.0593				
Schwartz's Bayesian criterion	772.1	YEAR	MONTH					

Table 3. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks minus young-of-the-year caught during SCDNR red drum longline sets. %DIF is the percent difference in deviance/DF between each model and the null model. Delta% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL								
ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
IULL	946	1198.9847	1.2674					
/ONTH	936	1129.7168	1.2070	4.7657	4.7657	-564.8584	69.27	<.0001
/EAR	939	1148.6179	1.2232	3.4875		-574.3089	50.37	<.0001
AREA	929	980.4170	1.0553	16.7350		-490.2085	Negative of Hessian	not positive definite
/ONTH +								
/EAR	929	1070.2545	1.1521	9.0974	4.3317	-535.1273	59.46	<.0001
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	4068.5							
Schwartz's Bayesian criterion	4073.3							
-2) Res Log likelihood	4066.5							
	Туре	3 Test of Fixed	Effects					
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
est of fixed effects for each factor		<.0001	<.0001					
DF		9	7					
CHI SQUARE		33.97	53.89					
POSITIVE CATCHES-POISSON ERF							011100	
ACTOR	DF	DEVIANCE	DEVIANCE/DF	%DIFF	DELTA%	L	CHISQ	PR>CHI
JULL	632	5458.4343	8.6368					
IONTH	622	4128.6885	6.6378	23.1451	23.1451	4998.7115	1329.79	<.0001
′EAR	625	4704.3983	7.5270	12.8497		4710.8566	754.08	<.0001
AREA	615	4907.1689	7.9791	7.6151		4609.4713	551.31	<.0001
MONTH +								
ÆAR	615	3776.8118	6.1412	28.8950	5.7498	5174.6498	351.88	<.0001
REA	605	3776.5754	6.2423	27.7244		5174.7680	352.11	<.0001
/ONTH + YEAR +								
AREA	598	3246.7372	5.4293	37.1376	8.2426	5439.7681	530.07	<.0001
INAL MODEL: MONTH + YEAR + A	AREA							
Akaike's information criterion	1901.6							
Schwartz's Bayesian criterion	1906.0							
-	1900.0							
(-2) Res Log likelihood	1899.6							
	Туре	3 Test of Fixed						
Significance (Pr>Chi) of Type 3		MONTH	YEAR	AREA				
est of fixed effects for each factor		<.0001	<.0001	<.0001				
DF		10	7	17				

Table 4. Relative (index/mean) standardized abundance indices for the Atlantic sharpnose sharks minus young-of-the-year caught during COASTSPAN gillnet and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and N = the number of sets observed.

COASTSPAN gillnet

		REL				
YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
1998	8.2803	1.1110	-0.0961	2.3180	0.5543	28
1999	9.9234	1.3314	-0.5053	3.1682	0.7038	23
2000	5.8923	0.7906	-0.1284	1.7096	0.5931	31
2001	6.1397	0.8238	0.2383	1.4092	0.3626	108
2002	5.1817	0.6952	0.2270	1.1635	0.3436	69
2003	14.6214	1.9617	1.2485	2.6749	0.1855	89
2004	3.5696	0.4789	-1.0160	1.9739	1.5926	16
2005	6.0177	0.8074	0.2419	1.3729	0.3573	68

			REL				
_	YEAR	INDEX	INDEX	LCL	UCL	CV	Ν
	1998	0.1544	0.9828	-0.4567	2.4224	0.7473	143
	1999	0.0901	0.5732	-0.7414	1.8879	1.1701	115
	2000	0.1475	0.9389	-1.0305	2.9083	1.0702	128
	2001	0.2300	1.4635	-1.0110	3.9380	0.8627	112
	2002	0.2265	1.4415	-1.2908	4.1739	0.9670	125
	2003	0.1953	1.2430	-0.7700	3.2561	0.8262	170
	2004	0.0753	0.4794	-2.0037	2.9626	2.6425	105
	2005	0.1379	0.8775	-4.2845	6.0396	3.0013	49

Figure 1. Relative (index/mean) indices of abundance by year for Atlantic sharpnose shark minus young-of-the-year CPUE for (A) gillnet data and (C) SCDNR red drum longline data

B

