# STANDARDIZED CATCH RATES OF SMALL COASTAL SHARKS FROM A FISHERY-INDEPENDENT LONGLINE SURVEY IN NORTHWEST FLORIDA 

John K. Carlson<br>National Marine Fisheries Service<br>Southeast Fisheries Science Center<br>3500 Delwood Beach Rd<br>Panama City, FL 32408

A fishery-independent survey of large and small coastal shark populations in coastal areas of the northeast Gulf of Mexico was conducted using longlines from 1993-2000. The survey was discontinued in 2001 due to lack of resources. Although field methods were standardized, some bias associated with factors such as spatial-temporal distributions could not be controlled. This bias could cause changes in catch rates not directly related to abundance. The present study attempts to standardize catch rates using a lognormal general linear model analysis. This error model has been used in a variety of studies attempting to standardize catch and effort data (Kimura, 1981; da Silva and Pereira, 1999; Punt et al., 2000).

## Methods

The longline was constructed of a mainline made of two 152 m lengths of 425.8 kg test monofilament line. Each 152 m length was connected by a 15.2 m length of 0.79 m diameter braided polypropylene line so that the entire line when fished was 319.2 m long. Polyethylene floats made of 1.5 m lengths of 136 kg test monofilament line with a snap were attached to the mainline every 30.4 m . A standard longline consisted of 10-20 gangions placed at $15.2-\mathrm{m}$ intervals along the mainline. Gangions were 0.9 m long and composed of snaps, aluminum sleeves, hooks (Mustad \#12/0, no 2888), and monofilament lines ( 136 kg test). Bait was either menhaden (Brevoortia spp.) or Atlantic mackerel (Scomber scombrus). The mainline, when set, was tethered to an anchor on each end with a $30.4 \mathrm{~m}, 0.79 \mathrm{~cm}$ polypropylene rope between the anchor and the end of the mainline. A buoy ( 3.6 m aluminum pole with 1.8 kg weight and 50.8 cm poly float), with a strobe light and flag extended 2.4 m above the float, was attached at each end of the mainline.

## Survey design

Surveys were conducted monthly from April-October, occasionally March-November. The sampling gear was set at fixed stations or randomly set within each area based on depth strata and GPS location. Soak time ranged from 1.0-1.5 hr. Following each soak period, the longline was checked and all gangions that had caught sharks, been broken or damaged, or had damaged or lost baits, were removed from the mainline and a freshly baited gangion attached. Sharks captured using either method were measured to the nearest cm for lengths (precaudal, fork, total, and stretch total length) and data for sex and life history stage (neonate, young-of-the-year, juvenile, or adult) were recorded. Sharks that were in poor condition were sacrificed for life history studies and those in good condition were tagged with a tag and released. Environmental data were collected prior to sampling. Mid-water temperature $\left({ }^{\circ} \mathrm{C}\right.$ ), salinity (ppt), and dissolved oxygen (mg l-1) was measured with a YSI Model 85 environmental meter and light transmission (cm) was determined using a secci disk. Further details can be found in Carlson and Brusher (1999).

## Model design

The General Linear Model (GLM) was estimated using the PROC GLM procedure in SAS (SAS Inst., Inc.). The model used for the analysis was: $\mathrm{LN}(\mathrm{CPUE}+0.1)=\mu+\mathrm{Y}_{\mathrm{i}}+\mathrm{A}_{\mathrm{j}}+\mathrm{M}_{\mathrm{k}}+\in$, where $\mathrm{LN}=$ natural logarithm, $\mu=$ intercept, $Y_{i}=$ effect of year $i\left(6\right.$ levels), $A_{j}=$ effect of area $j\left(2\right.$ levels), $M_{k}=$ effect of month k ( 7 levels), and $\in=$ the error term. Nominal CPUE data were transformed by using a natural logarithm and adding a constant of 0.1 to each catch rate. The value of 0.1 was chosen over a value of 1 because the natural logarithm of 1 is 0 .

Models were fit in a stepwise forward manner adding one independent variable and/or interactions at a time. The final model was chosen based on the overall level of significance and the $\%$ (model sum of squares/total sum of squares) explained of the variance of the model and each factor.

## Results and Discussion

The final models chosen for factors affecting catch rates are given in Table 1. Depending on species, CPUE varied with year, month, area, and interactions between month and area, and area and year. Nominal and standardized catch rates are found in Table 2 and Figure 1.

## Literature cited

Carlson, J. K., and J. H. Brusher. 1999. An index of abundance for coastal species of juvenile sharks from the northeast Gulf of Mexico. Mar. Fish. Rev. 61:37-45.

Da Silva, A. and J. Gil Pereira. 1999. Catch rates for pelagic sharks taken by the Portuguese swordfish fishery in the waters around the Azores, 1993-1997. International Commision for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers Vol. XLIX (4).

Kimura, D.K. 1981. Standardized measures of relative abundance based on modeling (c.p.u.e.), and application to Pacific ocean perch (Sebastes alutus). J. Const. Int. Explor. Mer. 39:211-218.

Punt, A.E., T.I. Walker, B.L. Taylor, and F. Pribac. 2000. Standardization of catch and effort data in a spatially-structured shark fishery. Fish. Res. 45:129-145.

Table 1. Results of the final model fit for sharks captured using longlines.
Dependent: Small Coastal

| Source | DF | Sum of squares | Mean Square | F value | Pr $>F$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model | 20 | 154.048 | 7.702 | 6.07 | $<0.0001$ |
| Error | 336 | 426.076 | 1.268 |  |  |
| Total | 356 | 580.125 |  |  |  |
|  |  |  |  | 6.11 | $<0.0001$ |
| Year | 7 | 54.229 | 7.747 | 18.19 | $<0.0001$ |
| Area | 1 | 23.071 | 13.011 | 23.071 | 1.71 |
| Month | 6 | 46.537 | 7.756 | 6.12 | 0.1178 |
| Area*Month | 6 |  |  |  | $<0.0001$ |

Dependent: Atlantic sharpnose

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Source | DF | Sum of squares | Mean Square | value | Pr>F |
| Model | 20 | 152.386 | 7.619 | 6.25 | $<0.0001$ |
| Error | 336 | 409.514 | 1.218 |  |  |
| Total | 356 | 561.900 |  |  |  |
|  |  |  |  | 6.83 | $<0.0001$ |
| Year | 7 | 58.231 | 33.763 | 33.736 | 27.68 |
| Area | 1 | 8.902 | 1.483 | 1.22 | $<0.0001$ |
| Month | 6 | 37.548 | 6.258 | 5.13 | $<0.2967$ |
| Area*Month | 6 |  |  |  |  |

Dependent: Blacknose

| Source | DF | Sum of squares | Mean Square | F value | $\operatorname{Pr}>\mathrm{F}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model | 13 | 11.001 | 0.846 | 4.73 | $<0.0001$ |
| Error | 343 | 61.428 | 0.179 |  |  |
| Total | 356 | 72.430 |  |  |  |
|  |  | 5.422 | 0.774 | 4.33 | 0.0001 |
| Year | 7 | 3.711 | 0.618 | 3.45 | 0.0025 |
| Month | 6 |  |  |  |  |

Dependent: Finetooth

| Source | DF | Sum of squares | Mean Square | F value | Pr $>F$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model | 14 | 12.476 | 0.891 | 4.22 | $<0.0001$ |
| Error | 342 | 72.201 | 0.211 |  |  |
| Total | 356 | 84.678 |  |  |  |
|  |  | 3.661 | 0.523 | 2.48 | 0.017 |
| Year | 7 | 4.126 | 0.687 | 3.26 | 0.040 |
| Month | 6 | 3.81 | 3.810 | 18.05 | $<0.0001$ |
| Area | 1 |  |  |  |  |

Table 2. Nominal and standardized longline abundance indices (sharks/10 hook hrs) for all shark species. Coefficient of variation (CV) is calculated as the standard error/mean.

|  | Catch Rates |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPECIES | YEAR | N | Nominal | S.E. | CV | Standardized | S.E. | CV |
| Small coastal | 1993 | 13 | 0.212 | 0.060 | 0.285 | 0.517 | 0.262 | 0.507 |
|  | 1994 | 66 | 0.385 | 0.075 | 0.196 | 0.235 | 0.128 | 0.544 |
|  | 1995 | 43 | 0.361 | 0.108 | 0.298 | 0.343 | 0.166 | 0.483 |
|  | 1996 | 69 | 1.074 | 0.135 | 0.126 | 1.073 | 0.098 | 0.092 |
|  | 1997 | 60 | 0.637 | 0.109 | 0.172 | 0.594 | 0.110 | 0.185 |
|  | 1998 | 29 | 0.325 | 0.127 | 0.392 | 0.439 | 0.166 | 0.378 |
|  | 1999 | 42 | 1.192 | 0.196 | 0.165 | 1.170 | 0.136 | 0.116 |
|  | 2000 | 35 | 0.706 | 0.146 | 0.207 | 0.534 | 0.158 | 0.296 |
|  |  |  |  |  |  |  |  |  |
|  | 1993 | 13 | 0.159 | 0.062 | 0.386 | 0.481 | 0.248 | 0.516 |
|  | 1994 | 66 | 0.288 | 0.061 | 0.213 | 0.136 | 0.120 | 0.882 |
|  | 1995 | 43 | 0.339 | 0.107 | 0.315 | 0.301 | 0.157 | 0.520 |
|  | 1996 | 69 | 0.951 | 0.136 | 0.143 | 0.951 | 0.093 | 0.098 |
|  | 1997 | 60 | 0.563 | 0.104 | 0.185 | 0.531 | 0.104 | 0.196 |
|  | 1998 | 29 | 0.260 | 0.101 | 0.387 | 0.380 | 0.157 | 0.413 |
|  | 1999 | 42 | 1.140 | 0.195 | 0.171 | 1.160 | 0.129 | 0.111 |
|  | 2000 | 35 | 0.601 | 0.142 | 0.235 | 0.445 | 0.150 | 0.337 |
|  |  |  |  |  |  |  |  |  |
|  | 1993 | 13 | 0.000 | 0.000 | 0.000 | 0.008 | 0.047 | 6.171 |
|  | 1994 | 66 | 0.095 | 0.030 | 0.314 | 0.076 | 0.021 | 0.282 |
|  | 1995 | 43 | 0.010 | 0.010 | 1.000 | 0.021 | 0.028 | 1.332 |
|  | 1996 | 69 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | 1997 | 60 | 0.018 | 0.013 | 0.704 | 0.017 | 0.020 | 1.201 |
|  | 1998 | 29 | 0.043 | 0.043 | 1.000 | 0.032 | 0.031 | 0.981 |
|  | 1999 | 42 | 0.045 | 0.005 | 0.120 | 0.052 | 0.026 | 0.493 |
|  | 2000 | 35 | 0.105 | 0.047 | 0.445 | 0.096 | 0.028 | 0.294 |
|  | 1993 | 13 | 0.045 | 0.026 | 0.577 | 0.014 | 0.056 | 3.924 |
|  | 1994 | 66 | 0.000 | 0.000 | 0.000 | 0.046 | 0.028 | 0.610 |
|  | 1995 | 43 | 0.016 | 0.016 | 1.000 | 0.012 | 0.034 | 2.759 |
|  | 1996 | 69 | 0.123 | 0.039 | 0.314 | 0.123 | 0.022 | 0.182 |
|  | 1997 | 60 | 0.056 | 0.033 | 0.589 | 0.057 | 0.024 | 0.425 |
|  | 1998 | 29 | 0.022 | 0.022 | 1.000 | 0.006 | 0.037 | 6.800 |
|  | 1999 | 42 | 0.039 | 0.028 | 0.718 | 0.010 | 0.031 | 2.972 |
|  | 2000 | 35 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  |  |  |  |  |  |  |  |  |

Figure 1. Nominal and standardized longline indices of abundance. Each index has been divided by its mean.





