SEDAR10-RD-02

A Reformulation of Linear Models

J. A. Nelder

Journal of the Royal Statistical Society. Series A (General), Vol. 140, No. 1 (1977),
48-717.

Stable URL:
http://links jstor.org/sici?sici=0035-9238%281977%29140%3A1%3C48%3AAROLM%3E2.0.CO%3B2-8

Journal of the Royal Statistical Society. Series A (General) is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Jan 17 10:19:38 2006



SEDAR10-RD-02

J. R. Statist. Soc. A, 48
(1977), 140, Part 1, p. 48

A Reformulation of Linear Models

By J. A. NELDER
Rothamsted Experimental Station, Harpenden, Herts, U.K.

[Read before the ROYAL STATISTICAL SocieTy on Wednesday, November 10th, 1976,
the President, Miss STELLA V. CUNLIFFE, in the Chair]

SUMMARY

Dissatisfaction is expressed with aspects of the current exposition of linear models,
including the neglect of marginality, unnecessary differences between models for
finite and infinite populations, failure to distinguish different kinds of random terms,
impositon of unnecessary and inconsistent constraints on parameters, and lack of an
adequate notation for negative components of variance. The reformulation,
exemplified for crossed and nested classifications of balanced data, and for simple
orthogonal designed experiments, is designed to integrate finite and infinite
populations, random and fixed effects, excess and deficit of variance, to avoid
unnecessary constraints on parameters, and to lead naturally to interesting hypotheses
about the model terms.

Keywards: LINEAR MODEL ; FIXED EFFECT; RANDOM EFFECT,; VARIANCE COMPONENT,; CANONICAL
COMPONENT; MARGINALITY ; CONSTRAINTS; INTRINSIC ALIASING ; EXTRINSIC ALIASING

1. INTRODUCTION

THis paper has arisen from a personal dissatisfaction with several aspects of the current
exposition of linear models. Such models, rooted in classical least-squares theory, and more
recently extended to include multiple error terms and random effects, form a fundamental
tool, perhaps the fundamental tool, for the practising statistician. It is, therefore, vital that
we have a clear and agreed exposition of the subject. In spite of the enormous literature I do
not believe that we have such an agreed exposition, for reasons which will be enlarged upon
in Section 2. There follows in subsequent sections a development of linear models which I
believe to be free of inconsistencies, and one which is tied as closely as possible to the structure
of data as collected in experiments and surveys.

1.1 Notation
We shall use capitals 4, B, C, ... to denote factors classifying the populations under dis-
cussion. A factor divides the elements of a population into disjunct sets conventionally indexed
by 1,2,3,.... We shall associate the indices i, j, k, ... with 4, B, C, ... respectively. Factor 4
has N, levels in the population, and n 4 levels in a sample from that population, so that n, <N .
Structures defined by the factors are written using the notation of Wilkinson and Rogers

(1973). A structure implies a linear model; thus the nested structure 4/B gives the model
formula

A+A.B,

where A.B means “B within A because it is accompanied by one main effect 4 only. The
corresponding crossed structure 4 * B gives

A+B+A.B,

where A. B is now the interaction of A and B because it is accompanied by both main effects.
A simple term such as B in a model formula corresponds to a one-dimensional set of
parameters f3;, and a compound term such as 4.B exemplifies a multi-dimensional set («f);;.
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Estimates of the parameters will be written with the corresponding Latin letters, e.g. b;. The
population of elements will be denoted by x with suitable subscripts, and a set of data values
obtained by sampling x will be denoted by y.

We shall consider sampling schemes defined by the selection of levels of factors, and shall
distinguish complete from incomplete sampling. Incomplete sampling has n< N and implies
a random sample of » levels from the population of N. The corresponding parameters in the
linear model are random variables. Complete sampling implies that » = N, so that N is
necessarily finite. The idea of randomness now disappears, and the corresponding parameters
in the linear model correspond to what are usually called fixed effects. Note that if we select
a subset n non-randomly from a population of size N’, then our inferences are necessarily
conditioned by the » actually selected, so that N is reduced from N’ to n.

2. REASONS FOR DISSATISFACTION
2.1. The Neglect of Marginality

When two factors, 4 and B, say, index some data by rows and columns and the model
A+B+A.B is to be fitted by least squares, there is no disagreement about the arithmetic of
the analysis of variance when the data are orthogonal, though there is disagreement about the
underlying algebra and its interpretation, a disagreement which is the subject of this paper.
When the data are non-orthogonal the algebraic disagreement leads to divergencies in the
arithmetic also, as Francis (1973) showed. When quantitative covariates (explanatory variates)
are involved in a linear model, the test for the contribution of any one, given that the others
are to be in the model, is obtained by fitting first all the covariates and then omitting the one
to be tested, deriving the appropriate sum of squares (S.S.) with 1 d.f. as the difference in
residual sums of squares. There is usually no special ordering among the covariates, so that
it makes sense to fit them in any order. However, with the sets of qualitative variates generated
by factors, as exemplified in 4, B and 4. B, i.e. two main effects and their interaction, a special
ordering does exist. A4.B represents a two-way array of parameters («f);;; in the space of all
linear contrasts between these parameters are the two sub-spaces representing contrasts between
row totals, and between column totals. The two sub-spaces underlie, of course, the two main
effects 4 and B. Note that 4 and B are sub-spaces of the space of 4.B independently of the
design matrix of the observations; thus their relationship to 4.B is different in kind from the
sort of collinearity (corresponding to confounding) which depends upon the particular form
of the design matrix. 4 and B will be said to be marginal to A.B; similarly 4, B, C, A.B, A.C
and B.C are all marginal to 4.B8.C. The term for the grand mean is marginal to all terms
involving factors.

A consequence of marginality is that the interpretation of, say, 4. B will, as noted above,
depend on which terms marginal to it precede it in a model formula. Consider the three
formulae

4.8
A+A.B
A+B+A.B

The first describes a two-way array of parameters indexed by combinations of levels of 4
and B (e.g. the expected values of the cell means); the second extracts parameters representing
the average effect of 4 so that 4. B represents parameters for residual B-within-A effects (such
a model is relevant when B is nested within 4); the third has both main effects removed so
that A.B represents an interaction term and a cross-classification of 4 and B is implicit.
These apparent ambiguities in the interpretation of 4.B may seem at first sight disconcerting,
but they will be found to mirror what happens numerically when an algorithm is used for
fitting the models. If, for example, the term A4 is fitted first then the subsequent fitting of 4.8
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will reveal explicitly that there is now no further information about those contrasts in 4. B that
represent contrasts between rows. There is thus no alternative to omitting these contrasts
when fitting A. B, and this changes the interpretation of 4.B accordingly.

If the marginality relations are ignored and A4 is fitted after 4.B, then of course it will be
found that there is no information about 4 once A4 . B has been fitted, because 4 is a sub-space
of A.B. Thus 4 must be omitted from the model, and the effect is algebraically equivalent to
setting the A effects to zero; it follows that, as Searle (1971) has maintained, the only possible
value for the S.S. for 4 eliminating 4. B is zero. However, in a very widely used program for
fitting linear models, BMDX64 (Dixon, 1970), non-zero S.S. for A eliminating 4. B, etc. are
given. How has this come about? The answer is that, in the initial fitting of 4. B, constraints
are imposed on the parameters; the undesirable effects of imposing constraints will be con-
sidered in more detail in Section 2.4. Two points are relevant here: one is that it is not always
obvious what the relevant constraints should be, particularly when unequal cell numbers
occur in the data; the other, much more fundamental, is that it leads to models where an
interaction, 4.B say, is postulated to exist whose marginal effects, 4 or B, are to be null.
I contend that such models are of no practical interest. Thus a S.S. for A eliminating 4.B,
though calculable given certain assumptions, makes no practical sense. I assert that the general
rules for calculating S.S. must take account of marginality, the meaningful S.S. in this example
being those for A+ B, A eliminating B, B eliminating A and A.B eliminating 4 and B.

2.2. Finite and Infinite Populations

Linear models have been developed both with infinite and finite populations in mind.
Infinite populations are classical; finite populations have been mostly explored in the context
of randomization, first by Fisher, followed by many others, see e.g. Eden and Yates (1933),
Welch (1937) and Pitman (1938) for early references. In textbooks these two developments
usually exist as uneasy bedfellows, with exact distribution theory for one and approximate
theory for the other. In the literature the present distinction, between finite and infinite
populations, has not always been clearly separated from the two other, logically quite separate,
distinctions, namely those between fixed and random effects, and between sample and popula-
tion. Thus Cornfield and Tukey (1956), in a paper that gives many valuable insights, attempt
to equate finite populations with fixed effects, and infinite with random effects. However, if
this equation is accepted it makes impossible the development of a framework that includes
randomization models (which use finite populations and random effects) as a special case.
The point is that though fixed effects must correspond to a finite population of levels, and in
fact comprise the whole of that population, random effects can be defined by sampling from
a population of levels which may be either finite or infinite. We shall equate fixed and random
effects, not with finite and infinite populations, but with complete and incomplete sampling.
This gives a unified development for both finite and infinite populations and, in particular,
displays the often awkward “corrections for finite populations™ in variances as just a special
case of a general formula.

2.3. Two aspects of a Random Effect

Classical least squares has a model containing only one random term, the residual.
Remaining terms correspond to what are now called fixed effects. Developments in experi-
mental design produced linear models, e.g. for split-plot designs, which contained more than
one random term, together with treatment effects regarded as fixed. Then more general
models appeared with arbitrary combinations of fixed and random terms—note that again
marginality relations must be recognized, because a model having A4 or B or both random but
their interaction fixed makes no sense. The classical model became known as a fixed model
(illogically, because the last term is random), the model with all terms random became a random
model, and all other types of model became mixed models (Eisenhart, 1947). This generaliza-
tion, however, fails to make an important distinction between two kinds of random term.



1977] NELDER - Reformulation of Linear M oc?eE DAR10-RD-02 51

One kind is a component of error; no interest attaches to individual values, only to their mass
behaviour. The other kind of random term represents an effect of interest (a *“‘treatment”
term) which is nevertheless specified in terms of a sample from a population; an example might
be a set of measuring instruments in a measurement-error trial, chosen at random from a
larger set. Individual values may be of interest as well as the variance component that des-
cribes the population. Random terms of the first kind describe the error structure of the data,
that is they classify the experimental units by assigning contrasts between the observations to
various error strata (Nelder, 1965). Sums of squares deriving from them form the denomina-
tors in F-ratios for which the variation of either fixed terms or random terms of the second
kind form the numerators. Again a suitable theory must embody this distinction.

2.4. Constraints

Hartley and Searle (1969) drew attention to what they called a “discontinuity” in that an
expected mean square in a nested classification sometimes contained a term with a certain
variance component and sometimes did not, according to the assumptions made about the
effects. This difference is a simple example of a much wider problem about the definition of
variance components arising from random terms in a model. It is common (though undesir-
able) in setting up a model with fixed effects, say ¥;; = uw+ ;4 f3;, to constrain both the as and
Ps to sum to zero, a property borrowed from their estimates, a; and b;. When such constraints
are carried over to random effects, however, inconsistencies immediately arise. Thus
Kempthorne and Folks (1971) describe the mixed model for the two-way classification with
interactions (4 fixed and B random) in which the interaction effects y;; are first defined as
independent N(0, o) variables and then have their B margin y; constrained to be zero. These
mutually inconsistent properties are confusing to the beginner and indeed to the expert as well.
They lead to unnecessary complexity in the rules for deriving expected mean squares (see e.g.
Bennett and Franklin, 1954). They also lead to unrealistic hypotheses, already touched on in
Section 2.1, whereby the variation in a margin is hypothesized to be zero though real inter-
actions are supposed to be present in the body of the table. The theory we shall develop
contains no such constraints, leads to simpler rules for expected mean squares and to realistic
hypotheses rather than unrealistic ones.

2.5. Negative Components of Variance

With infinite populations the model for a nested classification A/B implies that the expected
mean square (EMS) for 4 cannot be less than that for 4.B (B within 4). However, with
randomization models based on finite populations this is not so. If 4/B is now the block
structure of a randomized block experiment (4 = blocks, B = plots within blocks) and we
unfortunately lay down the blocks to lie along a trend instead of across it, then the EMS for
A under randomization will be less than that for 4.B. The notation developed for infinite
populations is inadequate to express this, except by allowing a negative component of variance
0%, which many find unhelpful. However 0%, as a variance component, is in fact not a variance
but an excess of variance in the A margin of the A. B table over that internal to the table, and
this “excess” can be negative even in the population, implying simply that the margin is less
variable than would be expected from the internal variation. Components of excess of variance
have been called Z-quantities by Wilk and Kempthorne (1956), f/~quantities by Nelder (1965)
and canonical components by Fairfield Smith (1955) in his unjustly neglected monograph.
We shall develop a notation ab initio which allows these quantities to appear in a form which
does not exclude their being negative.

3. THE REFORMULATION

3.1. Basic Scope

In reformulating linear models we shall restrict the development considerably in order not
to obscure the basic points by algebraic complexity. We shall restrict ourselves to first- and
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second-order moments only and deal only with balanced structures having equal numbers in
all sub-classes. We distinguish observational data (as collected in surveys) from experimental
data (as collected in experiments). The investigator may choose how to clas sify observational
data, i.e. define the factors and their levels, but he has no control over the value of a factor
level for any particular observational unit. The factors and levels chosen will be used both
to characterize the population and to draw samples from it. When, however, experiments are
done on a set of units, treatment factors and levels are defined by the investigator, who can now
control the values of these factor levels for each unit. There may exist, of course, prior classifi-
cations by observational-type factors (block factors), and balancing of the treatment-factor
levels with respect to the block-factor levels can lead to very complex sampling schemes. The
form of two such sampling schemes for finite populations will be discussed in Sections 7.1 and
7.2. We discuss first models for observational data with simple nested and crossed structures,
and begin by describing the underlying populations.

4. SiMPLE NESTED STRUCTURE
4.1. The Analysis of Populations

We are concerned with the structure 4/B where the levels of 4 index a set of sub-popula-
tions and those of B the elements within a sub-population. We shall be concerned with those
characteristics of the sub-populations which do not depend upon knowing which particular
level number has been assigned to which sub-population. The assumption is that if some sub-
set of the sub-populations, or of elements within them, requires to be distinguished a new
factor would be set up to make the distinction. Both the set of sub-populations, and of
elements within a sub-population, can then be treated as defining a probability distribution.
If either set is finite then the members are treated as equi-probable. An infinite set is assumed
to have a probability distribution of the scale-and-location type, i.e. f{(x—u)/c}, with finite
variance. We shall assume that the scale parameter associated with a B sub-population does
not depend on the level of 4 (though of course the location parameter may).

Write x;; for an element taken at random from the structure. If both 4 and B have finite
numbers of levels then i is taken at random from 1,2, ..., N, and j from 1,2, ..., Ng. The mean
of the ith sub-population is x; = E;(x;;) and the grand mean is x_ = E;(x;;). The suffices of
the expectation operators denote the extent of the averaging.

4.1.1. The population linear identity
For the A/B structure this takes the form

X=X+ —x )+ (g5 — %) “4.1)

and expresses an element as the sum of three components, the grand mean, the deviation of
the ith population mean from the grand mean and the deviation of the element from the ith
population mean. For finite N, and Ng the population linear identity can also be regarded as
a linear transformation of the N, N elements to three sets of contrasts with numbers in each
set

1, (Ny—1) and N, (Ngz—1)

respectively. (We include x , conventionally, as a contrast to complete the set of linear com-
binations.) We define the variance components of the structure by

0% = 2, —x)?

4= Ny,-1
A4
4.2)
o2 o Zif(Kag—%1)?
N4(Np—1)
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when N, and Ny are finite, replacing averaging by integration over the corresponding suffix
when either becomes infinite. Note that x_is by definition a constant and so generates no
variance component.

4.1.2. The population quadratic identity
This is derived by squaring the linear identity and taking expectations to give

Eyj(xi5—x P = Egy(o;, —x P+ Ey(xy5—x;)% 4.3)
For finite N, and N the r.h.s. becomes, in terms of the variance components,
1 1
var (x;)= aﬁ(l _—N:) + cr?w(l _N;)' 4.4

(Daniels (1939) argued that the variance components should be defined with divisors N, and
N 4 Ng respectively, so that (4.4) becomes

var (x,-j) = 0'?4_ + GELB'

The choice is to some extent a matter of convention and convenience. We shall argue below
that the fundamental quadratic quantities are the canonical components rather than the
variance components, and that for this development the definitions given are more convenient.)

We now develop two alternative representations of the second-order statistics of the
structure, and then derive the relationships between all three.

4.1.3. The covariance structure

Two elements, x;; and X, from the structure 4/B may have one of three possible relations:
either they are identical (i =i’, j =j'), or they belong to the same 4 sub-population but are
not identical (i =i’, j#j'), or they belong to different A sub-populations (i#i"). There are
therefore just three distinct covariances between elements, which we write in the form

cov (xijs xij) = var (xij) = p1a0?,  cov(xy, xij') = py 0% cov (xij, xi’j’) = pa’. 4.5)

4.1.4. The population linear model

The first-order statistics of the population are summed up by the x;, the sub-population
means, and x_, the grand mean, and any expectations of linear combinations of the x;;s can be
simply expressed in terms of them. We set up a population linear model to provide an
analogous facility for quadratic combinations. We express x;; in the form

Xy = pt+a;+ By, (4.6)

where p, o, B;; are all random variables in a certain formal sense to be explained. It is assumed
that the components on the r.h.s. are all uncorrelated (e.g. not only p and «; but also «; and
ag, etc). The components u, «, 8 of any pair of elements x; and x;; are then either identical
oruncorrelated. Itis easy to show that if we assign to the components the following “variances”
then the covariance structure (4.5) is reproduced:

¢ =varp=po?; ¢ =varo;=(p—p)o*; ¢,p=varfy = (pa—pyo> CY))
The ¢ quantities will be termed canonical components, and their interpretation will be
discussed further below. First we establish relations between the three forms of the second-

order statistics, namely the variance components (4.2), the covariances (4.5) and the canonical
components (4.7).

4.1.5. Second-order statistics; the three forms

The derivation is most easily done for finite N, and Np, results for infinite populations
following by letting N—oco. Consider first the relation between ¢ = po? and the variance
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components. Now
pa? = cov (X5, Xyy)
= Em ? ? (rg5—x) (pp—x AN 4(N4— 1) N%}.
If the summation is written in the form

DIDIPIPIEPIPIPY

Tv gy =gy

the first term vanishes identically and the second gives
- 23 (5. —x PN (N4~ 1)}

Thus ¢ = po?=—0%/N,.
imi 2 g2 4B 2 o2 4.3)
Similarly we find $4=(p1—p)o®= AN, b4 = (p1a—p) o® = o%p.

Note also the relations
PP =¢; po®=d+dy; prot=¢+dat+dap. 4.9

4.1.6. The canonical components

The canonical components are the formal variances of the components of the population
linear model, formal because varu is necessarily non-positive and varo; will also be so if
0% <0%p/Np. However any calculation of (co)variances of linear functions of the xs, or of
expectations of quadratic functions is facilitated by using these formal quantities. The ¢s will
coincide with the variance components if N, and Np both tend to infinity, when we recover
the standard infinite model with

varu =0, varo;=o%, varf;=oc%g.

The canonical components can be interpreted either via the covariance representation (4.5),
or via the variance representation (4.2). In covariance terms, var u is the basic covariance of
“unrelated” xs, var o, is the excess covariance of elements in the same 4 sub-population over
the basic, and var f;; is the excess of the covariance of identical elements over that of different
elements in the same sub-population. In terms of variances, var B;; is the variance within 4
sub-populations, var o, is the excess variance in the means of the 4 sub-populations over the
corresponding variance within those sub-populations, and var u can be interpreted in the form

E(p®) = x2—0%/Ny,

where the r.h.s. gives the excess of the square of the grand mean over the variance derived from
the A sub-populations. The term ‘‘canonical component”, adopted from Fairfield Smith
(1955), is thus a convenient abbreviation for ‘“‘canonical component of excess variation”.

4.1.7. The difference between the linear identity and the linear model

The similarity of the structures of the linear identity and the linear model makes it tempting
to equate corresponding terms. This temptation should be resisted, because, for example, x_
in the linear identity is not the same as p in the linear model. In fact

X, =pto +:B..9
X=X, =;—a+p;—B, (4.10)

Xgj— X5, = lgi;i —Bss
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so that only the last terms are similar. The others can be made similar by constraining « and
B;. to be zero, a procedure often followed. However, such a procedure induces correlations
between the as and Bs when the populations are finite, and so spoils the simplicity of the
linear model. Without constraints there are, of course, more parameters than elements, and
the nature of the subsequent non-uniqueness of the parameters is seen in equations (4.10).
The set (u, o, 8) and the sets (o, B;) are intrinsically aliased; aliased, because there is no way
in which the contributions of the elements within a set can be distinguished and intrinsically
aliased, because the aliasing is independent of the way in which the elements may be sampled
to produce estimates of the parameters. Intrinsic aliasing is closely analogous to non-identifi-
ability in econometric models.

4.2. The Analysis of Samples

Suppose we generate a sample of values y;; from our 4/B structure, where i =1,...,n, and
j=1,...,np If N, and N are finite this amounts to choosing a sample of n , levels of 4 and
ng levels of B at random without replacement. If either becomes infinite it amounts to choosing
a sample of »n from the appropriate distribution. Note that n< N, with equality implying that
the sample is complete with respect to that factor.

4.2.1. The linear and quadratic identities
The sample gives rise to linear and quadratic identities

Vij =Y.+ =y)+ 5= 4.11)
2V =2+ 20—y P+ X 0y—:)% 4.12)
ij ij 7] ij
where dots denote averaging over the sample, which now takes the place of expectations.

4.2.2. The analysis of variance

The sample quadratic identity is of course the sample ANOvA, and we can derive the
expected mean squares (EMS) of its components by substituting the population linear model
and using (4.7). Thus, for example,

Eiiglg@t.—y..)z = Eifzi: ? (w+o;+p;—p—a—B)
=ngkE; %‘: {(s— )+ (B —B%
=npllng—1) b4+ m4—1) b 45/n5]

=@ —D[dsp+npdl

This derivation illustrates the usefulness of assuming that the o; and B;; are all uncorrelated
random variables. The resulting table is thus

Component d.f. EMS
Mean 1 bap+np patngnp(d+p?)
4 ng—1 4B+Rp Py
A.B ngnp—1)  ap

The EMS show the central role of the ¢s. Note the separation of the ¢s, which are population
quantities, from the multipliers, which are sample quantities; also that the EMS for the mean
and A4 contain not only the canonical component corresponding to the model term in question
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but also all those corresponding to terms to which they are marginal. This reflects the fact
that y_is p+a+pB, and y;—y, is o;—o +pB; —B. (averaging now being over the sample).
As noted above, ¢, appears as the expected excess variation between 4 means over that
between B within 4 ; however, because ¢ 4 can be negative, this excess can be a deficit, indicat-
ing that variation between levels of 4 is less than would be predicted from variation between
levels of B within levels of 4. Such deficits are not just a theoretical oddity, but represent
actual occurrences. Consider, for example, litters produced by females of a genetically uniform
inbred line. Competition for food may generate negative correlations within litters and may
give p;<p, i.e. ¢,4<0. Note that while we might, for the theoretical population, make
N,—o0, i.e. envisage a hypothetically infinite population of females, it would be pointless
to make Np—00, i.e. to regard a litter as a sample from a hypothetically infinite litter. Thus
an infinite population for the elements x does not imply an infinite population of levels for all
the factors in the structure. Note the two special cases for the EMS (see (4.8)):

(@) If Ng—> oo, with ¢ 45 remaining finite, ¢, becomes the variance component o2, so that
the excess variation, as measured by the canonical component, must be non-negative.

(i) If np = Np, i.e. B corresponds to a fixed effect, then ¢ 5+ Npd, = Ngo and it is
common in many accounts to consider the hypothesis that o, is zero, which involves compar-
ing the mean square for 4 not with 4.B, but with some measure of replicate error. The
present approach, in which the mean square for 4 is compared with that for 4.B is a test
not for o2, but for ¢ ,, and answers the question ““are there consistent effects of 4 over and
above the variation described by ¢ 45 ?”

Note that if 4. B is postulated to exist then A4 effects will exist in consequence. It is thus
pointless to formulate the hypothesis that A4 is zero; the relevant question is “does the varia-
tion in A exceed that expected from that of 4.B?” and this requires the comparison of the 4
mean square with that for 4.B.

4.3. Models with unknown Ns

Sometimes the numbers of levels N, and Ny in the population are clearly defined, e.g. as
would be so if litter size in the above example was fixed (clutch size in pigeons, which is always 2,
would be a better example). Consider, however, a field experiment laid out in randomized
blocks; the definition of units in terms of blocks and plots is to a large extent arbitrary and the
values assigned to N, and Ny are artifacts of the particular layout adopted. In such circum-
stances it is better to define the ¢s in terms of the (co)variances o2, p, and p. The previous
arguments are otherwise unaffected, and the ¢s remain the central quantities.

5. SIMPLE CROSSED STRUCTURES

The structure is now 4 * B, where the levels of 4 index a row population and those of B a
column population. Elements are defined for each intersection of a row and column.

5.1. The Analysis of Populations

Both rows and columns define probability distributions as before, and these may be
finite or infinite. The population of elements in a row (column) has its mean dependent
on the row (column) index. The scale parameter is assumed not to depend on the indexing.
We define 6% and o% as the variance components of rows and columns respectively and o2,
as the corresponding interaction component. Again we write x;; for an element taken at
random from the structure.

5.2. The Linear and Quadratic Identities
These are

X=X, 4 (065, =X )+ (%5 —x )+ (o — X5, — X5+ %) CRY
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and

Ex3;= Ex?+ E(x; —x )+ E(x;—x )+ E(x;—X;, — X 3+ X )? (5.2)
which for finite N, and Ny can be written
1 1 1 1
=21 —— 21— 2 - —_
var(x;) = o A(l NA) + aB(l NB) +0o% B(l NA) (l NB). 5.3)

5.3. The Covariance Structure

There are now four distinct kinds of pairs of elements; identical, non-identical in same
row, non-identical in same column, not in same row or column. The four covariances will be

written:
COV (X35 X;) = var (xy;) = p1a 0% COV (X35, Xirg) = pp 0°
cov (Xyj, Xi7) = py 0%, cov (¥, Xpy) = po’
The four canonical components are related to the variance components by

2 2 2 2
p=—ad By J4B = g _ 53 T4B
N, Nz NyNg N,
2
[0}
= o2, _Z4B = o?
$a= 0% Ny’ bap=04p

and to the covariances by
p120% = b+d +dp+dap pa0®=d+ép
P10 = b po*= .
5.4. The Population Linear Model
This takes the form
Xi5 = pt o+ B+ (of)y
with the components independent and assigned variances
varp = po? = ¢, var B; = (pz—p) 0* = ¢35
varo; = (py—p)o® = ¢4, var (¢f);; = (pra—pr—pat+p) 0 = b 4.

Thus var (f);; is the interaction variance, var §; is the excess variance in the B margin over
the interaction variance, var o; similarly for the 4 margin, while var s+ x? gives the excess of
the square of the grand mean over the sum of the interaction variance and the two marginal
excess variances. Again the terms in the population linear model are not to be equated to
those in the population linear identity.

5.5. The Analysis of Samples

If we generate a sample of values, y;;, from an 4 * B structure, with i=1,...,n4 and
j=1,...,ng, then we have analogous linear and quadratic identities and expected mean
squares as follows:

Component d.f. EMS
Mean 1 buptnpgdatngdptng ng(P+p?
A ny—1 4B +Np Pa
B nB—l ¢AB+nA ?SB
A.B a—1)(mp—1) dup
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Again each EMS contains the ¢ with corresponding suffices, and also contributions from ¢s
of all terms to which that term is marginal. The forms of the EMS hold for finite or infinite
populations and for complete or incomplete sampling, i.e. for fixed or random effects. Com-
pare this uniformity with the diversity produced by a commonly used parametrization. The
following table is adapted from Tables 16.9, 16.10 and 16.11 of Kempthorne and Folks (1971):

EMS
A fixed A fixed A random A random
Component B fixed B random B fixed B random
A np >4 o%gt+np X4 Hpoy o%p+ngod
B nyOn ny % oipt+ns>p oiptnyod
A.B AB o%p o%p o%p

In this table
ZA = Z a%/(nA"' 1), ZB = 2 b?/(ns— 1), ZAB = Z (ab)%j/(”A- 1) (np—1)

and the ¢’s are variance components.

The apparent differences in the forms of the EMS according as the factors are treated as
fixed or random is a source of considerable confusion to students. These differences arise
from the imposition of constraints on the terms in the linear model which have the effect of
shifting variation from one term to another. The above exposition shows that, properly
parametrized, the EMS are completely regular; furthermore, because the ¢s above the lowest
level (i.e. ¢, ¢4 and ¢ ) can be negative with finite populations, implying margins of less than
expected variability, hypotheses that this is so can be stated naturally, something that is
impossible when the standard notation of variance components is used. This development also
exposes clearly the marginal relations between the main effects and their interaction, and
shows that if the interaction is assumed to be present then the only interesting question to be
asked about the marginal differences is whether they are larger (or smaller) than that predicted
by the interaction, not whether they are larger than zero.

6. ESTIMATION PROCEDURES

The confusions and inconsistencies that can arise from defining linear models with con-
straints on the parameters have been discussed above. It remains to present the fitting of
linear models without constraints in a way that makes the process simple and straightforward.
The idea of sequential fitting of parameters is vital ; although the mathematical formulae can be
written down as though the fitting of a model yields simultaneous estimates, an algorithm for
the process will in fact proceed parameter by parameter. Consider, for example, the Gauss—
Jordan method of elimination of the SSP-matrix; for each parameter we sweep out the corre-
sponding row-column of the matrix. Or rather we do so if there is any information about the
parameter, given the other parameters already in the model. If there is no information, the
pivot (diagonal element) will be zero (we ignore problems of rounding error); in the absence
of information we have no alternative but to omit the term involving this parameter from the
model. Omission is algebraically equivalent to setting the parameter value to zero. Absence
of information is equivalent to aliasing of the parameter with some linear combination of
parameters already fitted. The important point is that the residual S.S., the fitted values and
the estimators of any estimable contrast are invariant with respect to the order of fitting of the
parameters. It is useful to distinguish two kinds of aliasing, extrinsic and intrinsic. Intrinsic
aliasing occurs, for example, when we consider the fitting of the interaction 4. B after the fitting
of main effects 4 and B. As pointed out in Section 2.1, the (n4n5—1)-dimensional space of
the contrasts in the two-way array of effects («8);; contains as sub-spaces the (n,—1) and
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(np—1)-dimensional spaces of contrasts for the main effects «; and B; respectively, and this
inclusion of the sub-spaces in the 4. B space is independent of the design matrix, so that the
corresponding aliasing will always occur. Extrinsic aliasing is a function of the design matrix;
thus for the unbalanced design consisting of the three points marked with a cross in the diagram

oy —op is aliased with B;—pB; and oy+ay—2a5 with B;—2B,+p; Implementations of
algorithms for the sequential fitting of linear models need not provide a row-column in the
SSP matrix for intrinsically aliased parameters or comment on their existence, which can be
deduced from the form of the model without knowing the design matrix. Extrinsically aliased
parameters need to be pointed out as a warning to the user. Note that the arguments about
aliasing carry over unchanged to generalized linear models (Nelder and Wedderburn, 1972),
because the pattern of aliasing is a function solely of the design matrix and the model for the
linear predictor, and does not depend on the error distribution or the link function. It thus
applies, in particular, to log-linear models with Poisson errors, and logit models with Binomial
eITOrsS.

7. LINEAR MODELS FOR RANDOMIZED EXPERIMENTS

We now turn from linear models for observational data to consider the corresponding
models for designed experiments. The general approach will be that of Nelder (1965a,b)
whereby a treatment structure is imposed on an existing block structure. We shall not assume
unit-treatment additivity, however, and will restrict discussion to the two simplest designs,
the completely randomized and randomized block experiment.

7.1. Completely Randomized Experiment

Experiments imply a set of experimental units (plots, animals, plants, etc.) to which are
applied a set of treatments. Consider the simplest type of experiment in which ¢ treatments are
applied to »¢# units, each treatment occurring # times. We consider a population consisting of
the conceptual #¢? yields obtainable from applying any of the treatments to any of the units.
Unlike populations of survey data, which may be, at least in theory, wholly ascertainable, such
populations for experimental data are necessarily non-ascertainable, and only the sample
population of items is available. We now consider the aliasing that follows from this.

The diagram shows the theoretical 6 x 3 table of yields for 6 plots and 3 treatments, where
an actual experiment produces yields in the starred positions:

Treatment

1 2 3

1 X ¥  x X
2 X X X ¥

Plot 3 X X ¥ X
4 X X X *

5 xX* X X

6 X X * X

There must be, of course, one sample point per row and two per column. The population
analysis of variance is that of a treatment x plot structure, and we indicate the presence of a
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canonical component in the EMS by a cross.

Canonical components
in EMS
Component d.f. P T PT
Mean 1 X X X
P nt—1 X X
T t—1 X X
P.T (mt—1) (-1 X

The population linear model can be written as

pt o+ Bt vy

and contrasts between the n¢2 elements y,; of PT appear in all four EMS; (—1) of these con-
trasts are aliased with those of T, (nz— 1) contrasts are aliased with those of P and one ““con-
trast” with the mean term. All aliasing is intrinsic.

Consider now the sample analysis of variance. Further (extrinsic) aliasing appears, caused
by the incompleteness of the Px T table. In this table a fraction 1/¢ only of the cells is
occupied, so that the P.T “margin” (actually the whole table) is incomplete. By contrast the
P and T margins are complete because sample values occur in each row and column. However
the sets of contrasts measuring P and T are partially aliased; for the example in the diagram
oy — oty — oy + oy is aliased with B;—Bs. Generally (#—1) d.f. of the plot contrasts are aliased
with treatment contrasts. If a margin is complete the corresponding canonical component
will occur in one or more of the EMS, and the total degrees of freedom for these MS will
equal the number of parameters of the term in the population linear model. Thus since the
sample ANOVA has sz d.f. in all, the component ¢ must occur in all the EMS.

The incomplete table P.T is now identical with its P margin and hence the corresponding
contrasts are wholly aliased with each other. In agreement with this the total d.f. for the EMS
of terms containing the component ¢pp is now 1/¢ of ne2, i.e. nt. Thus the canonical com-
ponents occurring in the sample ANOVA are as follows, where starred components denote
those arising from extrinsic aliasing.

Canonical components

in EMS
Component d.f. P T PT
Mean 1 X X X
T t—1 X ¥ X X
P.T(=P) (n—1)¢ X ¥ X

The identifiable quantities are thus ¢, and ¢p+¢ps.

7.2. The Randomized Block Experiment
Let there be bt plots arranged in b blocks of ¢ plots with ¢ treatments. The population has
bt2 values with structure (B/P) % T, the factors being B = blocks, P = plots (within blocks) and
T = treatments. The population ANOVA, with the canonical components occurring in the EMS
for each line, thus has the form:

14
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Canonical components

Component d.f. B BP T BT BPT
(€)) 1 X X X X X
B b—1 X X X X
B.P b(t—1) X X
T t—1 X X X
B.T ®&-1D@¢-1) X X
B.P.T b(t—1)? X

For the form of the sample ANOVA, consider first a simple example with b =2 and t =3 and a
layout given by

T
B P 1 2 3
1 1 X* x X
1 2 X X X*
1 3 X xX*x
2 1 X X x*
2 2 X* x X
2 3 X  xX*x

The sample is again a 1/¢ replicate. All one-way and two-way margins are full, hence all
contrasts of the corresponding terms occur in full in the EMS. The three-way “margin” is
present, however, in fraction 1/t and the three margins BPT, BP and BT are identical. The
canonical components are thus present in the sample ANOVA with the following pattern, where
a starred entry denotes occurrence by virtue of extrinsic aliasing.

Canonical components

Component d.f. B BP T BT BPT
() 1 X X X X X
B b—1 X X X X
T t—1 X* x X X
B.P.T ®-1)@¢E-1 X * X * X

The three identifiable quantities among the canonical components are thus ¢z, ¢,, and
¢spt+dpr+dppp. Valid randomization means making the B.P contrasts in the T line a
random sample of all B.P contrasts (Grundy and Healy, 1950).

7.3. Conditions for a Valid Error

If the strong assumption of unit-treatment additivity is made, then ¢z = dppp = 0. The
B.P contrasts remain and these are homogeneous w.r.t. treatments by definition. However,
although a valid randomization procedure involves making the B.P contrasts which become
the treatment contrasts a random sample of all contrasts, there remains the possibility that
the rotal set of B.P contrasts does not look like a sample from a Normal distribution. We
return to this point later.

If unit-treatment additivity does not hold, we need to consider carefully what null hypo-
thesis to entertain about the treatment effects. Neyman (1935) and Wilk and Kempthorne
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(1956) both considered the hypothesis that the mean treatment difference over all plots was
zero, and both concluded that for Latin squares the standard form of variance would be biased
for testing this hypothesis. Cox (1958) pointed out that such a hypothesis was unlikely to be
of interest, and that for a more realistic null hypothesis the usual error was satisfactory. In
our terminology the Neyman hypothesis is equivalent to assuming the presence of interaction
in the unit-treatment table with the absence of effect in one of the margins. This is thus another
example of the class of hypothesis that I assert to be without practical interest. Cox’s hypo-
thesis is equivalent to saying that the treatment means do not vary by more than the variation
implied by the interaction, i.e. that the interaction variation rather than zero provides the
baseline from which to measure the treatment effects. If the treatment differences were small
compared to the interaction variation, then rather than regard them as little greater than zero,
we should be surprised that they are so much Jess than the interaction variation.

However, even if it is accepted that the usual error line is not biased on the average there
remains a problem of homogeneity. As Yates (1967) has pointed out, once an interaction with
many d.f. has been found to be appreciable, doubts must immediately arise about its homo-
geneity. If it is heterogeneous then it cannot act as a suitable denominator for testing all
marginal contrasts, but needs to be split into homogeneous pieces. When we are dealing with
an interaction term which is to act as an error, the problem is to specify what we mean by
homogeneity. If we consider the P x T table then each column gives the (hypothetical) yields
for a treatment applied to all plots. The columns might be, among many other possibilities,
(1) identical except for origin shifts, (2) independent samples from the same distribution or
(3) some mixture of (1) and (2). Unit-treatment additivity is implied by (1), but all would
produce homogeneity at least in so far that any two treatments would produce exchangeable
sets of values as regards the pattern about the mean. In the context of finite populations it is
not obvious how this definition can be made rigorous; attempts to make it so give rise to
fascinating problems, which cannot be pursued here.

7.4. More Complex Designs

All experimental designs can be regarded as producing a fraction of the non-ascertainable
population of yields classified by units x treatments. Nelder (1965b) contains a development
for generally balanced designs with unit-treatment additivity. The more general approach
developed here for the two simplest designs, whereby the intrinsic aliasing inherent in the
population linear model is augmented by further extrinsic aliasing caused by the particular
experimental sampling scheme which constitutes the design, can be extended without difficulty
to more complex balanced designs with one or more errors. Also the restricted randomization
schemes of Grundy and Healy (1950), whereby contrasts of treatments are applied to contrasts
of units, rather than individual treatments to individual units, cause no extra difficulty.

8. CONCLUSION

The objections to existing formulations of linear models made in the course of this reformu-
lation are not that they are mathematically incorrect; the objections fall into two categories,
notational deficiencies and the generation of unsatisfactory hypotheses. The reformulation
has been designed to integrate finite and infinite populations, random and fixed effects, and
excess and deficit of variance, to avoid the unnecessary introduction of constraints on para-
meters, and to lead naturally to interesting hypotheses about the terms in a model. On its
success in doing this the reformulation should be judged.
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DiscussioN oN DR NELDER’S PAPER

Mr M. J. R. HeALy (Medical Research Council): It is a particular pleasure to propose a vote of
thanks to Dr Nelder for his interesting paper which I first encountered when it was entitled
“The Great Mixed Model Muddle”. It seems to me to be a paper well in the Rothamsted tradition,
in which long practical experience of analysing data has led to the clarification of a situation which
had been rendered confused by ill-directed theoretical work. It also may serve as a long-delayed
tribute to the late Hugh Fairfield Smith whose unpublished report is another important contribution
of the same kind.

As Dr Nelder remarks, it is strange that one of our most basic techniques, one in constant use
by the majority of statisticians, should give rise to such confusion. While it could be argued that
the users (who seem largely unconcerned with the theoretical complications) are simply too naive
to understand fully what they are doing, it would seem likely that serious defects in such a wide-
spread method as commonly applied would have come to light when it led to erroneous conclusions.
That this has not occurred to any great extent suggests either that the complexities do not really
exist or that they occur only infrequently in practical situations.
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The forthright practitioner, impatient with theoretical niceties, is tempted to adopt the first
of these alternatives, but I think in doing so he would be wrong. Dr Nelder’s development of linear
model theory seems to me an excellent one, leading to simple and unified formulations of the
main results, but there is one price which not everybody will be willing to pay; this is the radical
re-interpretation of the standard linear model (4.6) to include items with possibly negative
variances. I have (perhaps I should add “as yet”) no experience of teaching this to students, but
I can see the potential difficulties. One way out would be to explain that the “independent random
variables” in 4.6 are no more than a formal device to simplify the formulae and that their
“variances™ are just short-hand for the expressions involving correlations in 4.7; but this leaves
us with the question of just what it is that we are estimating in the usual analysis. In random
models, it may well be the ¢, but in fixed models it is usually thought to be the «’s and B’s.

This usual view is of course wrong unless qualified; as 4.10 shows and as is well known the
o’s and B’s are not well defined unless constrained in some manner. Dr Nelder has stressed the
vital point that such constraints are undesirable in theory and he could perhaps have laid more
emphasis on the parallel finding that they are unnecessary in practice; I believe C. R. Rao was
the first to set out clearly the theory showing that certain properties of a linear model (such as the
residual mean square and the estimable contrasts) can be estimated without reference to constraints,
and that the latter are only needed to undo the mischief that we have gratuitously introduced
by over-parametrizing the model in the first place. Indeed, thinking in terms of constraints can
divert attention from some real problems. Suppose I measure serum iron on 1,000 blood donors
in order to determine the normal range. Subject to a suitable sampling design, I would have little
hesitation in quoting the sample mean as an estimate of the population mean. But now suppose
that I cross-classify the donors by age and sex and fit a linear model; in what sense have the
sub-group means now become non-estimable ?

Apart from the variance component story, Dr Nelder’s distinction between complete and in-
complete sampling seems to me to cut an immense amount of cackle. But here I must raise my
other alternative—if this distinction has remained confused, is it because it almost never matters?
The only experiment I can think of with one treatment factor an incomplete sample from a finite
population (the only really tricky case) is one reported by Daniels (1939) and mentioned by
Fairfield Smith and in the present paper. Dr Nelder gives an entirely realistic example involving
clutch size in birds, but it seems to me that this is best considered either as complete sampling
(as he seems to imply) or more likely as incomplete sampling from an effectively infinite population
of gametes. That inference about finite populations is difficult is evident from the stream of papers
on the topic which is still flowing strongly, but I am not sure that the matter under discussion
is one in which the difficulties genuinely arise.

I hope that other discussants will take up Section 7 of the paper which in many ways I found
the most interesting. It could act as something of a shibboleth to distinguish between those who
find the idea of the actual experiment as a fractional replicate with consequent aliasing natural
and helpful and those for whom it adds to the obscurity. For myself, I would like to end by
congratulating Dr Nelder on an important piece of work, and by proposing that we offer him a
hearty vote of thanks.

ProressorR R. L. PLACKETT (University of Newcastle-upon-Tyne): An opportunity to discuss
linear models is welcome. As John Nelder says, they form a fundamental tool for the practising
statistician and so a clear exposition is most important. The developments of the 1950s were
reviewed here not long afterwards (Plackett, 1960), and Dr Nelder’s contribution to that discussion
seems already to contain the seeds of dissatisfaction. My comments on his paper are those of a
teacher of statistics who has a professional interest in clear exposition.

Three sorts of exposition are mentioned here: in computer manuals, in statistical textbooks,
and in teaching departments. Computer manuals seem generally to be disregarded by the review
sections of statistical journals. This is perhaps natural, on the grounds that they appear to be con-
cerned with computers, instructions for the use of. In fact, such manuals provide direct access
to computers for those who have data to analyse and who wish, for one reason or another, to
short-cut statistical courses and consultants. Computer manuals are the statistical cookbooks
of the computer revolution. They must be reviewed with care, in the hope that errors committed
in earlier editions will be corrected subsequently.
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Textbooks are more influential at all levels of organized teaching. But any teacher of statistics ought
to strive for an individual viewpoint, and many will prefer to do so. Neither the elegant perspectives
of textbooks nor their regrettable deficiencies are necessarily reproduced in teaching. Therefore
the most influential method of exposition now available is that by the teachers themselves.

For an example of what happens at the grass roots, consider the matter of constraints for
fixed effects, which Dr Nelder describes as undesirable. The reason why constraints of the form
3 «; = 0 were introduced is that the equations of estimation would otherwise have a singular
matrix. This method is perfectly valid, and useful at introductory and intermediate level. It forms
a basic part of the classical analysis for balanced incomplete block designs. At an advanced level,
some of the necessary equipment is provided by the theory of generalized inverse matrices and
methods for computing them. The last sentence of the monograph on this topic by Pringle and
Rayner (1971) reads as follows.

“The discomfort of statisticians of an earlier generation who used the method of imposed
linear restrictions ... as a sort of deus ex machina should now be completely banished ....”

Many teachers of statistics will agree that constraints play a much smaller role than in the
past, but their usefulness has not disappeared.

Dr Nelder criticizes the standard approach for notational deficiencies. But such deficiencies
are also present in the reformulation. A minor example concerns the meaning of 4.B, which
changes with the circumstances in a way which he grants may seem at first sight disconcerting.
The mathematical behaviour is unconventional and some explanation is called for. We find
that the notation was devised for the control language of a statistical program. This is perhaps
taking the computer revolution too far. But the main results are derived using a standard
notation, so there is no need to press the point.

A more serious example arises from the concept of canonical components. Although defined
throughout as variances, they can be negative. Teachers of statistics will recall the many occasions
in lectures and practical classes when the fact that a variance is non-negative has been stressed:
as a consequence of the definition, as a means of showing that —1<p<1, and as a proof that
some calculation has gone astray. The problem of explaining canonical components is obviously
not insuperable in an environment where many amazing ideas find unquestioning acceptance,
but there is likely to be confusion nevertheless.

A general formulation of the type described in Sections 4 and 5 is certainly attractive, and merits
serious consideration. The normal linear model is equally general, and widely taught, but usually
after the ground has been prepared. My preference is to consider fixed effects first, and introduce
random effects later. There are two reasons. First, a general model needs a careful introduction,
with examples of special cases, and may be more difficult to grasp than simpler models taken
separately. In Section 5.5, not all the four combinations from fixed and random effects need arise:
two are the same anyway, and one can be reserved for the exercises or examinations. Secondly
my assessment of the current state of the art for mixed models in the analysis of variance is as
follows. Interesting developments are still in progress, which include the maximum likelihood
estimation of variance components (e.g. Patterson and Thompson, 1971) and the use of minimum
norm quadratic unbiased estimation (e.g. Rao, 1971). Methods of teaching will be strongly
influenced by the fact that these advances are geared to the existing framework.

The material in Section 7 presents a teacher of statistics with problems of a rather different
kind. There was indeed a time when linear models formed the fundamental tool for the practising
statistician, and most experiments within his remit were randomized field experiments. Detailed
consideration could have been given to matters as technical as restricted randomization and
unit-treatment interactions, except of course that the opportunities for advanced teaching were
much smaller then than now. Under present conditions, linear models have to compete for their
slice of the syllabus with many other topics of practical importance, some of which have come
on remarkably as a result of the computer revolution. They include multivariate analysis, time
series, optimization algorithms, response surfaces, and spatial analysis. The expanding frontier
is now a serious limiting factor on advanced teaching.

1 therefore predict that Dr Nelder’s reformulation is unlikely to be taken over as an agreed
exposition but that his thoughful criticisms and constructive proposals will affect the teaching of
linear models at several crucial points. His paper shows once again that fundamental topics in
statistics can, with advantage, be illuminated from a variety of different angles. I have much
pleasure in seconding the vote of thanks.
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The vote of thanks was passed by acclamation.

Professor M. ArTkIN (University of Lancaster): Dr Nelder raises the important question of
marginality in his paper. The ignoring of marginality relationships in unbalanced survey cross-
classifications can lead to quite incorrect conclusions. The paper by Francis referenced by
Dr Nelder gives a good example.

Francis discussed a consulting problem in which an unbalanced 2 x 5 (Sex x Religion) classifi-
cation was analysed by four different ANOVA programs, all of which gave different answers. These
are reproduced as columns (a) to (d) in Table 1, slightly rearranged from Francis’ paper.

TABLE 1
Analyses from Francis

Source d.f. SS (a) SS (b) SS () SS (d) SS (e)
Mean 1 Not given 7,305.78 12,982.73 12,982.73 12,982.73
Sex 1 43.58 11.17 43.58 28.71 28.71
Religion 4 69.36 57.74 54.49 69.36 54.49
Sex x Religion 4 -4.61 10.25 10.25 10.25 10.25
Error 1,300 2,988.95 2,988.95 2,988.95 2,989.00 2,988.95

Column (@) arises from a computing method which ignored the non-orthogonality, subtracting
the unadjusted main effects S'S from the among cell SiS. Columns (c¢) and (d) are hierarchical
analyses, giving repectively sex, religion adjusted for sex and interaction adjusted for sex and
religion, and religion, sex adjusted for religion, and interaction adjusted for religion and sex.
Column (b) arises from a “regression” analysis in which each effect is adjusted for all others in the
model: thus sex is adjusted for religion and the interaction, and religion is adjusted for sex and
the interaction (and the mean is adjusted for all effects!).

We need not consider column (@) further. Columns (c) and (d) together lead to the conclusion
that a final model must incorporate both sex and religion terms, but there is no interaction; both
main effect mean squares are significant at well beyond the 1 per cent level, regardless of the order
in which the effects are fitted.

Column (b) leads to the conclusion that only the religion effect is significant, for the sex effect
is not significant even at the 2% per cent level. The adjustment of the sex effect for the interaction,
which is not included in the final model, results in a considerable reduction of the sex sum of
squares, and the choice of the wrong model.

It is surprising to find Francis strongly recommending method (b) as the kind of test that
“most people would really want to do...” “because it is precisely what is done in multiple
regression in testing whether particular coefficients are zero...”. In fact, in choosing a suitable
multiple regression model, the #-tests on individual coefficients in the full (p-variable) model are
of very little use, precisely because such tests compare the full model with all (p-1) variable models.
Unless the final model is itself a (p-1) variable model, such a battery of tests may be quite misleading,
for it gives no information about the usefulness of the remaining variables when more than one
variable is omitted.

A very astute research worker might re-run the analysis omitting the sex x religion interaction.
Columns (¢) and (d) remain unchanged except for the deletion of the interaction row, and the
pooling of its S and d.f. with error. However, column (b) changes quite dramatically, its first
three rows becoming those of column (e). It will now be found that both sex and religion are
necessary. How many research workers would appreciate the necessity of fitting this second
model, given the appearance of column (b)? Francis clams that ‘“testing in this way [as in column
(b)] the sex effect...would provide a test of the pure main sex effect, uncompromised and
unadulterated by the sex-religion impact”. Unfortunately, the reverse is true.

Yet another composite ANOVA table is shown in column (¢). Here the main effects are adjusted
for each other as in column (b), but are not adjusted for the interaction. This table can also lead
to the wrong conclusion if the sex and religion effects are highly correlated: each adjusted SiS
may be non-significant while each unadjusted S'S may be highly significant.
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The presentation of both hierarchical analyses leads to the choice of the appropriate model(s),
regardless of the degree of unbalance of the design.

In conclusion, most textbooks warn against interpreting main effect tests when significant
interactions are present in balanced factorial designs. In unbalanced designs, the use of ANOvVA
tables equivalent to z-tests on the regression coefficients is unreasonable on two counts: ‘““averaged”
main effects are being tested when interactions may be present, and the non-orthogonality may
produce substantial changes in adjusted sums of squares when non-significant high-order interactions
are subsequently omitted. The hierarchical analysis, in association with a simultaneous test
(Aitkin, 1974) and a small number of permutations of retained terms, ensures that correct final
models are chosen.

Dr F. Yates (Rothamsted Experimental Station): I am very glad that Dr Nelder has joined
me in urging a reconsideration of the fixed and random effects models of the analysis of variance.
As most of you know, I have always regarded these concepts as unnecessary and confusing. I
expressed my doubts publicly some ten years ago in a general paper on experimental design. This
paper was presented at the Fifth Berkeley Symposium, and a further note on the subject was added
when the paper was reprinted in Experimental Design (1970).

I fully expected there would be protests at the meeting, but none came. Nor, so far as I am aware,
have the issues been argued in print. I did expect to find some discussion in a recent paper by
Kempthorne in Biometrics entitled “Fixed and random models in the analysis of variance”, but
he was only concerned to warn his readers against my heresies:

In spite of highly critical (and I believe unfounded) remarks of Yates [1965-6] (which
should, however, be read with care after a perusal of the intervening literature), I am of
the opinion (and I am not alone) that Eisenhart’s paper was of great importance.

Kempthorne followed up this paper with a circular letter, beginning with the erroneous
statement that “‘workers at Rothamsted, including Yates and Nelder, are of the opinion that the
ideas on interpretation of the analysis of variance with a mixed two-way table ... that have been
expounded by essentially everyone who has written on the topic are wrong”—erroneous in that
I never said the concepts were wrong, merely that they were unnecessary and confusing and could
lead to error. (I quoted an awful example in my Berkeley paper.)

With this letter he enclosed a copy of his paper, and 18 mimeographed pages of turgid algebra
on “sampling” a mixed two-factor model. This latter, he said, he inflicts on classes at Iowa State
University, but again the issues were not discussed.

In view of all this I am naturally pleased, though not surprised, that Nelder’s reformulation
confirms my contentions. The canonical components, the ¢s, are merely the variance components
of the random effects model, as the tables of Sections 4.2.2 and 5.5 show. Nelder’s final conclusion,
therefore, must be that this formulation, which is that adopted by Fisher, is appropriate for
indicating the correct tests of significance, whether or not the levels of a factor are regarded as a
random selection of a larger population of levels.

My only reservation on Nelder’s paper is that it gives the impression, at least to the casual
reader, that the distinction between fixed, random and mixed effects models is of some importance.
My own approach, set out in the Berkeley paper, is more basic. I there wrote:

What are the facts? The first and crucial point to recognise is that whether the factor
levels are arandom selection from some defined set (as might be the case with, say, varieties),
or are deliberately chosen by the experimenter, does not affect the logical basis of the
formal analysis of variance or the derivation of variance components. Once the selection
or choice has been made the levels are known, and the two cases are indistinguishable as
far as the actual experiment is concerned .. ..

There is an analogy here with the classical problem of determining the error of a linear
regression coefficient, in which, it may be remembered, it was sometimes claimed that
allowance had to be made for the fact that the observed x were a sample from some
population of x, whereas Fisher rightly insisted they could be taken as known.

It is worth remembering that the concepts of random and fixed effects were only introduced
by Eisenhart in 1947, by which time the theory of experimental design and analysis had been
very fully developed and successfully applied in practice for many years. The concept of
components of variance was included by Fisher in Statistical Methods for Research Workers (1925)
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as an alternative to intraclass correlation; this, as Fisher said, was “a very great simplification”.
Fisher did not there mention that the second component might be negative, but this must
obviously have been apparent to him (and indeed to his more perceptive readers) as he had just
been discussing at length the minimum negative value of the intraclass correlation coefficient.

With a negative component Fisher’s statement that the values can be regarded as the sum of
two independent normal variates no longer holds—instead, in some form or other, deviates from the
sample class means are required to obtain the necessary negative correlations. Had Fisher discussed
this point, and had the later inappropriate ¢ notation for variance components not been adopted,
it is possible that the present confusion might never have arisen.

May I conclude by reiterating that in my opinion the fixed-effects model, in the form it is
customarily expounded, is a source of confusion rather than enlightenment, and should be dropped.
With the rapid accretion of theory in all branches of statistics it is most important that only what
is really useful is retained and taught to students.

Professor O. KEMPTHORNE (Iowa State University): The Secretary wrote me to limit my remarks
and the statement I shall make cannot therefore contain a detailed analysis of the paper. I must
confine myself to general remarks. The title is pretentious in view of the contents. Notations for
handling factorial structures have been developed by myself, M. B. Wilk, G. Zyskind, and
undoubtedly others. One would get no intimation of this from the paper. I suggest to the
profession that Dr Nelder has been professionally unethical in not making reference to work
which covered essentially everything he does with a mere difference of notation. Who has
neglected “marginality”? Perhaps Dr Nelder in the past. Who have exposited differences between
finite and infinite populations? The mere reference to a one-page reference by Kempthorne in
Kempthorne and Folks, stated by them to be ‘“sloppy” or careless, is outright dishonesty in view
of the published record, and what I know Dr Nelder knows but chooses to ignore. It will be
apparent to real students of the area that Dr Nelder has had the habit for more than a decade of
failing to read the literature or failing to acknowledge its existence (cf. his 1965 paper). The
reformulation is not at all new, I assert. Population linear identities were given by me in my 1952
book. They were developed extensively by M. B. Wilk and G. Zyskind and others. I hope that
the profession will take note of the facts.

On the matter of linear models for randomized experiments, surely Dr Nelder has read and
indeed had read by 1965 my own book. There is nothing new in Section 7.

There are philosophical questions in the area but I have used the space available here.

I assert that there is nothing new and original in this paper.

I suggest that Dr Nelder owes deep apologies to many professional workers individually and
to the profession as a whole. Finally, his offence is one against science and research in general.
I ask the judgement of the profession.

Professor D. V. LiNDLEY (University College London). Although Dr Nelder and I have
radically different approaches to the linear model, it is interesting how much agreement there is
between us when it comes to the “mechanics of the situation and consequently how illuminating
his algebraic manipulations are for the Bayesian view. He starts with the concept of a population,
undefined in tonight’s paper, which, in the Bayesian framework, is a collection of random quantities
judged exchangeable. The linear model structure can be interpreted in terms of assumptions of
partial or complete exchangeability. Thus if X;, X, ... X, are exchangeable, E(X)) = u,
var (X;) = w?, cov (X, X)) = pw? for all i,j, i#j. If we write X; = 0+ ¢; with

E(6) = p,var (0) = 7%, E(e;) = 0, var (¢;) = o2,

all n+ 1 quantities being independent, we have a linear model with the same first- and second-order
structure, the identification being w? = ¢2+72 and p = 7%/(¢2+7?). Unfortunately the linear
model implies p>0 whereas if the exchangeability is only finite we may have (n—1) < p. Nelder
manages to embrace this case by using a linear model with negative ‘“‘variances”. In the Bayesian
view this is not essential, but nevertheless the understanding gained by his device is clearly useful
to the personalistic approach and tonight’s paper is to be welcomed.

If we agree on the inner workings of the black box, we appear to part company when we look
at the casing and consider its relation to the environment. Why are we engaged in all this algebra ?
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What is to be done with the mean squares or the F-tests? How is the practitioner to interpret the
linear models? (Incidentally I thought the speaker was a “likelihood man”—if so, what are
F-ratios doing?). Let me illustrate some of the issues by taking remarks from the paper.

In Section 2.2 fixed and random effects are respectively associated with complete and
incomplete sampling. Suppose that treatment 27 is included in an experiment. If it is desired
to make inferences about treatment 27 then the effect is fixed. If inferences are required about a
a treatment not included in the experiment but exchangeable with 27 the effect is random.
Sampling does not enter into the matter; the distinction is concerned with the inference, a topic
not mentioned in the paper.

I suppose that with the mud of Rothamsted on his boots, Dr Nelder is in a better position
than an academic like me to comment on practical matters, but his assertion that an interaction
with no main effects is of no practical interest seems rash. A main effect can be turned into an inter-
action and vice versa. Consider two factors each at levels 0 and 1 with yields as follows

01
0 35
1 35

with one main effect and no interaction. Let one factor remain unaltered but let the other be at
level O if the original two factors were at the same level, and 1 otherwise. The new factors have
no main effects, only an interaction. The important point is what inferences are to be made ?

In the Bayesian view the analysis cannot be separated from the input or the output. We are
used to no input in the classical model, but to have no output either seems carrying things too far.
This is a useful—and I choose the word deliberately, for I shall use it—paper but one that is in-
complete because of its failure to consider what all the activity is about. Once this is included,
inference and associated probability ideas are essential to an appreciation of the black box’s role.

Mr A. P. Dawm (University College London). To a very large extent my comments will echo
those of Professor Lindley, although they were prepared independently. Together with Professor
Nelder, I feel that there is more to analysis of variance than the normal linear model, and that most
current formulations do not emphasize the distinctive features. Consequently a re-formulation
is to be welcomed, and I find Nelder’s approach valuable. In fact, my principal criticism of this
paper is the length of time we have had to wait for it since some of the ideas were presented in
Nelder (1954).

I do have some difficulty, however, with Nelder’s concept of probability, which, as I understand
it, is similar to Fisher’s idea of probability as a proportion in a possibly infinite population. This
seems to extend straightforwardly to cover nested structures (populations of populations of ...),
but its application to cross-classifications baffles me, and I find a related subjectivist approach more
satisfying.

Suppose the statistician has a joint (subjective) distribution for the unobserved values (x;;),
where x;; is the value associated with levels # and j of factors 4 and B respectively. If these factors
are crossed, then this distribution might be unaltered if we permute either the levels of 4 or those
of B (or both). This leads immediately to the covariance structure of Section 5.3, and hence,
following Nelder’s arguments, to the population linear model of Section 5.4 to describe the
subjective distribution. The implied variance components may be negative, but usually will not be.

Nelder distinguishes, rightly, between two kinds of random term: error and effect. But this
distinction cannot be absolute; it is related to the use to which the experimental data are to be put.
Thus for A/B, with population linear model x;; = pu+ o;+ By, the o’s are effects if we wish to predict
x’s associated with further levels of B within levels of 4 occurring in the experiment; and we should
want to estimate the (u+ o). But if we wish to predict for new levels of 4, then the («;) become
errors, and the relevant effect, to be estimated, is simply p.

The above ideas are developed, in the subjectivist framework, in Dawid (1977).

Dr D. A. Preect (University of Kent at Canterbury): I regard tonight’s paper as outstandingly
important and elegant. Many present-day textbooks, particularly some written for non-mathema-
ticians, give the impression that the analysis for even the simplest experimental designs is a task
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of terrifying and tedious mathematical complexity. Dr Nelder’s attempt to do something about
this deserves a warm welcome.

I suspect that a prime cause of the trouble, and a reason for many bad analyses of experimental
data, is that people have tried to express, in mathematical notation or terminology, things that
they have failed to express first in ordinary everyday language.

I am sorry that Dr Nelder’s detailed discussion in Section 7 had to stop before reaching split-
plot experiments. The crazy idea has been spread abroad that the analysis of even simple split-plot
experiments is dangerous and difficult. Dr Yates dealt with an aspect of this in a paper already
referred to tonight (Yates, 1967, pp. 785-786). But, more recently, Anderson and McLean (1974,
p. 145) have stated that, when a student is first “exposed to the split-plot design, ... there is utter
chaos”. They seek to deal with this unnecessary or supposed chaos by introducing into the
analysis of variance extra lines, each with zero degrees of freedom. I myself see more future in
explaining and discussing, in everyday language, terms in the standard analysis, than in introducing
and explaining terms that are not really there anyway. I hope Dr Nelder will have time and space
to touch on this.

In practical experimentation, there is one situation that may seem to contradict Dr Nelder’s
remarks about postulating the existence of interactions in the absence of corresponding main
effects. This arises when an experimenter sets out to study a summit on a response surface. The
experimenter may say that he knows roughly what levels of his individual factors will produce a
maximum response, and that he specifically wishes to study interactions in the region around the
summit. If, for example, he sets up a 2" experiment that happens to straddle the summit neatly,
his data may well contain negligible main effects but large interactions. To ask “‘Are the main
effects zero or nearly so?” is to ask ““Are we working around a summit (or trough) ?”—and this
seems to me to be a question of practical interest.

Many of us were taught to use linear constraints for the parameters in the analyses of simple
experimental designs. Now that we have heard Dr Nelder’s advice about not using these
constraints, some of us may fear that this will make teaching more difficult, just because there will
be all those extra terms in the normal equations, and solution of these equations will be so much
more difficult. (I am here thinking of teaching done without the use of matrices.) I had such a
fear when I heard earlier versions of tonight’s paper. However, I cut all constraints out of my
teaching last year and found that, with a little care, things could proceed very smoothly. Indeed,
it seems to me that the idea of an estimable contrast can be the more readily understood when there
are no constraints to confuse the issue.

Dr H. P. WynN (Imperial College, London): Dr Nelder has an important constraint
running through his models. This is the constraint of balance. His very brief statement of the con-
dition (Section 3.1) hides this severe limitation of the classical theory of random effect models.

Under normality and balance assumptions the usual estimators of variance are minimum
variance unbiased estimators. This follows from the Lehmann-Scheffé theory of complete
sufficient statistics combined with a suitable partitioning of the sum of squares using a generalized
Fisher-Cochran theorem. There has been much recent work in weakening the normality assump-
tions to distributions whose third and fourth moments mimic those of the normal distribution.
(For example, Graybill and Hultquist, 1961 ; Kleffe and Pincus, 1974). The estimators are proved
to be uniformly minimum variance quadratic unbiased (MINQUE).

When balance is lost MINQUE estimators can be shown not to exist. Full necessary and
sufficient conditions still seem to be lacking, however. The problems of balance also go over to
the search for simple admissible estimators of covariance matrices when the fixed effects (means)
are unknown. This is true both in the Stein and Bayes frameworks. I should welcome some
comments from Professor Nelder on the unbalanced case.

Dr J. A. JounN (University of Southampton): I would like to comment on marginality. Suppose
we have two factors 4 and B at a and b levels respectively. Consider the two-way non-additive
cross-classification model

Vi = o+ i+ Bit vis+ e

I agree with Dr Nelder that since the y;; parameters span an (ab — 1)-dimensional space of contrasts
the effects of 4 and B are marginal to 4.B. It makes no sense to test this model against, for
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instance, the model
Ver = A+ Bi+ Y+ e

Dr Nelder, therefore, concludes that the meaningful sum of squares are those for A eliminating
B, B eliminating 4 and A.B eliminating 4 and B. By this I assume he means that he has the
following sequence of models:

@) Yy = pt o+ Bit+vuten
2 Y = ptot+p; +eisns
B) yip=p +B; + €ujxs
@ yir=pto + ey

A.B eliminating 4 and B involves testing (1) against (2). A4 eliminating B is (2) against (3) and is
only valid if interactions are not significant in the first test. B eliminating A is (2) against (4).
However, one can approach the problem in another way. Suppose we write the model as follows

Vi = (u—=P)+(@+7:) + B+ 7.0+ @is— Pr. = Ps+P) + esin
= *+0£;;k +ﬁ;‘ +'y2;+em.

Now the y}; parameters span an (a—1) (b—1)-dimensional space of contrasts of which the two
spaces spanned by the of and by the BF parameters are not subspaces. It seems perfectly valid
to define the main effects of 4 and B in terms of the o« and B¥ respectively so that, in this model,
A and B are not marginal to 4.B. In other words, contrasts in the of and B¥ are estimable and
it is meaningful to test main effects by testing the equality of the o} or BF. Yates (1934) indicates
that this is the appropriate test to use when it cannot be assumed that the interactions are non-
existent. He refers to this analysis as the “method of weighted squares of means®.

It is interesting, although it possibly adds to the confusion, to look further at the models
involved when testing the equality of, say, the . We are now testing

Vi = pE+ o+ BF +yh+ e
against
Yie = p¥+BF +yE+ e,
or, if we re-arrange the models to involve the original parameters, we test
Yige = ot o+ Bt vis+ e
against
Yise = p+Bi+ (Yiu— Vi) + e

I am not familiar with the BioMED program but I wonder whether, with its choice of constraints,
its sum of squares for 4 eliminating 4. B does in fact test this hypothesis. If so then it seems perfectly
valid.

T am also uneasy about adopting the sequential approach for more than two factors. Suppose
in testing five factors the five-factor interaction is statistically significant. I might still be interested
in testing main effects and other interactions since the statistical significance may be spurious.
It may happen, for instance, that no other interaction is significant which would throw considerable

doubt on the importance of the five-factor interaction. I would be interested to hear what
Dr Nelder would do in such a situation.

Professor D. R. Cox (Imperial College): A simple example where a zero main effect occurs in
conjunction with interaction can be based on the textile problems studied by Daniels (1939).
Consider a rectangle of paper of constant density cut very accurately into 1 cm strips parallel to
one side. Suppose now that each of these strips is cut by scissors into 10 parts, the aim being to
judge by eye a division into 10 parts as nearly equal as possible. If this is done for m such strips
and the pieces weighed, an mx 10 data array is generated the row sums of which are constant,
the interaction mean square providing a measure of the variability of the scissor cutting. The
moral seems to be that in each application we have to consider carefully what are the physically
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meaningful parameters. I agree with Dr Nelder that in the great majority of cases the measures
of excess variability are appropriate, but feel that he has gone too far in suggesting that this is
always so.

The following contributions were received in writing, after the meeting.

Dr JouN W. Tukey (Bell Laboratories, Murray Hill, N.J., U.S.A.): I join with the speaker in
hoping for an eventual unified and agreed-upon description. I hope the present paper will help
us approach this ideal state, but I must say that it has not brought us there. In particular, as
I explain below, I cannot accept a universal prohibition on asking about 4 = 0 in the presence of
AB#0.

Three types of variability arise in almost any question about a set of comparative measurements,
experimental or not: measurement variability, sampling variability, contextual sampling vari-
ability. The general picture is that we have measured a sample of versions (about whose comparison
the question is posed) in each of a sample of contexts.

A major point, on which I cannot yet hope for universal agreement, is that our focus must be
on questions, not models. Suppose, for maximum simplicity, that we have measured some response
for each of a number of versions or treatments under circumstances where we can separate
measurement variability from sampling variability. Then, whether or not both are wise, we may
correctly ask both of the following questions: (a) What confidence limits can we place on a mean
of exactly these versions ? (b) What confidence limits can we place on the mean over a corresponding
population of versions of which these are a reasonable sample? (Each of these is, as is easy to
see, really treating versions as contexts.) If our versions are a probability sample of a population,
this fact cannot possibly stop us from inquiring about exactly these versions. If our versions are
not a sample from a well-defined population, we have long known that we should not “cop out”
by only considering limits on the mean of the version we have. Granted that our estimate of
sampling variability is, perhaps, biased to an unknown degree, we need to produce measures of
uncertainty, such as confidence limits, that combine measurement variability and sampling
variability. We need to face the larger variability, even though our view of it may be broad.
(This example can, of course, be generalized almost without bound.)

One conclusion that I draw from such examples is this: Models can—and will—get us in deep
troubles if we expect them to tell us what the unique proper questions are. (We also have to be
almost equally careful about models, for quite separate reasons, once we face up to robust/
resistant considerations.)

If we know just what versions we are to compare, but are concerned with the contexts in which
the comparisons are to be made a similar pair of questions are easy to formulate—one in which
we ask about means over the contexts actually used (context-sampling variability excluded) and
one in which we ask about means over a population of contexts from which we have used a sample
(context-sampling variability included). Again we can almost always ask both questions, though
one may be quite silly. In agriculture, of course, we usually want to include the context-sampling
variability—even though we rarely, if ever, find our sample of contexts to be a random sample
of the contexts that concern us.

In an A x Bx C analysis, we may well want to include C’s context-sampling variability when
analysing 4 and exclude it when analysing B, something no model could tell us to do.

Consider, finally, an experiment comparing two detailed flavours for a standard brand of
confectionery. If we do not know sexes for individuals—only that our samples are at least
random—we will clearly be very concerned as to which flavour will sell better in total. If we know
individual sexes and if we find a large flavour-by-sex interaction, we are still almost sure to want
to compare total sales between flavours without regard to whether it is larger than the interaction
would suggest. (After all, any such suggestion has to come from regarding the two sexes as a
sample from a larger number of sexes!) This example shows clearly, I believe, that it may be
important, not just possible, to test 4 against zero in the presence of even quite large interaction.

Mr J. H. MAINDONALD (Victoria University of Wellington, N.Z.): Computer programs ought,
I believe, to do more than check for extrinsic aliasing as discussed in Section 6; details of the
linear relation ought to be printed out. Such information is easily obtained as a by-product of any
of the standard methods of computation. Suppose that the kth column of the design matrix is a
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linear combination of earlier columns. Then with Cholesky or a related method, or with Q— R,
the necessary information is contained in the (k—1) x £ submatrix of the upper triangle matrix
obtained. If, for example, the elimination process reduces the matrix of coefficients in the
normal equations to

2 5
4 -2,
0 o

(o 4)x=(22)

X3 = X;— $X,.

© © o

one will solve

to yield

(Any zero in one of the k—1 diagonal positions will be replaced by 1-0.)

With Gauss-Jordan the necessary information is available directly, provided one adopts a
suitable convention for dealing with zero or near-zero pivots. In the above case the coefficients
1 and —% would occupy positions 1 and 2 of column 3 (or row 3, if the algorithm works with the
lower triangle) of the reduced matrix.

Dr Nelder’s examples have too simple a structure to provide good illustrations of this suggested
procedure.

Drs J. Frane and R. JENNRICH (UCLA): In this brief space, we can touch only on a few of
the issues raised by Dr Nelder. First, we would like to clarify what the computer program
BMDI10V (né BMDX64) does in terms of a simple 2x 2 fixed effects design: EY,;; = p;. The
following hypotheses are automatically tested (for both balanced and unbalanced designs).

row effects: P11t Pz = Moyt Mo,
column effects:  pyy+ pay = pas+ Mg,
interaction: MayF Mo = ppgt Mg

These hypotheses are, of course, the hypotheses that are classically tested. Several authors
recommend these for most unbalanced problems (Francis, 1973; Kutner, 1974; Speed and
Hocking, 1976). Other schemes for unbalanced data generally test hypotheses that weight the
expected cell means by the observed cell sizes, but Kutner (1974), Speed and Hocking (1976) and
Searle (1971, p. 317) recommend against these methods. BMDI10V is a general linear hypothesis
program and as such can test a wide variety of hypotheses besides those automatically tested.

The above test for row effects in the presence of interaction has been questioned. Indeed, we
recognize that the interpretation of the test for row effects is generally influenced by the magnitude
of the interaction. Consider, however, data on the cost of operation of two chemical analyses
used in two laboratories. For each analyser in each laboratory we are give a sample of daily costs.
Suppose we have clear-cut interaction, but our problem is to purchase one analyser to be used by
the two laboratories. We are interested in minimizing the total cost for both laboratories and in the
hypothesis that there is no difference in total cost, namely,

MaaF pag = oy + Moo,

where u;; is the mean cost of operating analyser i in laboratory j. This is, of course, a test for
zero main effect in the presence of significant interaction of the form given by BMD10V.

On the other hand, if we are not constrained to use the same analyser in both laboratories in
the future and if interaction is significant then hypotheses of the form (analyser 2 is always at least
as good as and is sometimes better than analyser 1) are of interest. If the evidence supports
M11<Mas and pg; > pas, then we use separate analysers for each laboratory. BMDI10V can perform
the necessary computations except for modest side calculations.

While certain tests are not always used, it is better to have them reported than not to have them
available at all.
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Use of analysis of variance for model building is sometimes different from hypothesis testing.
An important feature in BMD10V is its ability to consider a sequence of models (each as a separate
analysis).

Dr NELDER replied briefly at the meeting, and subsequently in writing as follows.

I had wondered, in advance, whether I should find myself in a minority of one at the end of
the discussion; in the event the amount of support has been gratifying. Mr Healy wonders if some
of the distinctions and differences have any practical consequences. The ambiguities in the
interpretation of variance components caused by differing constraints, not always made explicit,
have, I believe, caused confusion. The dangers of making false inferences by neglecting marginality
are exemplified by Professor Aitkin and are real. The difficulties encountered by students with the
current formulation should not be underestimated.

Professor Plackett raises the important question of how formulations of statistical models
reach the target populations. He is surely right in noting the increasing influence of computer
manuals (and the Editorial Board of Applied Statistics decided some years ago that manuals
should be included among books to be reviewed). I do not have to teach linear models and he
does; I would be unhappy, however, about introducing constraints for fixed effects, because I
would have to leave them out for random effects (otherwise the distributional assumptions are
violated), and this would lead to the kind of differences in dealing with the two kinds of term that
I am objecting to. Dr Preece’s experience in banishing constraints in his teaching is encouraging, -
and suggests that a unified approach can be put across at the elementary level.

Professor Plackett also questions the adequacy of a notation in which the interpretation of
A. B depends upon which marginal terms precede it. Now it is arguable that the interpretation of
Bax? is different in the two expressions

Bo+Pix+Pox? and  Bo+ Byx?

yet we do not distinguish notationally between them. It would of course be perfectly possible
to write, for example,

A.B A.B[A] A.B[B] A.B[A,B]

when the marginal terms eliminated are appended in square brackets. Experience with the
notation of the paper, which is compact and unambiguous, suggests that users quickly assimilate
it and are not confused by the convention adopted. This contrasts with the current use of variance
components in E.M.S., where the notation is ambiguous unless the constraints are also specified.
Professor Lindley has, as usual, asked some awkward questions. In considering the status of
his treatment 27 I regard sampling as a way of ensuring some objectivity in the assumption of
exchangeability. It is quite true that by redefinition of factors we can convert a main effect into an
interaction and vice versa. The process is analogous to the rotation of axes in multivariate methods.
Like models which violate marginality relations, rotation procedures are well defined mathematically
but may not make any practical sense. The fact that tables can be constructed with interactions
associated with null margins does not mean that the corresponding model is a useful one a priori.
Both Professors Lindley and Tukey have commented, rightly, on the incompleteness of the
paper. I dealt only with the specifying and fitting of models, whereby the data are effectively
replaced by a set of fitted values derived from a model, the model being a parsimonious one, which
nevertheless gives fitted values not appreciably discrepant from the data. This may be called the
smoothing phase. Beyond this is the prediction phase, when predictions and inferences are made,
and questions (in Tukey’s sense) asked. The relationships between questions, the structure of
data, and models are both important and complex, but are outside the scope of the paper; very
briefly I take the view that models are useful tools in trying to answer questions. The prediction
phase I was obliged to leave undiscussed for lack of space; of course the smoothing phase also
contains inferences, e.g. whether to infer that an interaction is zero, and in such goodness-of-fit
questions I doubt that likelihoods are enough, i.e. data actually obtained do have to be embedded
in other data sets that might have been obtained but were not. The strong statement in the
paper about practically interesting models in relation to marginality is a statement about the
smoothing phase. I agree entirely with Professor Tukey that, having fitted a model containing an
interaction, one may wish to predict one of the margins; with balanced experimental data the
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sample margins serve both as sufficient statistics in the fitting process and as predictors, and these
roles are often not distinguished. However, with survey data the sample and predicted margins
are often quite different, with individual elements combined with different sets of weights for the
two types. Standard errors may be assigned to the elements of a predicted margin, and hence, in
Tukey’s example, a significance test could be constructed for the difference in the two kinds of
confectionery summed over the factors with which the preferences interacted, though I am not
convinced that zero is a specially interesting point on the difference scale.

Drs Frane and Jennrich give a similar example involving a decision about instruments which
interact with laboratories. Again the distinction must be made between significance tests for
goodness of fit at the model-building stage and tests for predicted margins, given the model. With
unbalanced data the use of A4 eliminating 4.B when the interaction is negligible can lead to severe
loss of power in the test for 4, so that to present this sum of squares at the model-building stage
can lead to false inferences. The use of a test of significance in the decision problem—which
instrument >—can be questioned. Why not choose the one that minimizes costs?

Professor Cox presents an example of a table with a null margin and a non-null interaction.
Such tables certainly exist, and perhaps a simpler example is afforded by a contingency table with
a fixed null margin produced by an a priori sampling scheme. In the fitting of models, the terms
corresponding to such margins belong to a minimal model (Nelder and Wedderburn, 1972) which
has to be fitted first before exploration of further model terms begins. Two points about the terms
in the minimal model should be noted: first, there is no question of a hypothesis being tested about
them and, secondly, the terms should be fitted ever if null so that the d.f. for the residuals after
the minimal model has been fitted will be correct. Thus null terms in the minimal model do not
contradict the asserted necessity of recognizing marginality relations.

Dr Preece raises a slightly different point, namely the relations between terms in a polynomial
model, as might be used in studying a surface near a summit. If the position of the summit is not
a special point on the measurement scale (and generally it is not) then the quadratic surface must
include the linear one as a subset, i.e.

Y= I30+ﬁ1+ﬁzx2
includes
Y= ﬁo + ,31x.

If interest centres on the curvature then the linear term becomes part of the minimal model and is
fitted first; its smallness relative to the quadratic is not under test. It would be wrong, however,
to ignore the fact that the linear model is part of the quadratic one, and to fit a term for linear
eliminating quadratic (and cubic etc.). This leads to the same danger of making misleading
inferences as Professor Aitken demonstrated so clearly for main effects and interactions. The
ordering implicit in the models must be respected. I hope Professor Aitkin will expand his remarks
for the point he makes is of great importance.

Dr Wynn rightly comments on the complexities of estimation of models with both fixed and
random effects when no balance exists. For the estimation of the variance components I would
use the modified maximum-likelihood estimation described by, for example, Patterson and
Thompson (1971). The problem of estimating the fixed effects, given the estimates of the variances,
and of assigning measures of uncertainty to them, seems much more difficult, the still-controversial
Fisher-Behrens distribution relating to almost the simplest possible case. I am unsure about the
validity of demanding admissibility as a necessary property of an estimator. For unbalanced data
with one error I believe the use of canonical components should lead to some simplification in the
formulae for standard errors and expected mean squares, though of course much of the simplicity
of the balanced case will be lost.

Dr John’s reparametrization underlies the type of model which ignores marginality. This model
is well defined algebraically, and my quarrel is not with its mathematics, but with its practical
relevance. I should emphasize again the distinction between the smoothing and prediction phases.
His second point is one of some practical importance, namely whether marginal effects give any
information about interior effects. Thus if 4.B.Cis large, but 4.B, A.C and B. C are all negligible
should we feel the less convinced about the reality of the three-factor interaction? If the 4.B.C
effect is real, the position is analogous to having accidentally sited an experiment exactly at a col
in a response surface. My own practice is to discount large high-order interactions not accompanied
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by at least some large marginal effects, but the justification is intuitive and the matter deserves
serious study.

Dr Yates believes that I have not gone far enough and that I should have abolished altogether the
distinction between fixed and random effects. We are agreed in believing that the arithmetic of
the analysis of variance and the form of expected mean squares are not affected by the fixed/
random distinction, but I still find it useful to distinguish between a set of, say, varietal effects which
can be regarded as a random sample from a population and a set of effects which cannot. I am
sure he is right in tracing back negative canonical components to negative intra-class correlation,
Mr Dawid rightly draws attention to the two-faced attitude we may adopt towards random terms
that occur in the numerator of variance ratios; my main concern, however, was to distinguish
this type of term from a random ““denominator” term in setting up a model. It is true that even here
the distinction is not absolute, because one man’s noise may be another man’s interesting sound.

It is difficult to know how to respond to Professor Kempthorne’s somewhat intemperate
outburst. My paper was written from a strong dissatisfaction with the current exposition of linear
models in many textbooks. I have spent some considerable time in recent years trying to undo the
confusions that have arisen in various people’s minds from the exposition they have received. I
am not alone in this; a Professor of Statistics, currently in Canada, wrote to me recently (my
italics): “The psychologists I teach here are strongly confused on all this”, i.e. on random and fixed
effects. I have given five reasons for my dissatisfaction; if Professor Kempthorne can convince the
referees that these points have been previously expounded in exactly the form I give, then I shall
be only too happy to acknowledge the necessary priority. In my reformulation it was necessary
to go back to first principles and to simple structures in order to make as clear as possible the points
at issue; no implication was intended that all the steps in the reformulation were original. Such a
notion is manifestly absurd. For instance, I know that Professor Kempthorne, among others, has
written about the population linear identity; partly as a result of his writings such an idea can now
be taken as given, and he should be pleased that the idea has now reached such a firm place in
the generally accepted corpus of statistical thought.

To the melodrama of his last paragraph I have nothing to contribute. My reformulation may
be accepted, in whole or in part, or rejected entirely, or replaced by something better as other ideas
are put forward. Other statisticians will decide. Meanwhile, Professor Kempthorne might do worse
than consider the possibility that there really are substantial points at issue here, points that would
be worth while his trying to understand.
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