SMALL COASTAL SHARK 2007 SEDAR DATA WORKSHOP DOCUMENT

Standardized catch rates of small coastal sharks from the South Carolina COASTSPAN and $S C D N R$ red drum surveys

Camilla T. McCandless
NOAA/NMFS/NEFSC
Apex Predators Investigation
28 Tarzwell Drive
Narragansett, RI 02882
Glenn F. Ulrich
Carrie Hendrix
Bryan Frazier
South Carolina Department of Natural Resources
Marine Resources Division
217 Ft. Johnson Rd
Charleston, SC 29412
cami.mccandless@noaa.gov
ulrichg@dnr.sc.gov
hendrixc@dnr.sc.gov
frazierbr@dnr.sc.gov

January, 2007
Workshop Draft not to be cited without permission of authors

Summary

In an effort to examine the use of South Carolina's estuarine waters as nursery areas for coastal shark species the South Carolina Department of Natural Resources SCDNR) Marine Resources Division, in collaboration with the National Marine Fisheries Service's (NMFS) Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) Survey began sampling for sharks using longline and gillnet methods in several estuaries within South Carolina. In addition to the estuarine areas sampled specifically for sharks, the SCDNR also samples the shark bycatch from a long-term longline survey designed to monitor adult red drum Sciaenops ocellatus in the coastal waters of South Carolina. Data from these surveys were used to look at the trends in small coastal shark abundance in South Carolina's estuarine and nearshore waters from 1998 to 2005. Catch per unit effort (CPUE) in number of sharks per hook hour for longline sets and in number of sharks per hour for gillnet sets were examined from March through December. The CPUE was standardized using a modified two-step approach originally proposed by Lo et al (1992) that models the zero catch separately from the positive catch.

Methods

Sampling Gear and Data Collection

COASTSPAN estuarine sampling locations were selected in the lower reaches of estuaries in depths which would facilitate the deployment and retrieval of gillnets and hand deployed longlines (i.e. current velocity, tidal range, vessel traffic). All estuarine sampling occurred inside of inlets and sampling locations varied with regard to distance from nearshore waters. Estuarine sampling was conducted primarily from April through October with the majority of the effort occurring between May and September. Nearshore sampling stations were those previously selected for adult red drum sampling. Nearshore sampling occurred from immediately outside of the surf zone to 8 km offshore with depths ranging from $3-15 \mathrm{~m}$. These sites were primarily live-bottom areas with low relief, consisting of rock or marl outcrops that were encrusted with sessile invertebrates such as sponges, gorgonians and bryozoans. Nearshore sampling occurred throughout the year with the exception of February; however, nearshore sampling was most intense from September through mid-December (Table 1). The locations of the fixed estuarine and nearshore sampling areas are shown in Figure 1.

The COASTSPAN gillnet used in this study was 231 m long and 3 m deep and was constructed of \#177 monofilament twine with a stretched mesh of 10.3 cm . The net was set and inspected for catch at approximately 20-minute intervals to reduce mortality. The COASTSPAN longline gear consisted of 305 m of 0.64 cm braided nylon mainline which supported the use of 50 gangions. Each gangion consisted of a 0.5 m 91 kg test monofilament leader, size120 stainless steel longline snap, 4/0 swivel and a 12/0 circle hook. Prior to the 2000 sampling year the COASTSPAN longline was allowed to soak for 45-60 minutes and then retrieved. After retrieval the gear was either reset or moved to a new location, depending on catch. High bait loss was noted on most sets and therefore the sampling strategy was modified in 2000 and the handline was under run at 15-20 minute intervals. Red drum longline gear consisted of a 272 kg test monofilament mainline that was 1829 m in length and had 30.5 m buoy lines attached at each end. The mainline was equipped with stop sleeves at 30.5 m intervals to prevent gangions from sliding together when a large fish was captured. The gangions were the same as those used on the COASTSPAN longline with the exception that $14 / 0$ and $15 / 0$ circle hooks were employed. A full set consisted of 120 hooks, although conditions in certain sampling areas dictated that 914 m of mainline and 60 gangions be used. Soak times for red drum longline sets were limited to 45 minutes unless conditions or events dictated otherwise.

Station location, water temperature, salinity, and time of day were recorded for each set for all gear types. The sex, weight, fork length, total length, and umbilical scar condition of all sharks were recorded. Umbilical scar condition was recorded in six categories: "umbilical remains," "fresh open," "partially healed," "mostly healed," "well healed," and none. Sharks were then tagged with either a NMFS blue rototag or steel tipped dart tag (M-tag) and released.

Data Analysis

Catch per unit effort (CPUE) in number of sharks per hook hour for longline sets and in number of sharks per hour for gillnet sets were used to examine the relative abundance of small
coastal sharks in South Carolina’s estuarine and nearshore waters from 1998 to 2005. The CPUE was standardized using the Lo et al. (2002) method which models the proportion of positive sets separately from the positive catch. This analysis was done for the following dependent variables where the data was appropriate: the small coastal shark complex CPUE, Atlantic sharpnose shark CPUE, bonnethead shark CPUE, finetooth shark CPUE, and blacknose shark CPUE. After initial exploratory analysis, factors considered as potential influences on the CPUE for these analyses were year (1998-2005), month (March - December) and area (each of the estuaries, off beaches and nearshore stations) for all gear types.

The proportion of sets with positive CPUE values was modeled assuming a binomial distribution with a logit link function and the positive CPUE sets were modeled assuming a Poisson distribution with a log link function. Models were fit in a stepwise forward manner adding one potential factor at a time after initially running a null model with no factors included (Gonzáles-Ania et al. 2001, Carlson 2002). Each potential factor was ranked from greatest to least reduction in deviance per degree of freedom when compared to the null model. The factor resulting in the greatest reduction in deviance was then incorporated into the model providing the effect was significant at $\alpha=0.05$ based on a Chi-Square test, and the deviance per degree freedom was reduced by at least 1% from the less complex model. This process was continued until no additional factors met the criteria for incorporation into the final model. All models in the stepwise approach were fitted using the SAS GENMOD procedure (SAS Institute, Inc.). The final models were run through the SAS GLIMMIX macro to allow fitting of the generalized linear mixed models using the SAS MIXED procedure (Wolfinger, SAS Institute, Inc). The factor "year" was kept in all final models, regardless of its significance, to allow for calculation of indices. The standardized indices of abundance were based on the year effect least square means determined from the combined binomial and Poisson components.

Results

Small coastal shark complex

A total of 3208, 1276, and 5440 small coastal sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 SCDNR red drum longline sets, respectively from 1998 to 2005 (Table 1). The nominal and relative nominal CPUE by year for each time series are reported in Table 1.

The percentage of sets with zero small coastal shark catch was 6.7% for gillnet, 30.8% for COASTSPAN longline and 30.7% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a small coastal shark and the

Poisson model of positive small coastal shark catch sets for gillnet and both longline time series are detailed in Tables 2-4, respectively. The final binomial model for the gillnet series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the gillnet time series was "positive small coastal shark sets = month + year". The final binomial model for the COASTSPAN longline series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the COASTSPAN longline time series was "positive small coastal shark sets = year + area + month". The final binomial model for the red drum longline series was "proportion positive small coastal shark sets = month + year" and the final Poisson model for the red drum longline time series was "positive small coastal shark sets = month + area + year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for small coastal sharks for the gillnet and both longline series are reported in Table 5 and are illustrated in Figure 6.

Atlantic sharpnose sharks

A total of 1171, 998, and 4740 Atlantic sharpnose sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 SCDNR red drum longline sets, respectively from 1998 to 2005 (Table 6). Of these Atlantic sharpnose sharks, 1166, 996, and 4707 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These Atlantic sharpnose sharks ranged in size from 20.4 to 90.3 , 23.0 to 92.1 , and 21.9 to 103.0 cm fork length for gillnet COASTSPAN longline and SCDNR longline surveys, respectively (Figure 2). The nominal and relative nominal CPUE by year for each time series are reported in Table 6.

The percentage of sets with zero Atlantic sharpnose shark catch was 39.4% for gillnet, 39.5\% for COASTSPAN longline and 32.3\% for red drum longline sets. The stepwise construction of the binomial model of the probability of catching an Atlantic sharpnose shark and the Poisson model of positive Atlantic sharpnose shark catch sets for gillnet and both longline time series are detailed in Tables 7-9, respectively. The final binomial model for the gillnet series was "proportion positive Atlantic sharpnose shark sets = month + year" and the final Poisson model for the gillnet time series was "positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the COASTSPAN longline series was "proportion positive Atlantic sharpnose shark sets = month + year" and the final Poisson model for the COASTSPAN longline time series was "positive Atlantic sharpnose shark sets = year + month + area". The final binomial model for the red drum longline series was "proportion positive Atlantic sharpnose shark sets $=$ month + year" and the final Poisson model for the red drum longline time series was "positive Atlantic sharpnose shark sets = month + area + year". The
resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for Atlantic sharpnose sharks for the gillnet and both longline series are reported in Table 10 and are illustrated in Figure 7.

Bonnethead sharks

A total of 1207, 56, and 31 bonnethead sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 11). Of these bonnethead sharks, 1210, 56, and 31 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These bonnethead sharks ranged in size from 37.1 to $107.4,41.5$ to 99.6 , and 64.1 to 100.0 cm fork length for gillnet COASTSPAN longline and SCDNR longline surveys, respectively (Figure 3). The nominal and relative nominal CPUE by year for each time series are reported in Table 11.

The percentage of sets with zero bonnethead shark catch was 30.3% for gillnet, 91.6% for COASTSPAN longline and 97.4% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a bonnethead shark and the Poisson model of positive bonnethead shark catch sets for gillnet and both longline time series are detailed in Tables 12-14, respectively. The final binomial model for the gillnet series was "proportion positive bonnethead shark sets $=$ area + month + year" and the final Poisson model for the gillnet time series was "positive bonnethead shark sets = area + month + year". The final binomial model for the COASTSPAN longline series was "proportion positive bonnethead shark sets = year" and the final Poisson model for the COASTSPAN longline time series was "positive bonnethead shark sets = year". The final binomial model for the red drum longline series was "proportion positive bonnethead shark sets = year" and the final Poisson model for the red drum longline time series was "positive bonnethead shark sets = year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for bonnethead sharks for the gillnet and both longline series are reported in Table 15 and are illustrated in Figure 8.

Finetooth sharks

A total of 826, 220, and 52 finetooth sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 16). Of these finetooth sharks, 829, 218, and 49 were measured during gillnet, COASTSPAN longline and SCDNR red drum surveys, respectively. These finetooth sharks ranged in size from 34.7 to 150.0 , 42.0 to 98.7 , and 50.6 to 127.0 cm fork length for gillnet

COASTSPAN longline and SCDNR longline surveys, respectively (Figure 4). The nominal and relative nominal CPUE by year for each time series are reported in Table 16.

The percentage of sets with zero finetooth shark catch was 45.6% for gillnet, 79.2% for COASTSPAN longline and 95.5% for red drum longline sets. The stepwise construction of the binomial model of the probability of catching a finetooth shark and the Poisson model of positive bonnethead shark catch sets for gillnet and both longline time series are detailed in Tables 17-19, respectively. The final binomial model for the gillnet series was "proportion positive finetooth shark sets $=$ area + month + year" and the final Poisson model for the gillnet time series was "positive finetooth shark sets $=$ month + area + year". The final binomial model for the COASTSPAN longline series was "proportion positive finetooth shark sets = year" and the final Poisson model for the COASTSPAN longline time series was "positive finetooth shark sets = month + year". The final binomial model for the red drum longline series was "proportion positive finetooth shark sets = year" and the final Poisson model for the red drum longline time series was "positive finetooth shark sets = year". The resulting relative indices of abundance based on the standardized year effects obtained from the Lo et al. method for finetooth sharks for the gillnet and both longline series are reported in Table 20 and are illustrated in Figure 9.

Blacknose sharks

A total of 4, 2, and 617 blacknose sharks were caught during 432 gillnet sets, 438 COASTSPAN longline sets, and 947 red drum longline sets, respectively from 1998 to 2005 (Table 21). The blacknose sharks caught during the gillnet (96.5, 101.0, 102.0, and 113.0 cm fork length) and COASTSPAN longline (102.0 and 108.0 cm fork length) were included in the small coastal shark complex analyses, but were not analyzed separately. The measured blacknose sharks (595) caught during the red drum longline survey ranged in size from 48.1 to 117.0 cm fork length (Figure 5). The nominal and relative nominal CPUE by year for blacknose sharks from the red drum longline time series are reported in Table 21.

The percentage of sets with zero blacknose shark catch was 73.2\% for SCDNR red drum longline sets. The stepwise construction of the binomial model of the probability of catching a blacknose shark and the Poisson model of positive blacknose shark catch sets for the red drum longline time series are detailed in Table 22. The final binomial model for the red drum longline series was "proportion positive blacknose shark sets = year" and the final Poisson model for the red drum longline time series was "positive blacknose shark sets = month + year + area". The resulting relative indices of abundance based on the standardized year effects obtained from the

Lo et al. method for blacknose sharks for the red drum longline series are reported in Table 23 and are illustrated in Figure 10.

References

Carlson J.K. 2002. A fishery-independent assessment of shark stock abundance for large coastal species in the northeast Gulf of Mexico. Panama City Laboratory Contribution Series 02-08. 26pp.

González-Ania, L.V., C.A. Brown, and E. Cortés. 2001. Standardized catch rates for yellowfin tuna (Thunnus albacares) in the 1992-1999 Gulf of Mexico longline fishery based upon observer programs from Mexico and the United States. Col. Vol. Sci. Pap. ICCAT 52:222-237.

Lo, N.C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2515-2526.

Table 1. Nominal and nominal relative (CPUE/mean) abundance indices for the small coastal sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL $=$ upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

gillnet

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

COASTSPAN longline

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

SCDNR red drum longline

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

Table 2. Results of the stepwise procedure for development of the catch rate model for the small coastal complex for gillnet sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the \log likelihood.

PROPORTION POSITIVE-BINOMIAL FACTOR	ERROR	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	431	212.6737	0.4934					
MONTH	426	183.1318	0.4299	12.8699	12.8699	-91.5659	29.54	<. 0001
YEAR	424	194.5722	0.4589	6.9923		-97.2861	18.1	0.0115
AREA	428	206.8253	0.4832	2.0673		-103.4127	5.85	0.1192
MONTH +								
YEAR	419	174.8301	0.4173	15.4236	2.5537	-87.4151	8.3	0.3067
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	2445.3							
Schwartz's Bayesian criterion	2449.3							
(-2) Res Log likelihood	2443.3							
	Type 3 Test of Fixed Effects							
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
test of fixed effects for each factor		0.0091	0.4494					
DF		4	6					
CHI SQUARE		13.50	5.77					
POSITIVE CATCHES-POISSON ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	402	2994.9451	7.4501					
MONTH	397	2857.7012	7.1982	3.3812	3.3812	3216.779	137.24	<. 0001
YEAR	395	2854.0608	7.2255	3.0147		3218.5992	140.88	<. 0001
AREA	399	2949.4903	7.3922	0.7772		3170.8845	45.45	<. 0001
MONTH +								
YEAR	390	2724.7150	6.9864	6.2241	2.8429	3283.2722	129.35	<. 0001
FINAL MODEL: MONTH + YEAR								
Akaike's information criterion	1359.7							
Schwartz's Bayesian criterion	1363.7							
(-2) Res Log likelihood	1357.7							
	Type 3 Test of Fixed Effects							
Significance (Pr>Chi) of Type 3		MONTH	YEAR					
test of fixed effects for each factor		0.0581	0.0890					
DF		5	7					
CHI SQUARE		10.68	12.37					

Table 3. Results of the stepwise procedure for development of the catch rate model for the small coastal shark complex for COASTSPAN longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	437	541.0775	1.2382					
MONTH	431	471.8188	1.0947	11.5894	11.5894	-235.9094	69.26	<. 0001
YEAR	430	493.0002	1.1465	7.4059		-246.5001	48.08	<. 0001
AREA	429	505.6855	1.1788	4.7973		-252.8427	Negative of Hes	sitive definite
MONTH +								
YEAR	424	424.5248	1.0012	19.1407	7.5513	-212.2624	47.29	<. 0001

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	2078.6
Schwartz's Bayesian criterion	2082.7

| (-2) Res Log likelihood | 2076.6 | |
| :--- | :---: | :---: | :---: |
| | | |
| | Type 3 Test of Fixed Effects | |
| Significance (Pr>Chi) of Type 3 | MONTH | YEAR |
| test of fixed effects for each factor | $<.0001$ | $<.0001$ |
| DF | 5 | 7 |
| CHI SQUARE | 43.65 | 37.55 |

FINAL MODEL: YEAR + AREA + MONTH

Akaike's information criterion	791.5			
Schwartz's Bayesian criterion	795.1			
(-2) Res Log likelihood	789.5			
	Type 3 Test of Fixed Effects			
Significance (Pr>Chi) of Type 3		YEAR	AREA	MONTH
test of fixed effects for each factor		$<.0001$	0.0097	0.0246
DF		7	7	5
CHI SQUARE		74.68	18.56	12.87

Table 4. Results of the stepwise procedure for development of the catch rate model for the small coastal shark complex for SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION							
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ
NULL	946	1168.4314	1.2351			PR>CHI	
MONTH	936	1100.7050	1.1760	4.7850	4.7850	-550.3525	67.73
YEAR	939	1119.7707	1.1925	3.4491		-559.8853	48.66
AREA	929	980.9009	1.0559	14.5089		-490.4505	Negative of Hessian not positive definite
MONTH +							
YEAR	929	1041.2616	1.1208	9.2543	4.4693	-520.6308	59.44

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	4101.5		
Schwartz's Bayesian criterion	4106.3		
(-2) Res Log likelihood	4099.5		
	Type 3 Test of Fixed Effects		
Significance (Pr>Chi) of Type 3		MONTH	YEAR
test of fixed effects for each factor		0.0001	$<.0001$
DF		9	7
CHI SQUARE		34.21	54.49

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	655	5621.3272	8.5822					
MONTH	645	4282.6900	6.6398	22.6329	22.6329	5040.7171	1338.64	<. 0001
YEAR	648	4893.9906	7.5525	11.9981		4735.0668	727.34	<. 0001
AREA	638	5083.1341	7.9673	7.1648		4640.4950	538.19	<. 0001
MONTH +								
AREA	628	3880.9581	6.1799	27.9917	5.3588	5241.5831	401.73	<. 0001
YEAR	638	3944.4961	6.1826	27.9602		5209.8141	338.19	<. 0001
MONTH + AREA +								
YEAR	621	3345.5014	5.3873	37.2271	9.2354	5509.3114	535.46	<. 0001

FINAL MODEL: MONTH + AREA + YEAR

Akaike's information criterion	1995.6		
Schwartz's Bayesian criterion	2000.0		
(-2) Res Log likelihood	1993.6		
	Type 3 Test of Fixed Effects		
Significance (Pr>Chi) of Type 3	MONTH	AREA	YEAR
test of fixed effects for each factor	<. 0001	<. 0001	<. 0001
DF	10	17	7
CHI SQUARE	143.46	78.68	71.86

Table 5. Relative (index/mean) standardized abundance indices for the small coastal shark complex caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and $\mathrm{N}=$ the number of sets observed.

gillnet

YEAR	INDEX	REL				
INDEX	LCL	UCL	CV	N		
1998	19.4117	0.6713	0.1912	1.1514	0.3649	28
1999	23
2000	24.3004	0.8404	0.3575	1.3232	0.2932	31
2001	30.9372	1.0699	0.7402	1.3996	0.1572	108
2002	26.9742	0.9328	0.6226	1.2430	0.1697	69
2003	43.6883	1.5108	1.1362	1.8855	0.1265	89
2004	29.0766	1.0055	-0.0055	2.0166	0.5130	16
2005	28.0288	0.9693	0.6093	1.3293	0.1895	68

COASTSPAN longline
REL

YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	0.1772	0.7456	-7.0645	8.5556	5.3445	15
1999	0.3810	1.6030	-7.3872	10.5931	2.8615	18
2000	0.3763	1.5835	-3.8938	7.0607	1.7648	74
2001	0.4920	2.0700	-0.9988	5.1389	0.7564	72
2002	0.1433	0.6028	-3.5351	4.7407	3.5021	47
2003	0.1362	0.5729	-3.6789	4.8247	3.7866	50
2004	0.1302	0.5480	-3.0789	4.1749	3.3767	51
2005	0.0652	0.2742	-2.3507	2.8992	4.8837	111

SCDNR red drum longline

| YEAR | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

Table 6. Nominal and nominal relative (CPUE/mean) abundance indices for Atlantic sharpnose sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL $=$ upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

gillnet

		REL					
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	N
1998	88	0.1301	0.9563	0.6259	1.2868	1.8284	28
1999	30	0.0905	0.6652	0.5048	0.8256	1.1565	23
2000	67	0.0830	0.6100	0.4781	0.7420	1.2043	31
2001	125	0.0776	0.5705	0.4341	0.7069	2.4843	108
2002	129	0.0772	0.5672	0.4455	0.6889	1.7820	69
2003	574	0.4979	3.6592	2.4971	4.8212	2.9960	89
2004	13	0.0408	0.2999	0.0712	0.5286	3.0503	16
2005	145	0.0914	0.6716	0.5741	0.7690	1.1969	68

COASTSPAN longline

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

SCDNR red drum longline

YEAR	CATCH	INDEX	REL				
INDEX	LCL	UCL	CV	N			
1998	965	0.0014	1.0116	0.8946	1.1285	1.3823	143
1999	567	0.0007	0.4991	0.4328	0.5654	1.4247	115
2000	821	0.0021	1.4429	1.2745	1.6113	1.3205	128
2001	614	0.0023	1.6113	1.3191	1.9034	1.9189	112
2002	624	0.0017	1.2129	1.0261	1.3996	1.7211	125
2003	859	0.0018	1.2743	1.1051	1.4435	1.7311	170
2004	209	0.0006	0.4506	0.3583	0.5429	2.0999	105
2005	81	0.0007	0.4974	0.3608	0.6341	1.9230	49

Table 7. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during gillnet sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	431	579.1357	1.3437					
MONTH	426	513.9147	1.2064	10.2181	10.2181	-256.9574	65.22	<. 0001
YEAR	424	553.2686	1.3049	2.8875		-276.6343	25.87	0.0005
AREA	428	576.2552	1.3464	-0.2009		-288.1276	2.88	0.4104
MONTH								
YEAR	419	501.7004	1.1974	10.8878	0.6698	-250.8502	12.21	0.0937

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	1901.6
Schwartz's Bayesian criterion	1905.6

(-2) Res Log likelihood 1899.6

	Type 3 Test of Fixed Effects	
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	$<.0001$	0.1119
DF	4	7
CHI SQUARE	42.26	11.67

FINAL MODEL: YEAR + MONTH + AREA

Akaike's information criterion	903.7			
Schwartz's Bayesian criterion	907.2			
(-2) Res Log likelihood	901.7			
Type 3 Test of Fixed Effects				
Significance (Pr>Chi) of Type 3		MONTH	YEAR	AREA
test of fixed effects for each factor		0.0001	<. 0001	0.0217
DF		5	7	3
CHI SQUARE		25.65	37.81	9.66

Table 8. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during COASTSPAN longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION							
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ
NULL	437	587.7281	1.3449				
MONTH	431	509.6574	1.1825	12.0752	12.0752	-254.8287	78.07
YEAR	430	553.6725	1.2876	4.2605		-276.8362	34.06
AREA	429	549.3712	1.2806	4.7810		-274.6856	Negative of Hessian not positive definite
MONTH							
YEAR	424	469.1808	1.1066	17.7188	5.6435	-234.5904	40.48

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	1999.9
Schwartz's Bayesian criterion	2004.0

(-2) Res Log likelihood 1997.9

	Type 3 Test of Fixed Effects	
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	$<.0001$	$<.0001$
DF	5	7
CHI SQUARE	55.11	32.20

FINAL MODEL: YEAR + MONTH + AREA

Akaike's information criterion	671.5
Schwartz's Bayesian criterion	675.0
(-2) Res Log likelihood	669.5

	Type 3 Test of Fixed Effects		
Significance (Pr>Chi) of Type 3	YEAR	MONTH	AREA
test of fixed effects for each factor	$<.0001$	$<.0001$	0.0396
DF	7	5	7
CHI SQUARE	65.78	26.19	14.73

Table 9. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks caught during SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION							
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ
NULL	946	1191.7106	1.2597				
MONTH	936	1119.3907	1.1959	5.0647	5.0647	-559.6953	72.32
YEAR	939	1139.3255	1.2133	3.6834		-569.6628	52.39
AREA	929	984.1673	1.0594	15.9006		-492.0837	Negative of Hessian not positive definite
MONTH +							
YEAR	929	1056.4814	1.1372	9.7245	4.6598	-528.2407	62.91

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	4086.5		
Schwartz's Bayesian criterion	4091.3		
(-2) Res Log likelihood	4084.5		
	Type 3 Test of Fixed Effects		
Significance (Pr>Chi) of Type 3		MONTH	YEAR
test of fixed effects for each factor		$<.0001$	$<.0001$
DF	9	7	
CHI SQUARE		35.33	56.99

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	655	5727.8012	8.7447					
MONTH	645	4388.7588	6.8043	22.1894	22.1894	4934.6627	1339.04	<. 0001
YEAR	648	5000.8545	7.7174	11.7477		4628.6148	726.95	<. 0001
AREA	638	5190.9991	8.1364	6.9562		4533.5425	536.80	<. 0001
MONTH +								
AREA	628	3974.6590	6.3291	27.6236	5.4341	5141.7126	414.10	<. 0001
YEAR	638	4049.5180	6.3472	27.4166		5104.2831	339.24	<. 0001
MONTH + AREA +								
YEAR	621	3430.8930	5.5248	36.8212	9.1976	5413.5956	543.77	<. 0001

FINAL MODEL: MONTH + AREA + YEAR

Akaike's information criterion	1936.9
Schwartz's Bayesian criterion	1941.3
(-2) Res Log likelihood	1934.9

Type 3 Test of Fixed Effects

Significance (Pr>Chi) of Type 3
test of fixed effects for each factor
DF
CHI SQUARE

MONTH	AREA	YEAR
$<.0001$	$<.0001$	$<.0001$
10	17	7
133.76	72.93	72.95

Table 10. Relative (index/mean) standardized abundance indices for the Atlantic sharpnose sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and $\mathrm{N}=$ the number of sets observed.

gillnet

YEAR	INDEX	REL INDEX	LCL	UCL	CV	N
1998	21.9111	1.8051	0.4646	3.1455	0.3789	28
1999	13.2995	1.0956	-0.6066	2.7979	0.7927	23
2000	8.3603	0.6887	-0.0365	1.4139	0.5372	31
2001	8.5581	0.7050	0.2314	1.1787	0.3428	108
2002	6.5162	0.5368	0.1820	0.8917	0.3373	69
2003	23.3457	1.9232	1.3114	2.5351	0.1623	89
2004	6.4137	0.5284	-0.7844	1.8412	1.2677	16
2005	8.7049	0.7171	0.2550	1.1792	0.3288	68

COASTSPAN longline

YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	0.1704	0.8722	-5.3492	7.0936	3.6393	15
1999	0.2626	1.3440	-5.2761	7.9641	2.5130	18
2000	0.3971	2.0328	-4.2586	8.3242	1.5790	74
2001	0.3879	1.9859	-1.2006	5.1724	0.8187	72
2002	0.0967	0.4952	-3.2003	4.1906	3.8077	47
2003	0.0973	0.4981	-3.1786	4.1748	3.7658	50
2004	0.0913	0.4671	-2.7049	3.6390	3.4647	51
2005	0.0595	0.3047	-2.0840	2.6933	4.0002	111

SCDNR red drum longline

		REL				
YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	0.1570	0.9955	-0.1711	2.1622	0.5979	143
1999	0.0905	0.5740	-0.4959	1.6439	0.9509	115
2000	0.1471	0.9327	-0.6829	2.5483	0.8838	128
2001	0.2340	1.4841	-0.5095	3.4776	0.6854	112
2002	0.2267	1.4377	-0.8141	3.6894	0.7991	125
2003	0.1976	1.2531	-0.4092	2.9154	0.6768	170
2004	0.0689	0.4372	-1.4824	2.3568	2.2401	105
2005	0.1397	0.8857	-3.3552	5.1266	2.4429	49

Table 11. Nominal and nominal relative (CPUE/mean) abundance indices for bonnethead sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

gillnet

		REL					
YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	N
1998	38	0.0853	0.5677	0.3269	0.8085	2.2443	28
1999	53	0.1793	1.1937	0.9537	1.4337	0.9642	23
2000	93	0.1207	0.8038	0.6846	0.9230	0.8255	31
2001	243	0.1861	1.2396	1.0382	1.4410	1.6885	108
2002	188	0.1460	0.9722	0.7555	1.1888	1.8511	69
2003	251	0.1845	1.2283	0.8821	1.5745	2.6593	89
2004	46	0.0987	0.6573	0.3529	0.9617	1.8525	16
2005	295	0.2008	1.3374	1.1316	1.5433	1.2694	68

COASTSPAN longline

YEAR	CATCH	INDEX	REL				
INDEX	LCL	UCL	CV	N			
1998	0	0.0000	0.0000	.	.	.	15
1999	1	$2.31 E-05$	0.1698	0.0000	0.3396	4.2426	18
2000	6	0.0006	4.2315	0.2676	8.1954	8.0584	74
2001	6	$7.59 E-05$	0.5569	0.3038	0.8100	3.8570	72
2002	1	$1.42 E-05$	0.1041	0.0000	0.2081	6.8557	47
2003	10	0.0001	0.9396	0.5908	1.2883	2.6247	50
2004	15	0.0002	1.2316	0.7742	1.6889	2.6518	51
2005	17	0.0001	0.7666	0.5029	1.0304	3.6243	111

SCDNR red drum longline

YEAR	CATCH	INDEX	$\begin{aligned} & \text { REL } \\ & \text { INDEX } \end{aligned}$	LCL	UCL	CV	N
1998	0	0.0000	0.0000	.	.		143
1999	3	5.05E-06	0.4140	0.0669	0.7612	8.9906	115
2000	0	0.0000	0.0000	.	.	.	128
2001	0	0.0000	0.0000	.	.	.	112
2002	11	3.34E-05	2.7376	1.6887	3.7865	4.2836	125
2003	13	3.89E-05	3.1906	2.0834	4.2978	4.5245	170
2004	2	7.14E-06	0.5860	0.1711	1.0010	7.2560	105
2005	2	1.31E-05	1.0718	0.3151	1.8284	4.9423	49

Table 12. Results of the stepwise procedure for development of the catch rate model for the bonnethead sharks caught during gillnet sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the \log likelihood.

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	431	528.4628	1.2261					
AREA	428	502.6337	1.1744	4.2166	4.2166	-251.3168	25.83	<. 0001
MONTH	426	498.6815	1.1706	4.5265		-249.3408	29.78	<. 0001
YEAR	424	506.2683	1.1940	2.6181		-253.1342	22.19	0.0024
AREA +								
MONTH	423	473.3782	1.1191	8.7269	4.5102	-236.6891	29.26	<. 0001
YEAR	421	479.5469	1.1391	7.0957		-239.7734	23.09	0.0016
AREA + MONTH +								
YEAR	416	459.4335	1.1044	9.9258	1.1989	-229.7168	13.94	0.0522

FINAL MODEL: AREA + MONTH + YEAR

Akaike's information criterion	2022.2
Schwartz's Bayesian criterion	2026.3

(-2) Res Log likelihood 2020.2

Type 3 Test of Fixed Effects

Significance (Pr>Chi) of Type 3	AREA	MONTH	YEAR
test of fixed effects for each factor	$<.0001$	0.0071	0.0868
DF	3	5	7
CHI SQUARE	21.40	15.93	12.45

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	301	1167.0118	3.8771					
AREA	298	986.9249	3.3118	14.5805	14.5805	429.3361	180.09	<. 0001
MONTH	296	1004.3006	3.3929	12.4887		420.6482	162.71	<. 0001
YEAR	294	1108.474	3.7703	2.7546		368.5615	58.54	<. 0001
AREA +								
MONTH	293	868.8421	2.9653	23.5176	8.9371	488.3774	118.08	<. 0001
YEAR	291	943.7690	3.2432	16.3498		450.914	43.16	<. 0001
AREA + MONTH +								
YEAR	286	842.537	2.9459	24.0180	0.5004	501.5300	26.31	0.0004

FINAL MODEL: AREA + MONTH + YEAR	
Akaike's information criterion	948.8
Schwartz's Bayesian criterion	952.5
(-2) Res Log likelihood	946.8

Type 3 Test of Fixed Effects

Significance (Pr>Chi) of Type 3	AREA	MONTH	YEAR
test of fixed effects for each factor	$<.0001$	0.0003	0.5359
DF	3	5	7
CHI SQUARE	27.11	23.48	6.03

Table 13. Results of the stepwise procedure for development of the catch rate model for bonnethead sharks caught during COASTSPAN longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

| PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FACTOR DF DEVIANCE DEVIANCE/DF \%DIFF DELTA\% L CHISQ
 NULL 437 253.6588 0.5805
 YEAR 430 242.3382 0.5636 2.9113 2.9113 -121.1691 11.32
 MONTH 431 244.9109 0.5682 2.1189 -122.4555 8.75
 AREA 429 248.6868 0.5797 0.1378 -124.3434 Negative of hessian not positive definite | | | | |

FINAL MODEL: YEAR

Akaike's information criterion	2321.9
Schwartz's Bayesian criterion	2325.9
(-2) Res Log likelihood	2319.9

	Type $\mathbf{3}$ Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each factor	0.3033
DF	6
CHI SQUARE	7.19

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION							
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ
NULL	36	24.4106	0.6781				
AREA	32	21.4706	0.6710	1.0470	1.0470	-36.3239	2.94
MONTH	31	21.7499	0.7016	-3.4656		-36.4636	2.66
YEAR	30	22.4856	0.7495	-10.5294		-36.8314	1.92

FINAL MODEL: YEAR
Akaike's information criterion 123.8
Schwartz's Bayesian criterion 125.2
(-2) Res Log likelihood 121.8

	Type 3 Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each factor	0.9981
DF	6
CHI SQUARE	0.48

Table 14. Results of the stepwise procedure for development of the catch rate model for bonnethead sharks caught during SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	946	231.0553	0.2442					
YEAR	939	197.6539	0.2105	13.8002	13.8002	-98.8269	33.40	<. 0001
AREA	929	171.6796	0.1848	24.3243		-85.8398	Negative of Hes	ositive definite
MONTH	936	185.752	0.1985	18.7142		-92.876	Negative of Hes	ositive definite

FINAL MODEL: YEAR

Akaike's information criterion	3473.0
Schwartz's Bayesian criterion	3477.4
(-2) Res Log likelihood	3471.0

	Type 3 Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each factor	0.2310
DF	4
CHI SQUARE	5.60

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION							
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ
NULL	24	9.4307	0.3929				
AREA	18	5.2793	0.2933	25.3500	25.3500	-25.3219	4.15
MONTH	20	6.7236	0.3362	14.4312		-26.0441	2.71
YEAR	20	6.8988	0.3449	12.2168	-26.1316	2.53	0.6562

FINAL MODEL: YEAR

Akaike's information criterion	45.4	
Schwartz's Bayesian criterion	46.4	
(-2) Res Log likelihood	43.4	
Significance (Pr>Chi) of Type 3		
test of fixed effects for each factor		YEAR Fixed Effects
DF		0.2798
CHI SQUARE	4	

Table 15. Relative (index/mean) standardized abundance indices for bonnethead sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed.
gillnet

		REL				
YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	5.1129	0.4019	-0.3266	1.1304	0.9248	28
1999	13.2331	1.0402	0.1106	1.9698	0.4559	23
2000	12.3695	0.9723	0.1836	1.7611	0.4139	31
2001	13.0919	1.0291	0.5528	1.5055	0.2362	108
2002	10.3156	0.8109	0.3533	1.2684	0.2879	69
2003	14.2988	1.1240	0.6048	1.6432	0.2357	89
2004	17.2291	1.3543	-0.5384	3.2470	0.7130	16
2005	16.1206	1.2672	0.7149	1.8195	0.2224	68

COASTSPAN longline

YEAR	INDEX	$\begin{aligned} & \text { REL } \\ & \text { INDEX } \end{aligned}$	LCL	UCL	CV	N
1998						15
1999	0.0023	0.2816	-129.7470	130.3106	235.6186	18
2000	0.0058	0.6995	-86.5948	87.9937	63.6753	74
2001	0.0076	0.9299	-99.6766	101.5364	55.1975	72
2002	0.0014	0.1725	-102.5230	102.8681	303.6872	47
2003	0.0128	1.5552	-101.6650	104.7756	33.8639	50
2004	0.0176	2.1398	-103.1590	107.4386	25.1068	51
2005	0.0100	1.2216	-73.0978	75.5409	31.0407	111

SCDNR red drum longline

	REL					
YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	\cdot	\cdot	.	.	.	143
1999	0.2162	0.2162	-100.2520	100.6841	237.1248	115
2000	\cdot	\cdot	\cdot	\cdot	\cdot	128
2001	\cdot	\cdot	.	.	.	112
2002	1.7380	1.7380	-142.0810	145.5566	42.2187	125
2003	1.9086	1.9086	-131.5500	135.3674	35.6767	170
2004	0.4034	0.4034	-151.4140	152.2203	192.0291	105
2005	0.7339	0.7339	-202.9010	204.3687	141.5693	49

Table 16. Nominal and nominal relative (CPUE/mean) abundance indices for finetooth sharks caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

gillnet

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

COASTSPAN longline

YEAR	CATCH	INDEX	$\begin{aligned} & \text { REL } \\ & \text { INDEX } \end{aligned}$	LCL	UCL	CV	N
1998	0	0.0000	0.0000	.	.		15
1999	0	0.0000	0.0000	.	.		18
2000	65	0.0007	1.7285	1.2365	2.2206	2.4488	74
2001	72	0.0015	3.4422	2.2845	4.5998	2.8537	72
2002	31	0.0005	1.0411	0.7456	1.3367	1.9462	47
2003	24	0.0004	0.8374	0.5004	1.1744	2.8460	50
2004	18	0.0003	0.8033	0.5269	1.0797	2.4575	51
2005	10	$6.38 \mathrm{E}-05$	0.1475	0.0961	0.1989	3.6714	111

SCDNR red drum longline

| YEAR | CATCH | INDEX | REL | INDEX | LCL | UCL | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | N

Table 17. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during gillnet sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the \log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	431	595.5322	1.3817					
AREA	428	526.7597	1.2307	10.9286	10.9286	-263.3798	68.77	<. 0001
MONTH	426	570.0731	1.3382	3.1483		-285.0366	25.46	0.0001
YEAR	424	584.2823	1.3780	0.2678		-292.1411	11.25	0.1281
AREA +								
MONTH	423	473.6771	1.1198	18.9549	8.0263	-236.8385	53.08	<. 0001
YEAR	421	516.8823	1.2277	11.1457		-258.4411	9.88	0.1956
AREA + MONTH								
YEAR	416	469.2258	1.1279	18.3687	-0.5862	-234.6129	4.45	0.7266

FINAL MODEL: AREA + MONTH + YEAR

Akaike's information criterion	1907.2			
Schwartz's Bayesian criterion	1911.2			
(-2) Res Log likelihood	1905.2			
Type 3 Test of Fixed Effects				
Significance (Pr>Chi) of Type 3		AREA	MONTH	YEAR
test of fixed effects for each factor		<. 0001	<. 0001	0.7367
DF		2	4	7
CHI SQUARE		65.64	27.74	4.37

FINAL MODEL: MONTH + AREA + YEAR

Akaike's information criterion	908.0		
Schwartz's Bayesian criterion	911.4		
(-2) Res Log likelihood	906.0		
Type 3 Test of Fixed Effects			
Significance (Pr>Chi) of Type 3	MONTH	AREA	YEAR
test of fixed effects for each factor	<. 0001	0.0022	0.0556
DF	4	2	7
CHI SQUARE	26.35	12.24	13.76

Table 18. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during COASTSPAN longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	437	447.6159	1.0243					
YEAR	430	408.1965	0.9493	7.3221	7.3221	-204.0982	39.42	<. 0001
MONTH	431	427.7820	0.9925	3.1046		-213.8910	19.83	0.0030
AREA	429	427.1919	0.9958	2.7824		-213.5959	Negative of Hessian not positive definite	
YEAR +								
MONTH	424	390.3429	0.9206	10.1240	2.8019	-195.1715	Negative of Hessi	itive definite

FINAL MODEL: YEAR

Akaike's information criterion	1918.0
Schwartz's Bayesian criterion	1922.0
(-2) Res Log likelihood	1916.0
	Type 3 Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each factor	0.0030
DF	5
CHI SQUARE	17.98

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	90	221.2603	2.4584					
MONTH	86	159.1598	1.8507	24.7193	24.7193	-30.8096	62.10	<. 0001
YEAR	85	177.2727	2.0856	15.1643		-39.8660	43.99	<. 0001
AREA	87	202.2770	2.3250	5.4263		-52.3681	18.98	0.0003
MONTH +								
YEAR	81	141.7804	1.7504	28.7992	4.0799	-22.1199	17.38	0.0038
AREA	83	151.4218	1.8244	25.7891		-26.9405	7.74	0.0517

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	265.4	
Schwartz's Bayesian criterion	267.8	
(-2) Res Log likelihood	263.4	
	Type 3 Test of Fixed Effects	
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	0.0093	0.2827
DF	4	5
CHI SQUARE	13.45	6.25

Table 19. Results of the stepwise procedure for development of the catch rate model for finetooth sharks caught during SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	946	349.9378	0.3699					
YEAR	939	317.9995	0.3387	8.4347	8.4347	-158.9997	31.94	<. 0001
MONTH	936	299.8134	0.3203	13.4090		-149.9067	Negative of Hess	sitive definite
AREA	929	295.3657	0.3179	14.0579		-147.6828	Negative of Hess	itive definite

FINAL MODEL: YEAR

Akaike's informi	5681.7	
Schwartz's Bay	5686.5	
(-2) Res Log like	5679.7	
	Type 3 Test of Fixed Effects	
Significance (Pr>Chi) of Type 3		YEAR
test of fixed effects for each fact		0.0045
DF		6
CHI SQUARE		18.82

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	42	17.8533	0.4251					
AREA	37	10.3581	0.2799	34.1567	34.1567	-43.6559	7.50	
YEAR	36	12.4779	0.3466	18.4662		-44.7158	5.38	
MONTH	37	15.2206	0.4114	3.2228		-46.0872	2.63	0.1863
0.7966								

FINAL MODEL: YEAR

Akaike's informi	79.3
Schwartz's Bay	80.9

(-2) Res Log lik $\quad 77.3$

	Type 3 Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each fact	0.0493
DF	6
CHI SQUARE	12.63

Table 20. Relative (index/mean) standardized abundance indices for finetooth sharks caught during gillnet, COASTSPAN longline and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed.
gillnet

	REL					LCL
YEAR	INDEX	INDEX	UCL	CV	N	
1998	6.3027	0.7656	-0.5106	2.0419	0.8505	28
1999	4.8784	0.5926	-0.8791	2.0644	1.2670	23
2000	6.4227	0.7802	-0.4169	1.9774	0.7829	31
2001	13.0242	1.5822	0.7026	2.4617	0.2836	108
2002	12.7509	1.5490	0.5060	2.5919	0.3435	69
2003	13.7536	1.6708	0.6490	2.6925	0.3120	89
2004	2.8640	0.3479	-1.0118	1.7076	1.9939	16
2005	5.8580	0.7116	0.0102	1.4131	0.5029	68

COASTSPAN longline

YEAR	INDEX	$\begin{aligned} & \text { REL } \\ & \text { INDEX } \end{aligned}$	LCL	UCL	CV	N
1998		.		.		15
1999	18
2000	0.0737	1.4119	-15.1701	17.9939	5.9920	74
2001	0.0901	1.7281	-14.0979	17.5542	4.6724	72
2002	0.0560	1.0743	-16.7551	18.9036	8.4678	47
2003	0.0471	0.9029	-19.8877	21.6935	11.7478	50
2004	0.0389	0.7460	-17.2009	18.6930	12.2737	51
2005	0.0071	0.1368	-9.6559	9.9294	36.5340	111

SCDNR red drum longline

	REL					
YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	0.0001	0.0775	-52.6116	52.7666	346.8456	143
1999	0.0017	1.0088	-54.6868	56.7044	28.1674	115
2000	0.0014	0.8251	-68.6478	70.2980	42.9575	128
2001	0.0021	1.2346	-71.8853	74.3546	30.2161	112
2002	0.0051	3.0436	-78.7224	84.8096	13.7065	125
2003	0.0011	0.6520	-71.3102	72.6141	56.3160	170
2004	0.0003	0.1583	-75.1019	75.4186	242.5173	105
2005	49

Table 21. Nominal and nominal relative (CPUE/mean) abundance indices for blacknose sharks caught by SCDNR red drum longline in South Carolina's nearshore waters from 1998-2005.
LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

SCDNR red drum longline

YEAR	CATCH	INDEX	RNDEX	LCL	UCL	CV	N
1998	75	0.0001	0.5213	0.4341	0.6086	2.0017	0.5213
1999	50	0.0001	0.2942	0.2219	0.3665	2.6343	0.2942
2000	148	0.0004	1.6151	1.2972	1.9329	2.2264	1.6151
2001	43	0.0002	0.7885	0.4798	1.0972	4.1436	0.7885
2002	99	0.0003	1.3326	1.0446	1.6206	2.4164	1.3326
2003	122	0.0003	1.1499	0.9647	1.3351	2.1001	1.1499
2004	41	0.0001	0.5940	0.4553	0.7328	2.3937	0.5940
2005	39	0.0004	1.7044	1.0260	2.3828	2.7863	1.7044

Table 22. Results of the stepwise procedure for development of the catch rate model for blacknose sharks caught during SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	946	1101.3151	1.1642					
YEAR	939	1081.3917	1.1516	1.0823	1.0823	-540.6959	19.92	0.0057
MONTH	936	962.7825	1.0286	11.6475		-481.3913	Negative of Hes	sitive definite
AREA	929	1018.9379	1.0968	5.7894		-509.4689	Negative of He	sitive definite

FINAL MODEL: YEAR

Akaike's information criterion	4274.0
Schwartz's Bayesian criterion	4278.9

(-2) Res Log likelihood 4272.0

	Type $\mathbf{3}$ Test of Fixed Effects
Significance (Pr>Chi) of Type 3	YEAR
test of fixed effects for each factor	0.0095
DF	7
CHI SQUARE	18.60

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	253	562.3976	2.2229					
MONTH	245	406.3131	1.6584	25.3948	25.3948	-59.4691	156.08	<. 0001
YEAR	246	416.4655	1.6929	23.8427		-64.5454	145.93	<. 0001
AREA	241	494.7043	2.0527	7.6567		-103.6647	67.69	<. 0001
MONTH +								
YEAR	238	331.6626	1.3935	37.3116	11.9169	-22.1439	74.65	<. 0001
AREA	233	354.7870	1.5227	31.4994		-33.7061	51.53	<. 0001
MONTH + YEAR +								
AREA	226	282.5237	1.2501	43.7627	6.4510	2.4256	72.26	<. 0001

FINAL MODEL: MONTH + YEAR + AREA

Akaike's information criterion	629.4
Schwartz's Bayesian criterion	632.8

(-2) Res Log likelihood 627.4

	MONTH	YEAR	AREA
Significance (Pr>Chi) of Type 3	$<.0001$	$<.0001$	0.0016
test of fixed effects for each factor	8	7	12
DF	64.94	49.90	31.66

Table 23. Relative (index/mean) standardized abundance indices for blacknose sharks caught during SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, CV = coefficient of variation, and $\mathrm{N}=$ the number of sets observed.

SCDNR red drum longline

YEAR	INDEX	REL INDEX	LCL	UCL	CV	N
1998	0.0155	0.6906	-3.3926	4.7737	3.0166	143
1999	0.0077	0.3431	-3.3906	4.0769	5.5520	115
2000	0.0334	1.4873	-3.7690	6.7436	1.8031	128
2001	0.0162	0.7208	-5.3579	6.7994	4.3029	112
2002	0.0347	1.5446	-4.3956	7.4847	1.9622	125
2003	0.0226	1.0086	-3.2143	5.2316	2.1361	170
2004	0.0152	0.6771	-4.9448	6.2989	4.2364	105
2005	0.0343	1.5280	-9.2465	12.3024	3.5977	49

Figure 1. Fixed nearshore and estuarine sampling stations

Figure 2. Length frequencies for Atlantic sharpnose sharks caught during A) gillnet, B) COASTPAN longline and C) SCDNR red drum longline sets.

A

B

C

Figure 3. Length frequencies for bonnethead sharks caught during A) gillnet, B) COASTPAN longline and C) SCDNR red drum longline sets.

A

B

C

Figure 4. Length frequencies for finetooth sharks caught during A) gillnet, B) COASTPAN longline and C) SCDNR red drum longline sets. Note that scales differ.

A

B

C

Figure 5. Length frequency for blacknose sharks caught during SCDNR red drum longline sets.

Figure 6. Relative (index/mean) indices of abundance by year for the small coastal shark complex CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

A

B

C

Figure 7. Relative (index/mean) indices of abundance by year for Atlantic sharpnose shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

A

B

C

Figure 8. Relative (index/mean) indices of abundance by year for bonnethead shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

A

B

C

Figure 9. Relative (index/mean) indices of abundance by year for the finetooth shark CPUE for (A) gillnet data, (B) COASTSPAN longline data, and (C) SCDNR red drum longline data

A

B

C

Figure 10. Relative (index/mean) indices of abundance by year for blacknose shark CPUE caught during the SCDNR red drum survey

After initial review of this document it was requested to pull out the young-of-the-year from the species/gear combinations that were recommended for base indices in the age structured analyses. There was one species recommended as a base index for the age structured model and contained young-of-the-year, Atlantic sharpnose sharks. The results are presented here.

Table 1. Nominal and nominal relative (CPUE/mean) abundance indices for Atlantic sharpnose sharks minus young-of-the-year caught by gillnet, COASTSPAN longline and SCDNR red drum longline in South Carolina's estuarine and nearshore waters from 1998-2005. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed for the nominal relative abundance indices.

gillnet

YEAR	CATCH	INDEX	REL INDEX	LCL	UCL	CV	N
1998	39	1.3929	0.8591	0.5493	1.1688	1.9079	28
1999	30	1.3044	0.8045	0.6014	1.0076	1.2108	23
2000	54	1.6875	1.0408	0.7760	1.3056	1.4393	31
2001	99	0.9167	0.5654	0.4497	0.6810	2.1257	108
2002	104	1.5073	0.9296	0.7981	1.0611	1.1749	69
2003	376	4.2247	2.6057	2.2073	3.0040	1.4423	89
2004	7	0.4375	0.2698	0.1109	0.4288	2.3561	16
2005	102	1.5000	0.9252	0.7851	1.0652	1.2485	68

SCDNR red drum longline

YEAR	CATCH	INDEX	INDEX	LCL	UCL	CV	N
1998	959	6.7063	1.4482	1.2931	1.6033	1.2805	143
1999	567	4.9304	1.0647	0.9305	1.1989	1.3517	115
2000	820	6.4063	1.3834	1.2192	1.5476	1.3429	128
2001	607	5.4196	1.1704	1.0242	1.3165	1.3214	112
2002	624	4.9920	1.0780	0.9076	1.2484	1.7669	125
2003	846	4.9765	1.0747	0.9264	1.2229	1.7988	170
2004	206	1.9619	0.4237	0.3223	0.5251	2.4526	105
2005	81	1.6531	0.3570	0.2676	0.4464	1.7531	49

Table 2. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks minus young-of-the-year caught during gillnet sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	
NULL	432	594.2446	1.3756					
MONTH	427	546.6858	1.2803	6.9279	6.9279	-273.3429	47.56	
YEAR	425	569.4837	1.3400	2.5880		-284.7418	24.76	0.0001
AREA	429	591.4079	1.3464	2.1227		-288.1276	2.88	0.4104
MONTH								
YEAR	420	533.0157	1.2691	7.7421	0.8142	-266.5079	13.67	0.0574

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	1868.3		
Schwartz's Bayesian criterion	1872.4		
(-2) Res Log likelihood	1866.3		
		Type 3 Test of Fixed Effects	
		MONTH	YEAR
Significance (Pr>Chi) of Type 3		$<.0001$	0.0697
test of fixed effects for each factor		4	7
DF		28.14	13.10

FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	241	823.6637	3.4177					
YEAR	234	671.3501	2.8690	16.0547	16.0547	210.6534	152.31	<. 0001
MONTH	236	728.4460	3.0866	9.6878		182.1054	95.22	<. 0001
AREA	238	774.2521	3.2532	4.8132		159.2024	49.41	<. 0001
YEAR +								
MONTH	229	615.5659	2.6881	21.3477	5.2930	238.5455	55.78	<. 0001
AREA	231	642.3149	2.7806	18.6412		225.1710	29.04	<. 0001
YEAR + MONTH								
AREA	226	586.7834	2.5964	24.0308	2.6831	252.9367	28.78	<. 0001

FINAL MODEL: YEAR + MONTH + AREA

Akaike's information criterion	774.1			
Schwartz's Bayesian criterion	777.5			
(-2) Res Log likelihood	772.1			
	Type 3 Test of Fixed Effects			
Significance (Pr>Chi) of Type 3		YEAR	MONTH	AREA
test of fixed effects for each factor		0.0003	0.0378	0.0593
DF		7	5	3
CHI SQUARE		27.23	11.79	7.43

Table 3. Results of the stepwise procedure for development of the catch rate model for the Atlantic sharpnose sharks minus young-of-the-year caught during SCDNR red drum longline sets. \%DIF is the percent difference in deviance/DF between each model and the null model. Delta\% is the difference in deviance/DF between the newly included factor and the previous entered factor in the model. L is the log likelihood.

PROPORTION POSITIVE-BINOMIAL ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	PR>CHI
NULL	946	1198.9847	1.2674					
MONTH	936	1129.7168	1.2070	4.7657	4.7657	-564.8584	69.27	<. 0001
YEAR	939	1148.6179	1.2232	3.4875		-574.3089	50.37	<. 0001
AREA	929	980.4170	1.0553	16.7350		-490.2085	Negative of Hes	sitive definite
MONTH +								
YEAR	929	1070.2545	1.1521	9.0974	4.3317	-535.1273	59.46	<. 0001

FINAL MODEL: MONTH + YEAR

Akaike's information criterion	4068.5
Schwartz's Bayesian criterion	4073.3

(-2) Res Log likelihood 4066.5

	Type 3 Test of Fixed Effects	
Significance (Pr>Chi) of Type 3	MONTH	YEAR
test of fixed effects for each factor	$<.0001$	$<.0001$
DF	9	7
CHI SQUARE	33.97	53.89

POSITIVE CATCHES-POISSON ERROR DISTRIBUTION								
FACTOR	DF	DEVIANCE	DEVIANCE/DF	\%DIFF	DELTA\%	L	CHISQ	$\mathrm{PR}>\mathrm{CHI}$
NULL	632	5458.4343	8.6368					
MONTH	622	4128.6885	6.6378	23.1451	23.1451	4998.7115	1329.79	<. 0001
YEAR	625	4704.3983	7.5270	12.8497		4710.8566	754.08	<. 0001
AREA	615	4907.1689	7.9791	7.6151		4609.4713	551.31	<. 0001
MONTH +								
YEAR	615	3776.8118	6.1412	28.8950	5.7498	5174.6498	351.88	<. 0001
AREA	605	3776.5754	6.2423	27.7244		5174.7680	352.11	<. 0001
MONTH + YEAR +								
AREA	598	3246.7372	5.4293	37.1376	8.2426	5439.7681	530.07	<. 0001

FINAL MODEL: MONTH + YEAR + AREA

Akaike's information criterion	1901.6
Schwartz's Bayesian criterion	1906.0
(-2) Res Log likelihood	1899.6

Significance (Pr>Chi) of Type 3	MONTH	YEAR	AREA
test of fixed effects for each factor	$<.0001$	$<.0001$	$<.0001$
DF	10	7	17
CHI SQUARE	135.53	71.86	71.53

Table 4. Relative (index/mean) standardized abundance indices for the Atlantic sharpnose sharks minus young-of-the-year caught during COASTSPAN gillnet and SCDNR red drum surveys based on the standardized year effects obtained from the Lo et al. analyses. LCL = lower confidence limit, UCL = upper confidence limit, $\mathrm{CV}=$ coefficient of variation, and $\mathrm{N}=$ the number of sets observed.

COASTSPAN gillnet

REL

YEAR	INDEX	INDEX	LCL	UCL	CV	N
1998	8.2803	1.1110	-0.0961	2.3180	0.5543	28
1999	9.9234	1.3314	-0.5053	3.1682	0.7038	23
2000	5.8923	0.7906	-0.1284	1.7096	0.5931	31
2001	6.1397	0.8238	0.2383	1.4092	0.3626	108
2002	5.1817	0.6952	0.2270	1.1635	0.3436	69
2003	14.6214	1.9617	1.2485	2.6749	0.1855	89
2004	3.5696	0.4789	-1.0160	1.9739	1.5926	16
2005	6.0177	0.8074	0.2419	1.3729	0.3573	68

SCDNR red drum longline

	REL				LCL	UCL
YEAR	INDEX	INDEX	CV	N		
1998	0.1544	0.9828	-0.4567	2.4224	0.7473	143
1999	0.0901	0.5732	-0.7414	1.8879	1.1701	115
2000	0.1475	0.9389	-1.0305	2.9083	1.0702	128
2001	0.2300	1.4635	-1.0110	3.9380	0.8627	112
2002	0.2265	1.4415	-1.2908	4.1739	0.9670	125
2003	0.1953	1.2430	-0.7700	3.2561	0.8262	170
2004	0.0753	0.4794	-2.0037	2.9626	2.6425	105
2005	0.1379	0.8775	-4.2845	6.0396	3.0013	49

Figure 1. Relative (index/mean) indices of abundance by year for Atlantic sharpnose shark minus young-of-the-year CPUE for (A) gillnet data and (C) SCDNR red drum longline data

A

B

