Review of effects from fishing mortality on protogynous species and implications for management

> Sustainable Fisheries Div SEFSC NMFS Miami Lab



### Sex transition ...

#### Gag

- Sequential hermaphrodite protogynous (female  $\rightarrow$  male)
- Sex transition
  - Exogenous clues: size related to group, behavioural ...
  - Endogenous clues: absolute size, age, ...
  - Combination
- Fishing effects
  - Sex ratio changes
  - Size-dependent fecundity females & males
  - Spawning aggregation size
  - Sperm limitation ?
  - Mating behavior and life history pattern ?

### Research & Methods

#### Observations

- sex ratios,
- fecundity output (fem)
- mean size by sex
- Modeling
  - Huntsman & Shaaf 1994 (Grasby)
  - Armsworth 2001(coral trout Great Barrier Reef)
  - Alonzo & Mangel 2004 (California sheephead)
  - Heppell et al 2006 (gag Gulf of Mexico)

#### Huntsman & Shaaf

- Simulation model of Grasby (E. cruentatus)
  - Indicator: quantity of fertilized eggs from population (less influence by external factors, ie environment).

$$E' = Q * O$$

$$O = 1.2512 * SSB_{f_Z} + 24.58$$

$$Q = \frac{\frac{SSBm_Z}{Fec_Z}}{\frac{SSBm_M}{Fec_M}}$$

Compensated and uncompensated protogyny

- 1. Uncompensated: F resulting changes of sex ratios did not trigger increase transition or early onset of maturation.
- 2. Compensated protogyny, fixed maturation: rate transition to male change as function of numbers in sex ratios (N fem: N mal).
- 3. Compensated protogyny, maturation varies: female maturation changed with increasing F
- 4. Compensated protogyny, fixed maturation: rate transition to male change as function of biomass of sex ratios (SSB fem: SSB mal).
- 5. Growth compensated protogyny, K varies: population growth rate increase with increasing F.



FIGURE 2.- Responses of the proxy for fertilized egg production to fishing in simulated gonochoristic and protogynous populations.

#### Conclusions Huntsman & Shaaf

- a. Protogynous stocks may be far more vulnerable to F compared to gonochoristic stocks
- b. Uncompensated protogyny: lose reproductive capacity as F increases
- c. Compensation by numbers or biomass sex ratios reduces the impact of F on protogynous stocks.

## Armsworth 2001

Simulations coral trout (Plectropomus leopardus)

Sexual transition control by

- endogenous development schedule fixed, thus proportion of fem: mal @ age is constant
- 2. social factors, male transition a function of the mean age of the population.
- Meta-populations with a pool dispersal of pelagic larvae
  - Simulated a population with a partial open (larvae recruitment from outside, spawners can migrate.

### ... Armsworth 2001

Fig. 1. All figures were produced using the data given in Appendix A. (a) Cross-sections of the equilibrium surface plotted against  $aF_0M_0$  for  $\xi\beta/\alpha = [0, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6]$ , given in increasing order of vertical intercept; (b) projection of the outlines of the cusp onto the  $(aF_0M_0, \xi\beta/\alpha)$  plane. The curves separate parameter space into three regions.



#### Alonzo & Mangel 2004

- Individual based simulation  $\rightarrow$  Size distribution
- Individual/population → Fecundity
- Population → sex ratio, fertilization rate, pop size
   (F)
- One or several mating sites with a common Larval pool
- California sheephead (*Semicossyphus pulcher*)

#### ... Alonzo & Mangel 2004



#### . Alonzo & Mangel 2004

Measures of SSB per recruit

- Egg production SSB fem
- Sperm production SSB mal

$$p_F = \frac{S}{1 + (\kappa E + \chi)S}$$

- Effects of Marine reserves (% population protected)
- Fixed sex-transition pattern







#### Conclusions Alonzo & Mangel

- a. Protogynous stock with fixed sex transition pattern will respond differently that an equivalent dioecious stock to F.
- Response modulated by mating system, reproductive behavior, pop dynamics.
- c. Protogynous stocks more sensitive to mating aggregation size and sperm limitation.
- d. Traditional spawning per recruit measures are especially problematic for sex-changing spp
  - Total SSBmal ~ SSBfem depends largely on sperm/egg fertilization ratio and sperm size production.
- e. Marine reserves ? Dependent on mating systems, etc. + effort redistribution and dynamics of stock.

# Heppell et al 2006

- Simulations on Gag GOM (using 2001 SA results)
- Migration of females to spawning sites, residence of males in spawning sites (Koening & Coleman) → dynamic segregation/aggregation of mature stock in time-space.
- Model: pop dynamics gag ...
  - Fertilization success declines with the proportion of males in population (asymptotic)

### Fertilization rate



Fig. 3. Model relationship between fertilization rate and sex ratio (proportion of males), based on two different levels of fertility function,  $\theta$  (Eq. 8).

## Management scenarios

#### Management options

- 1. Status quo F level 2001 SA
- 2. Increase min-size: reduce F age1 and immature
- Size limit + spawning season closures (Jan-Mar): zero F for 1<sup>st</sup> quarter
- Size limit + spawning closure (zero F for males, zero F 1<sup>st</sup> quarter females)
- 5. Spawning closure + redistribution of effort outside ....
- 6. Near-shore closure (zero F immature and females)
- 7. 50% reduction on F.



Projections of spawning stock size (mature) for 2 levels of F, and 2 levels of fertility rates. From Heppell et al 2006 Fig 4.



