Documentation for the Charterboat catch rate series

Originally presented by G. P. Scott and J.K. Lacey SB-III-19
1996

Shark Bowl III WORKING DOCUMENT

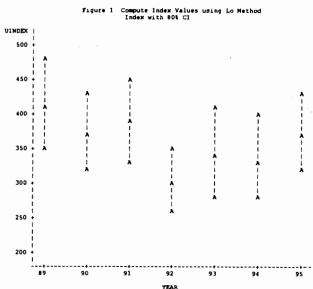
SBIII 19

UPDATED CHARTERBOAT CATCH RATE INFORMATION FOR SHARKS THROUGH 1995

G. P. Scott and J.K. Lacey

NMFS-Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149, U.S.A.

May 1996


Data collected under a charterboat survey managed by the SEFSC Panama City laboratory were examined for use in developing standardized catch rate indices for sharks. Effort (directed at sharks) and associated catch of sharks was cross-classified by year, month, fishing area, and method of fishing (troll or not troll). Catch rate (sharks per hr fishing) was standardized for these effects through the General Linear Modelling approach, using the method of Lo et. al. (1992).

Updated data for 1995 are summarized and results of these calculations are presented in the attached tables and figures.

Table 1. Standardized Index values from the Charterboat survey data. The column "INDEX" is the blas-corrected index value. The column CV_I is the coefficient of variation for the index.

Compute Index Values using Lo Method

YEAR	CPUE				BC_POS				CV_I
89	371.525	0.73261	537.579	1.45209	0.76535	1.01914	411.439	51.4412	0.12503
90	379.609	0.64524	547.775	1.45054	0.67606	1.01905	370.328	44.9068	0.12126
					0.64852				
92	345.869	0.57298	498.862	1.45021	0.60248	1.01996	300.555	37.5229	0.12485
93	370.526	0.60961	531.020	1.44558	0.63909	1.01884	339.372	53.0163	0.15622
94	327.645	0.67853	469.875	1.44606	0.70926	1.01684	333.262	50.5676	0.15174
95	390.831	0.62939	563.842	1.45037	0.65995	1.01906	372.106	45.4632	0.12218

1.00000

PPOS

0.11978811

0.12560823

0.11397868

_	
data	
Charter	
catches,	
0051 tive	
_	
5	
ž	

VALUES 89 90 91 92 93 94 95 AL ET CA. LA HS HC NEF HTX NNF SC SEF SF STX SWF WF 1701. NOTNOL

Dependent Variable: POS

Source Model Error Corrected Total

GLM on proportion positives, Charter data

General Linear Models Procedure Class Level Information Mean Square 0.06872609 0.27680882 5.13428955 0.87901994

Type III SS 0.41235656 3.87532355 5.13428955 12.30627919

Source Year Area Nethoo Area Hethoo

Parameter INTERCEPT YEAR

Root MSE 0.1958915

C.V. 35.71795

Dapendent Dapendent Source Corrected Corrected WEEN MARKA MA	Dapendent Variable: LCPUE	Squares 144.77403964	Ecror 525 396.27773077 0.75481473 Corrected Total 546 541.05177041	R-Square C.V. 0.267579 14.31281	Type II1 55		14 57.05683849 4.07548846 1 77,69583229 77.69583229	T for HO:	Estimate Parame		2 15	0.058697339 B	-0.122329239 B	-0.05665065 B -0.3	-0.179327784 B	0.000000000	0.293300336 B	1.039132172 B 2.	m	0.920018631 18	0.896561681 B		NTX 0.6908420 B 0.05	0.339129599 B	1.167121929 B	F 0.810905534 B	0.126159335 B	0.645692438 B	VF 0.467561166 B 1.63	,	g 000000000 TC	The X'X metrix has been found to be singular and a generalized inverse	was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters	Correlation Analysis	2 'VAR' Variables: PPOS	Simple Statistics
--	---------------------------	-------------------------	---	------------------------------------	-------------	--	--	-----------	-----------------	--	------	---------------	----------------	--------------------	----------------	-------------	---------------	------------------	----------	----------------	---------------	--	----------------------	---------------	---------------	-----------------	---------------	---------------	-----------------------	---	----------------	--	--	----------------------	-------------------------	-------------------

FE: the X'X matrix has been found to be singular and a generalized inverse vas used to solve the normal aquations. Estimates followed by the latter 'B' are based, and are not unique estimators of the parameters.

0.14105961

0.9088

AREA HETHOD

METHOD

0.10220654

0.16282069

0.0021

0.12781685

0.12602511

0.0029

0.12357629

0.0047

0.13615601

0.12007094

7.527.521.0

0.0001